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1 Schematic structures of ligands

The schematic structures of representative organic ligands, along with their abbreviations,
are shown in Fig. S1. These ligands were extracted from the CoRE 2019 and QMOF 2?3

databases and are used throughout the main text for consistency and clarity.

a
O < o-C 33% Q«i
14-bdc PO4 3- ox 4.4-bpy btc tpt
~ O~ X o Nt
formic acid pmi 26-nd p
25-tdc bpe dpa bpde
b

O« OO ™A Y= OO >==<

14-bdc 4.4-bpy MuA otta bpdc hdda

Yoot »ed A O S o Sy S ey S

26-ndc bcoa fa beotda bpe pbpa

OO 00 Ot K B By

odba edba hdba ox ipa 14-ndc

Supplementary Figure S1: Schematic structures and abbreviations of prevalent ligands

found in (a) the CoRE 2019 and (b) QMOF databases.



2 List of structures

ID CIF name Common name Metal node Organic linker Notes

a CAU10-O-CH; Al-OH 5-Methoxybenzene-

b Zn,O(TCPB),, ZnsO Eéi_ladlcarboxyllc e Typef I:fStructu;r ZS used ior .

. MOF-14 Cup(COO)s  tepb proof-of-concept demonstration.
ili gj;({)jfj(l)f?d()o CAU10 2}:81{ ;ccgb Type II: Five MOFs used for the
P training of MACE-FFLAME-N5L7
ili IKETOH manual HKUST-1(Cu) Cuy(COO)s btc to vrovide metal node

iv. RIFDUGO1 clean  HKUST-1(Zn) Zny(COO),; btc cor?ﬁ S i

v SAHYIK MOF-5 71,0 bdc PR,

1 gmof-a9ld4fe Al-O 1,4-ndc

2 qmof-0f39fad Al-O 2,6-ndc

3 qmof-7cd7343 Al-O edb

4 WOJJOV_SL Al-OH 1,4-ndc

5 691978 Al-OH 2,6-ndc

6 gmof-fddda69 MIL-53 Al-OH bdc

7  qmof-2634ae7 Al-OH edb

8 SUJNUH_ clean Cuz(CO0), 1,4-ndc

9  qmof-f80342¢ Cuy(COQO)4 bde } .

10 QOWQUO_manual MOF-14 chEcoo§4 - 12 UL 3 il @ 2D 1LLOIES
11 BAZFUF clean MOF-143 Cuy(COO);  tepb consisted of the selected building
12 DAXNOG_ clean Zn,(CO0),  bde Plocks.

13 gqmof-08e86ed IRMOEFE-7 7n,0 1,4-ndc

14 qmof-3fb24cf IRMOF-8 Zn, O 2,6-ndc

15 qmof-84773bf VAN0) bdc

16  gqmof-9525030 Zn,O edba

17  qmof-721171e 7m0 edba

18  qmof-79d5925 7n,0 edba

19 Zn-H3BCTB Zn-H3BCTB Zn,O tepb

20 TOHYUM clean 7n,O ipa

A CAU21 CAU-21 AlgOg func.

¢ moketron MO st Type IV: Ton Abbased MOFs
D qmof-26a5292 ALOH fumc. with building blocks 51m1.lar 'to the
E  gmof-68edf8e Al-OH scaff. func. sselected ones. The organic ligands
F  qmof-7044cf9 Al-OH func. e e)itertlddtll\lleos;afﬁold?f(;f s

seven selected MOFs (scaff.) or

g gigiggggggi 21:811:11 iﬁﬁz introduce functional groups

I gmof-de9cc08 Al-OH scaff. func. (func.).

J  qmof-66998fd AlzO scaff. func.

Supplementary Table S1: List of MOFs used in this work.

In Table S1, we listed the MOFs used in this work and their building blocks.



3 Choice of MACE foundation model
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Supplementary Figure S2: Performance of MACE foundation models on the five MOFs
of type II.

A series of MACE foundation models has been released, with the second-generation
models (MACE-MP-0b*) recommended for fine-tuning due to their improved stability in
MD simulations.* We initially selected MACE-MP-0b2, as it showed the best performance
on CAU-10 among the second-generation models. The performance of medium-sized
models on the five type-II MOFs is summarized in Fig. S2. None of the models achieves

consistently superior performance across all systems.



4 The number of building blocks in training
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Supplementary Figure S3: Model performance with varying numbers of metal nodes
and organic ligands for the training of (a) Zn,O(TCPB),, and (b) MOF-14. The dashed
lines represent the benchmark models, which were trained solely on frameworks.

In the Zny,O(TCPB),, and MOF-14 cases discussed in Section 2.2 of the main text, we
examined the effect of varying the number of metal nodes and organic ligands, as shown in
Figs. S3a and S3b, respectively. Both figures reveal a consistent trend: model performance

improves steadily as the number of building blocks in the training set increases.




5 Model performance on the twenty test MOFs

Figures S4 to S6 show parity plots comparing DFT reference values with machine-learning
potential predictions for energy, force, and stress, respectively. Each subplot corresponds
to one of the twenty MOFs that were excluded from training for MACE-FFLAME-N5L7.

In Fig. S4, a pronounced energy shift can be seen between MACE-MP-0b2 predictions
and the DFT-calculated energies, even after baseline alignment. This systematic error
arises from the lack of organic covalent bonding environments in the original MACE train-
ing set. Fine-tuning with ligand and MOF training data substantially reduces this shift in
MACE-FFLAME-N5L7, though some structures (e.g., qmof-f80342c and TOHYUM _ clean)
still require additional refinement.

Force predictions from MACE-MP-0b2 show a relatively broader scatter as shown in
Fig. S5. Fine-tuning with MACE-FFLAME-N5L7 significantly improves the accuracy, and
a further round of fine-tuning with additional MOF data (MACE-FFLAME-MOF25) yields
nearly perfect force predictions.

For stress predictions (Fig. S6), MACE-MP-0b2 tends to both overestimate and un-
derestimate relative to DFT. MACE-FFLAME-N5L7 effectively corrects most of these de-

viations, and MACE-FFLAME-MOF25 further reduces the residual errors.
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Supplementary Figure S4: Parity plots of DFT-calculated vs. predicted energies for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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Supplementary Figure S5: Parity plots of DFT-calculated vs. predicted forces for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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Supplementary Figure S6: Parity plots of DFT-calculated vs. predicted stresses for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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6 Model performance on the five MOFs of type 11

Figure S7 presents the model performance on the five MOFSs used to sample node configu-
rations. Our model, MACE-FFLAME-N5L7, exhibits significantly lower errors in energies,
forces, and stresses compared to the original MACE model. After an additional round of
fine-tuning on the remaining 20 MOFs not included in the original training set, the ex-
tended model, MACE-FFLAME-MOF25, continues to demonstrate excellent performance

on these five benchmark MOFs, indicating strong generalization capabilities.
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Supplementary Figure S7: Comparison of model errors (energies, forces, and stresses)
on the five MOFs of type II. Both fine-tuned models show significantly improved
accuracy over the original MACE baseline.
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7 Force and stress errors on MOF-5
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Supplementary Figure S8: Comparison of DFT and MACE-FFLAME-N5L7 predictions
for the forces and stresses of MOF-5 configurations. The color of the points indicates
the relative energy with respect to the minimum-energy configuration.

In Fig. S8, we compare the forces and stresses obtained from DFT and those pre-
dicted by MACE-FFLAME-N5L7 for the MOF-5 configurations employed in evaluating the
rotational energy barrier of the phenylene group. The color of each point represents the
relative energy of the corresponding configuration. Overall, the MACE-FFLAME-N5L7
model reproduces the DFT-calculated forces and stresses with excellent agreement, indi-

cating its strong reliability and transferability across different configurations.
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8 Faster training convergence

Here, we focus on fine-tuning a model specifically for MIL-53. The complete training
configurations are taken from the work of Vandenhaute et al.®>. We relabeled all configu-
rations using the DFT functionals described in the Methods section of the main text and
selected training subsets via K-means clustering, as also detailed there.

Training subsets of 300, 500, 700, and 900 representative configurations were con-
structed. Each subset was used to fine-tune both MACE and our MACE-FFLAME-NSL7
models.

All subsets lie within the data-rich regime, ensuring that the fine-tuned models suc-
cessfully capture the breathing behavior of MIL-53 in molecular dynamics simulations.

Figure S9 presents the validation loss throughout the training process. The sharp
drop in the loss curves corresponds to the two-stage training strategy employed. The
legend indicates the foundation model and the number of training data points used. For
each configuration, we performed four fine-tuning runs with different random seeds and
plotted the one that converged most rapidly.

When fine-tuning from our FFLAME model, the initial loss is lower and convergence
is achieved more quickly compared to MACE, resulting in over 50% reduction in GPU

time.

13
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Supplementary Figure S9: Validation loss during fine-tuning under a data-rich setting.
Each curve corresponds to the fastest-converging run (out of four seeds) for a given
number of training configurations (300, 500, 700, or 900, as indicated in the legend).
Fine-tuning from FFLAME leads to faster convergence than from MACE, reducing GPU
time by over 50%.
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