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1 Schematic structures of ligands

The schematic structures of representative organic ligands, along with their abbreviations,

are shown in Fig. S1. These ligands were extracted from the CoRE 20191 and QMOF2,3

databases and are used throughout the main text for consistency and clarity.

a

b

Supplementary Figure S1: Schematic structures and abbreviations of prevalent ligands
found in (a) the CoRE 2019 and (b) QMOF databases.
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2 List of structures

ID CIF name Common name Metal node Organic linker Notes
a CAU10-O-CH3 Al-OH 5-Methoxybenzene-

1,3-dicarboxylic acid
b Zn4O(TCPB)n Zn4O tcpb
c MOF-14 Cu2(COO)4 tcpb

Type I: Structures used for
proof-of-concept demonstration.

i qmof-11f7d05 Al-O tcpb
ii CAU-10 CAU10 Al-OH ipa
iii IKETOH_manual HKUST-1(Cu) Cu2(COO)4 btc
iv RIFDUG01_clean HKUST-1(Zn) Zn2(COO)4 btc
v SAHYIK MOF-5 Zn4O bdc

Type II: Five MOFs used for the
training of MACE-FFLAME-N5L7
to provide metal node
configurations.

1 qmof-a91d4fe Al-O 1,4-ndc
2 qmof-0f39fa4 Al-O 2,6-ndc
3 qmof-7cd7343 Al-O edb
4 WOJJOV_SL Al-OH 1,4-ndc
5 691978 Al-OH 2,6-ndc
6 qmof-fddda69 MIL-53 Al-OH bdc
7 qmof-2634ae7 Al-OH edb
8 SUJNUH_clean Cu2(COO)4 1,4-ndc
9 qmof-f80342c Cu2(COO)4 bdc
10 QOWQUO_manual MOF-14 Cu2(COO)4 tcpb
11 BAZFUF_clean MOF-143 Cu2(COO)4 tcpb
12 DAXNOG_clean Zn2(COO)4 bdc
13 qmof-08e86ed IRMOF-7 Zn4O 1,4-ndc
14 qmof-3fb24cf IRMOF-8 Zn4O 2,6-ndc
15 qmof-84773bf Zn4O bdc
16 qmof-9525030 Zn4O edba
17 qmof-721171e Zn4O edba
18 qmof-79d5925 Zn4O edba
19 Zn-H3BCTB Zn-H3BCTB Zn4O tcpb
20 TOHYUM_clean Zn4O ipa

Type III: A total of 20 MOFs
consisted of the selected building
blocks.

A CAU21 CAU-21 Al8O8 func.
B qmof-4b9877b Al-O scaff.
C qmof-6cf7eac Al-O scaff.
D qmof-26a5292 Al-OH func.
E qmof-68edf8e Al-OH scaff. func.
F qmof-7044cf9 Al-OH func.
G qmof-66998fd Al-OH func.
H qmof-ca29387 Al-OH func.
I qmof-de9cc08 Al-OH scaff. func.
J qmof-66998fd Al3O scaff. func.

Type IV: Ten Al-based MOFs
with building blocks similar to the
selected ones. The organic ligands
either extend the scaffolds of the
seven selected MOFs (scaff.) or
introduce functional groups
(func.).

Supplementary Table S1: List of MOFs used in this work.

In Table S1, we listed the MOFs used in this work and their building blocks.
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3 Choice of MACE foundation model

Supplementary Figure S2: Performance of MACE foundation models on the five MOFs
of type II.

A series of MACE foundation models has been released, with the second-generation

models (MACE-MP-0b*) recommended for fine-tuning due to their improved stability in

MD simulations.4 We initially selected MACE-MP-0b2, as it showed the best performance

on CAU-10 among the second-generation models. The performance of medium-sized

models on the five type-II MOFs is summarized in Fig. S2. None of the models achieves

consistently superior performance across all systems.
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4 The number of building blocks in training

a b

Supplementary Figure S3: Model performance with varying numbers of metal nodes
and organic ligands for the training of (a) Zn4O(TCPB)n and (b) MOF-14. The dashed
lines represent the benchmark models, which were trained solely on frameworks.

In the Zn4O(TCPB)n and MOF-14 cases discussed in Section 2.2 of the main text, we

examined the effect of varying the number of metal nodes and organic ligands, as shown in

Figs. S3a and S3b, respectively. Both figures reveal a consistent trend: model performance

improves steadily as the number of building blocks in the training set increases.
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5 Model performance on the twenty test MOFs

Figures S4 to S6 show parity plots comparing DFT reference values with machine-learning

potential predictions for energy, force, and stress, respectively. Each subplot corresponds

to one of the twenty MOFs that were excluded from training for MACE-FFLAME-N5L7.

In Fig. S4, a pronounced energy shift can be seen between MACE-MP-0b2 predictions

and the DFT-calculated energies, even after baseline alignment. This systematic error

arises from the lack of organic covalent bonding environments in the original MACE train-

ing set. Fine-tuning with ligand and MOF training data substantially reduces this shift in

MACE-FFLAME-N5L7, though some structures (e.g., qmof-f80342c and TOHYUM_clean)

still require additional refinement.

Force predictions from MACE-MP-0b2 show a relatively broader scatter as shown in

Fig. S5. Fine-tuning with MACE-FFLAME-N5L7 significantly improves the accuracy, and

a further round of fine-tuning with additional MOF data (MACE-FFLAME-MOF25) yields

nearly perfect force predictions.

For stress predictions (Fig. S6), MACE-MP-0b2 tends to both overestimate and un-

derestimate relative to DFT. MACE-FFLAME-N5L7 effectively corrects most of these de-

viations, and MACE-FFLAME-MOF25 further reduces the residual errors.
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Supplementary Figure S4: Parity plots of DFT-calculated vs. predicted energies for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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Supplementary Figure S5: Parity plots of DFT-calculated vs. predicted forces for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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Supplementary Figure S6: Parity plots of DFT-calculated vs. predicted stresses for the
twenty test MOFs. Each subplot corresponds to an MOF of type III.
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6 Model performance on the five MOFs of type II

Figure S7 presents the model performance on the five MOFs used to sample node configu-

rations. Our model, MACE-FFLAME-N5L7, exhibits significantly lower errors in energies,

forces, and stresses compared to the original MACE model. After an additional round of

fine-tuning on the remaining 20 MOFs not included in the original training set, the ex-

tended model, MACE-FFLAME-MOF25, continues to demonstrate excellent performance

on these five benchmark MOFs, indicating strong generalization capabilities.

10 4

10 3

10 2

10 1

En
er

gy
 R

M
SE

 (e
V/

at
om

)

bdc btc ipa tcpb

0.05

0.10

0.15

0.20

Fo
rc

e 
RM

SE
 (e

V/
Å)

SA
HY

IK

IK
ET

OH
_m

an
ua

l

RI
FD

UG
01

_c
le

an

CA
U1

0

qm
of

-1
1f

7d
05

0.0000

0.0005

0.0010

0.0015

0.0020

St
re

ss
 R

M
SE

 (e
V/

Å³
)

Node / Model
Node
Al-O
Al-OH
Cu2(COO)4
Zn2(COO)4
Zn4O
Model
MACE-MP-0b2
MACE-FFLAME-N5L7
MACE-FFLAME-MOF25

Supplementary Figure S7: Comparison of model errors (energies, forces, and stresses)
on the five MOFs of type II. Both fine-tuned models show significantly improved
accuracy over the original MACE baseline.
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7 Force and stress errors on MOF-5
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Supplementary Figure S8: Comparison of DFT and MACE-FFLAME-N5L7 predictions
for the forces and stresses of MOF-5 configurations. The color of the points indicates
the relative energy with respect to the minimum-energy configuration.

In Fig. S8, we compare the forces and stresses obtained from DFT and those pre-

dicted by MACE-FFLAME-N5L7 for the MOF-5 configurations employed in evaluating the

rotational energy barrier of the phenylene group. The color of each point represents the

relative energy of the corresponding configuration. Overall, the MACE-FFLAME-N5L7

model reproduces the DFT-calculated forces and stresses with excellent agreement, indi-

cating its strong reliability and transferability across different configurations.
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8 Faster training convergence

Here, we focus on fine-tuning a model specifically for MIL-53. The complete training

configurations are taken from the work of Vandenhaute et al. 5 . We relabeled all configu-

rations using the DFT functionals described in the Methods section of the main text and

selected training subsets via K-means clustering, as also detailed there.

Training subsets of 300, 500, 700, and 900 representative configurations were con-

structed. Each subset was used to fine-tune both MACE and our MACE-FFLAME-N5L7

models.

All subsets lie within the data-rich regime, ensuring that the fine-tuned models suc-

cessfully capture the breathing behavior of MIL-53 in molecular dynamics simulations.

Figure S9 presents the validation loss throughout the training process. The sharp

drop in the loss curves corresponds to the two-stage training strategy employed. The

legend indicates the foundation model and the number of training data points used. For

each configuration, we performed four fine-tuning runs with different random seeds and

plotted the one that converged most rapidly.

When fine-tuning from our FFLAME model, the initial loss is lower and convergence

is achieved more quickly compared to MACE, resulting in over 50% reduction in GPU

time.
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Supplementary Figure S9: Validation loss during fine-tuning under a data-rich setting.
Each curve corresponds to the fastest-converging run (out of four seeds) for a given
number of training configurations (300, 500, 700, or 900, as indicated in the legend).
Fine-tuning from FFLAME leads to faster convergence than from MACE, reducing GPU
time by over 50%.
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