Supplementary Information: Evaluating the Transfer Learning from Metals to Oxides with GAME-Net-Ox

Thomas Van Hout, a,b Oliver Loveday, a,c Jordi Morales-Vidal, a Santiago Morandi, a and Núria López*, a

^a Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-CERCA), Av. Països Catalons 16, 43007, Tarragona, Spain.

^b Eindhoven University of Technology, Den Dolech 25612 AZ Eindhoven, The Netherlands.

^c Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, N4 Block, C. Marcel·lí Domingo 1, 43007, Tarragona, Spain.

 * Corresponding author. E-mail: nlopez@iciq.es

(Dated: 5 November 2025)

S1. SUPPLEMENTARY FIGURES

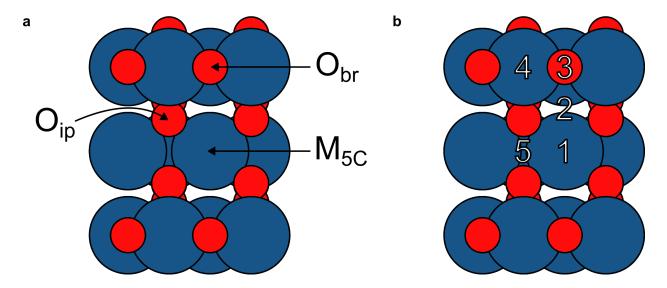


FIG. S1: Rutile (110) surfaces and adsorption sites, r-MO₂ surface top view. **a** Type of surface atoms: M_{5C}: 5-coordinated metal, O_{br}: Bridge Oxygen, O_{ip}: In-plane Oxygen. **b** Considered sites for initial adsorbate placement: (1) Top M_{5C} site, (2) Hollow M_{5C}-O_{br} site, (3) Top O_{br} site, (4) Bridge O_{br} site, and (5) Hollow M_{5C}-O_{ip} site.

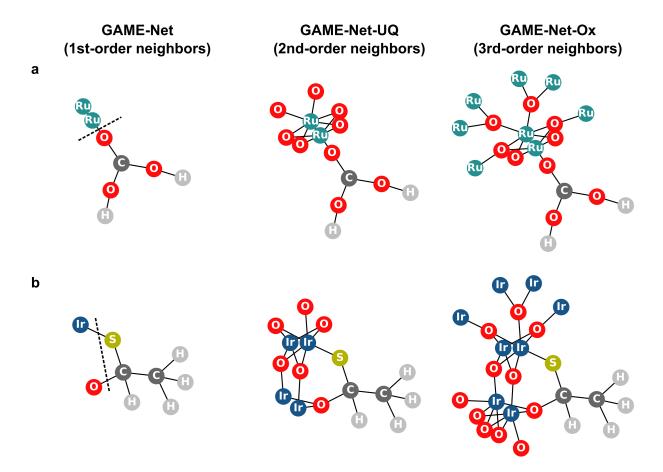


FIG. S2: Example of graph representations for a carbonic acid CH_2O_3 on $RuO_2(110)$ and b ethanethial C_2H_4S on $IrO_2(110)$ adsorption structures, as function of the surface neighbor order with respect to the adsorbate. GAME-Net-Ox employs the most extended surface representation, which includes the 3^{rd} order neighbors and the coordination number (CN). Note that the graph representation employed by GAME-Net is not suitable to retrieve the composition of the oxide surface.

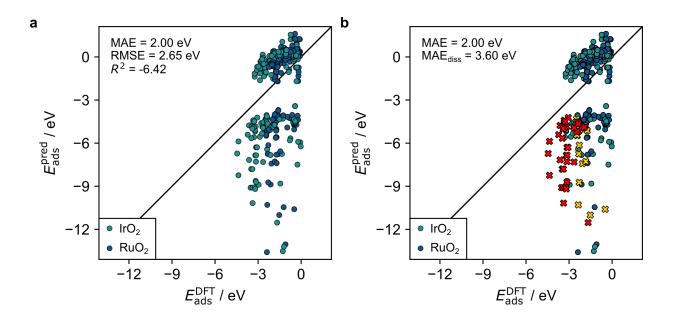


FIG. S3: Parity plots of GAME-Net predicted, vs. DFT adsorption energies on conductive oxides (IrO₂ and RuO₂, n=536). **a** All adsorption configurations. **b** The same data with proton-dissociation events highlighted as crosses for IrO₂ (red) and RuO₂ (yellow).

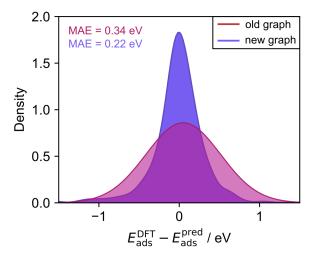


FIG. S4: Distribution of prediction errors and associated MAE when using the original GAME-Net graph representation (red) and when including the coordination number (CN) and the 3^{rd} order neighbors for the surface atoms (blue) for the model trained on conductive IrO₂ and RuO₂ metal oxides.

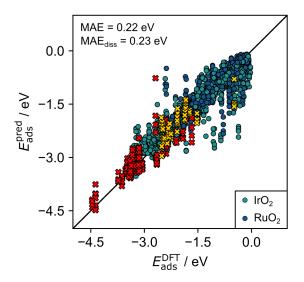


FIG. S5: Parity plot of predicted vs. DFT adsorption energies for GAME-Net-Ox on conductive oxides (IrO₂, RuO₂). Cross-shaped points correspond to proton-dissociations for IrO₂ (red) and RuO₂ (yellow) (n=2096).

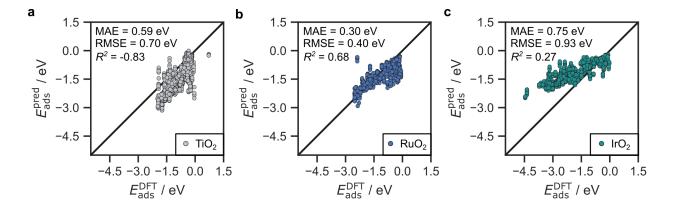


FIG. S6: Parity plots evaluating model metal oxide generalization. The tests show the model: **a** trained on IrO_2 and RuO_2 and tested on TiO_2 (n=1680), **b** trained on IrO_2 and TiO_2 and tested on RuO_2 (n=1350), and **c** trained on RuO_2 and TiO_2 and tested on IrO_2 (n=1270).

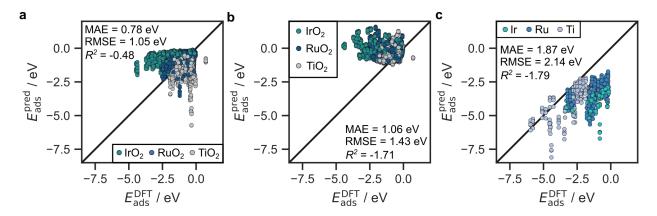


FIG. S7: Parity plots evaluating model transferability between metal and oxide domains. The tests show the model: **a** trained on all metals and tested on all oxides (n=4300); **b** trained on a metal subset (Ir, Ru, Ti) and tested on all oxides (n=4300), and **c** trained on all oxides and tested on the metal subset (n=540).

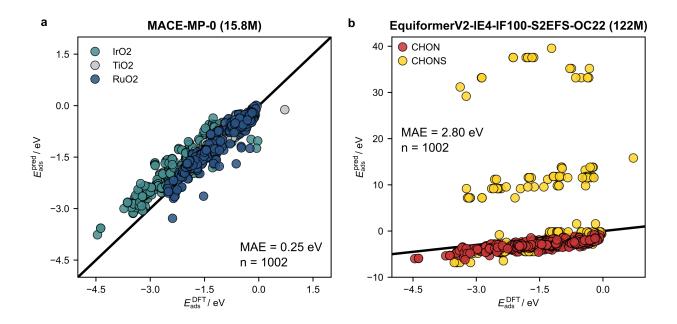


FIG. S8: Performance of **a** MACE-MP-0 and **b** EquiformerV2-OC22 in predicting the DFT adsorption energy starting from the DFT-relaxed structures. Points in panel **b** are colored based on the presence of S in the adsorbate.

S2. SUPPLEMENTARY TABLES

TABLE S1: List of adsorbates included in the dataset, grouped by adsorbate family.

Molecule	Formula		
$C_x H_y$			
Methane	CH_4		
Ethane	C_2H_6		
Propane	C_3H_8		
Ethene	C_2H_4		
Propylene	C_3H_6		
Acetylene	C_2H_2		
Prop-1-yne	C_3H_4		
$C_x H_y C$)		
Methanol	СН ₃ ОН		
Ethanol	C_2H_5OH		
Propan-2-ol	C_3H_7OH		
Formaldehyde	CH ₂ O		
Acetaldehyde	C_2H_4O		
Propan-2-one	C_3H_6O		
Methoxymethane	CH ₃ OCH ₃		
$C_x H_y S$	7		
Methanethiol	CH ₃ SH		
Methanethial	$\mathrm{CH_2S}$		
Ethanethiol	C_2H_5SH		
Ethanethial	C_2H_4S		
Propane-2-thiol	C_3H_7SH		
Propane-2-thione	C_3H_6S		
Dimethylsulfane	CH ₃ SCH ₃		

Molecule	Formula		
Amines			
Methanamine	CH ₃ NH ₂		
Ethanamine	$C_2H_5NH_2$		
Propan-2-amine	$C_3H_7NH_2$		
Trimethylamine	$(CH_3)_3N$		
Imin	es		
Methanimine	CH ₂ NH		
Ethanimine	C_2H_3NH		
Propan-2-imine	C_3H_5NH		
N-methylmethanimir	ne $CH_3N=CH_2$		
$C_x H_y O_n$	z = (2,3)		
Carbonic acid	$\mathrm{H_{2}CO_{3}}$		
Formic acid HCOOH			
Acetic acid	CH ₃ COOH		
Carbamate esters			
Carbamic acid	NH ₂ COOH		
Amia	les		
Formamide	HCONH ₂		
Acetamide	CH ₃ CONH ₂		
Oximes			
Formaldoxime	CH ₂ NOH		
Amidines			
Formimidamide	HN=CHNH ₂		
Acetimidamide	CH ₃ N=CHNH ₃		

TABLE S2: Statistics related to the DFT structures \rightarrow graph post-filtering process for isomorphic graphs. Values obtained with the conversion parameters defined in the Manuscript.

Material	DFT	Unique	Filtered	Conversion
Material	relaxations	graphs	graphs	[%]
RuO_2	302	270	32	89.4
IrO_2	313	254	59	81.2
${ m TiO_2}$	387	336	51	86.8
Total	1002	860	142	85.8

TABLE S3: GAME-Net-Ox architecture and number of parameters for each internal layer. Table obtained with torchinfo Python package. PMA=Pooling by Multi-head Attention; MAB=Multi-head Attention Block.

Layer(type)	Sub-layer Parameters		
Linear	3,360		
SAGEConv(1) MeanAggregation			
Linear	25,600		
Linear	25,600		
SAGEConv(2) MeanAggregation			
Linear	25,600		
Linear	25,600		
SAGEConv(3) MeanAggregation			
Linear	25,600		
Linear	25,600		
TAGConv SumAggregation			
Linear	25,600		
Linear	320		
PMA	160		
MAB Linear	25,600		
Linear	25,600		
Linear	25,600		
Linear	25,600		
Total	387,840		

TABLE S4: GAME-Net architecture and number of parameters for each internal layer. Table obtained with torchinfo Python package. The GraphMultisetTransformer pooling layer relies on Pytorch Geometric 2.0.3. PMA=Pooling by Multi-head Attention.

Layer(type)	Sub-layer Parameters		
Linear	3,040		
SAGEConv(1)			
Linear	25,600		
Linear	25,600		
SAGEConv(2)			
Linear	25,600		
Linear	25,600		
SAGEConv(3)			
Linear	25,600		
Linear	25,600		
GraphMulstisetTransformer			
Linear	25,760		
Linear	161		
PMA	103,200		
Total	285,761		

TABLE S5: Game-Net-UQ architecture and number of parameters for each internal layer. Table obtained with torchinfo Python package. Due to breaking changes after Pytorch Geometric 2.0.3, the GraphMultisetTransformer pooling layer has been implemented manually by the authors. PMA=Pooling by Multi-head Attention; MAB=Multi-head Attention Block.

Layer(type)	Sub-layer Parameters		
Linear	3,840		
SAGEConv(1) MeanAggregation			
Linear	36,864		
Linear	36,864		
SAGEConv(2) MeanAggregation			
Linear	36,864		
Linear	36,864		
SAGEConv(3) MeanAggregation			
Linear	36,864		
Linear	36,864		
TAGConv SumAggregation			
Linear	36,864		
Linear	384		
PMA	192		
MAB Linear	36,864		
Linear	36,864		
Linear	36,864		
Linear	36,864		
Total	557,376		

TABLE S6: Dissociative adsorptions included in the dataset, grouped by family and surface of dissociation.

Molecule	Formula	Surface		
$C_x H_y$				
Prop-1-yne	C_3H_4	RuO_2		
$C_x H_y O$				
Acetaldehyde	ldehyde C ₂ H ₄ O			
Ethanol	$\mathrm{C_{2}H_{5}OH}$	IrO_2		
Methanol	$\mathrm{CH_{3}OH}$	IrO_2		
	$C_x H_y S$			
Ethanethiol	C_2H_5SH	IrO_2 , RuO_2		
Methanethiol	$\mathrm{CH_{3}SH}$	IrO_2, RuO_2		
Propane-2-thiol	C_3H_7SH	IrO_2, RuO_2		
Propane-2-thione	C_3H_6S	IrO_2		
-	Imines			
N-methylmethanimine	IrO_2			
$C_x I$	$H_y O_{n=(2,3)}$			
Acetic acid	CH ₃ COOH	$IrO2, RuO_2$		
Carbonic acid	$\mathrm{H_{2}CO_{3}}$	IrO ₂ , RuO ₂		
Formic acid	НСООН	IrO_2 , RuO_2		
Carba	umate esters			
Carbamic acid	$\mathrm{NH_{2}COOH}$	IrO ₂ , RuO ₂		
Amides				
Acetamide	$\mathrm{CH_{3}CONH_{2}}$	IrO_2		
Formamide	HCONH_2	IrO_2 , Ru O_2		
Oximes				
Formaldoxime	CH ₂ NOH	IrO_2 , RuO_2		
Amidines				
Acetimidamide	$CH_3N=CHNH_2$	IrO_2		
Formimidamide HN=CHNH ₂ Ir				

TABLE S7: Performance of MACE-MP-0 and EquiformerV2-122M ML interatomic potentials (MLIPs) on predicting the DFT adsorption energy on rutile oxides. The EquiformerV2 model checkpoint is named EquiformerV2-1E4-1F100-S2EFS-0C22, and included in the FairChem-V1 GitHub repository. Mean Absolute Error (MAE) values are in eV. MAE_{RS} refers to the MLIP predictions obtained by running a single-point on the DFT-relaxed structures (VASP CONTCAR file). \mathbf{n}^* and $\mathbf{MAE}^*_{\mathbf{RS}}$ neglect adsorption structures with S-containing adsorbates as Equiformer has not been trained with these systems.

	MACE-MP-0 (15.8M)		EquiformerV2-122M (OC22)			
Material	n	${ m MAE}_{ m RS}$	n	${ m MAE_{RS}}$	\mathbf{n}^*	${f MAE^*_{RS}}$
$RuO_2(110)$	302	0.18	302	3.22	246	1.53
$IrO_2(110)$	313	0.46	313	3.51	249	1.46
$\operatorname{TiO}_2(110)$	387	0.14	387	1.91	314	1.22
Total	1002	0.25	1002	2.80	809	1.39