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Fig. S1 Property distribution of dyes in the FluoDB dataset.
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Table S1 Performance of different molecular scaffolds in Fluor-pred across four properties

MAE (Number of data)
Scaffold
Aabs (NM) Aem (NM) Dpy, Emax
None 27.055 (56) 19.387 (34) 0.105 (22) 0.131 (28)
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Table S2 Performance comparison of normal sampling strategies for the binary classification

model of NIR dyes
Normal Sampling
Model Acc MCC  FIScore  Recall  Precision SP BA AUC PRAUC
LGeM 098l 0831+ 0838 0778+ 0909+  0.995: 0886+  0.985% 0.919+
0.0018  0.0161 0.0152  0.0238  0.0245  0.0016 00117  0.0036 0.0139
GBRT 0981  0834= 0841 0786+  0.906= 0994+ 0890+ 0982+ 0.916=
0.0037  0.0349  0.0341 0.0473  0.0280  0.0017  0.0239  0.0085 0.0230
XGBoost 0980+  0.828= 0772 0.772& 0910+ 0995+ 0883 0987+ 0.914=
00t 0.0026 00243 0.0378 00378 00347  0.0023 0.0185  0.0028 0.0158
- 0978+  0.803+  0.808+ 0730+ 0908+ 0995+  0.862+  0.983+ 0.899=
0.0026  0.0252  0.0253  0.0401 0.0321 0.0020  0.0197  0.0060 0.0227
A 0978+  0.806+  0.814+ 0754+  0.887+ 0993+  0.874+ 0982+ 0.898=
0.0020  0.0178  0.0171 0.0300  0.0287  0.0020 00146  0.0062 0.0123
o 0979+ 0821+ 0832+ 0815 0852+ 0990+ 0902+ 0979+ 0.887=
0.0034  0.0275  0.0267  0.0424  0.0411 0.0036  0.0205  0.0080 0.0269
I 0977+ 0818+  0.829+  0.839+ 0823+ 0987+ 0913+  0.980+ 0.894
0.0045  0.0362  0.0342  0.0582  0.0495  0.0047  0.0282  0.0109 0.0383
G 0971+ 0765+ 0779+  0.787+  0.774= 0984+ 0885+ 0974+ 0.844=
0.0038  0.0291 0.0274  0.0386  0.0445  0.0043 0.0186  0.0075 0.0283
ST 0972+ 0773+ 0785+ 0783  0.796= 0985t  0.884x 0975+ 0.865=
0.0044  0.0366  0.0370  0.0731 0.0603  0.0058  0.0348  0.0084 0.0255
N 0976+ 0799+ 0812+  0.809+ 0816 0987+  0.898+ 0974+ 0.865=
0.0048  0.0379  0.0356  0.0383  0.0503  0.0043 0.0194  0.0064 0.0255
. 0.981+  0.839+  0.848+ 0815t 0885t 0993 0904+ 0985+ 0.921+
Stacking

0.0035 0.0321 0.0308 0.0473 0.0242 0.0016 0.0237 0.0083 0.0251
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Table S3 Performance comparison of normal undersampling strategies for the binary

classification model of NIR dyes

Undersampling

Model ACC MCC F1 Score Recall Precision SP BA AUC PRAUC
LGBM 0.927+ 0.634+ 0.624+ 0.946+ 0.465+ 0.926+ 0.936+ 0.977+ 0.799+
0.0039 0.0110 0.0122 0.0125 0.0141 0.0045 0.0056 0.0032 0.0233

GBRT 0.936+ 0.662+ 0.655+ 0.945+ 0.502+ 0.936+ 0.940+ 0.977+ 0.817+
0.0084 0.0240 0.0277 0.0179 0.0345 0.0095 0.0077 0.0071 0.0329

XGBoost 0.919+ 0.608+ 0.597+ 0.932+ 0.440+ 0.918+ 0.925+ 0.972+ 0.769+
008 0.0108 0.0312 0.0334 0.0251 0.0359 0.0116 0.0133 0.0064 0.0316
RF 0.929+ 0.638+ 0.629+ 0.940+ 0.473+ 0.928+ 0.934+ 0.977+ 0.793+
0.0051 0.0207 0.0200 0.0231 0.0196 0.0051 0.0120 0.0047 0.0300

SAM 0.933+ 0.658+ 0.647+ 0.960+ 0.488+ 0.931+ 0.946+ 0.978+ 0.801+
0.008 0.029 0.029 0.023 0.029 0.007 0.014 0.007 0.049

GT 0.979+ 0.822+ 0.832+ 0.815+ 0.852+ 0.990+ 0.903+ 0.979+ 0.888+
0.003 0.028 0.027 0.042 0.041 0.004 0.021 0.008 0.027

GIN 0.978+ 0.819+ 0.829+ 0.839+ 0.824+ 0.987+ 0.913+ 0.980+ 0.895+
0.005 0.036 0.034 0.058 0.050 0.005 0.028 0.011 0.038

GCN 0.972+ 0.765+ 0.780+ 0.787+ 0.775+ 0.984+ 0.886+ 0.975+ 0.845+
0.004 0.029 0.027 0.039 0.045 0.004 0.019 0.008 0.028

GAT 0.973+ 0.773+ 0.785+ 0.784+ 0.796+ 0.986+ 0.885+ 0.975+ 0.865+
0.004 0.037 0.037 0.073 0.060 0.006 0.035 0.008 0.026

AFP 0.976+ 0.800=+ 0.812+ 0.809+ 0.817+ 0.987+ 0.898+ 0.975+ 0.867+
0.005 0.038 0.036 0.038 0.050 0.004 0.019 0.006 0.025
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Table S4 Performance comparison of normal oversampling strategies for the binary

classification model of NIR dyes

Oversampling
Model ACC MCC F1 Score Recall Precision SP BA AUC PRAUC
LGBM 0.981+ 0.831+ 0.838+ 0.778+ 0.909+ 0.995+ 0.886+ 0.985+ 0.919+
0.0018 0.0161 0.0152 0.0238 0.0245 0.0016 0.0117 0.0036 0.0139
GBRT 0.981+ 0.834+ 0.841+ 0.786=+ 0.906+ 0.994+ 0.890+ 0.982+ 0.916+
0.0037 0.0349 0.0341 0.0473 0.0280 0.0017 0.0239 0.0085 0.0230
XGBoost 0.980+ 0.828+ 0.772+ 0.772+ 0.910+ 0.995+ 0.883+ 0.987+ 0.914+
008 0.0026 0.0243 0.0378 0.0378 0.0347 0.0023 0.0185 0.0028 0.0158
RF 0.978+ 0.803=+ 0.808=+ 0.730+ 0.908+ 0.995+ 0.862+ 0.983+ 0.899+
0.0026 0.0252 0.0253 0.0401 0.0321 0.0020 0.0197 0.0060 0.0227
SAM 0.978+ 0.806=+ 0.814+ 0.754+ 0.887+ 0.993+ 0.874+ 0.982+ 0.898+
0.0020 0.0178 0.0171 0.0300 0.0287 0.0020 0.0146 0.0062 0.0123
GT 0.979+ 0.821+ 0.832+ 0.815+ 0.852+ 0.990+ 0.902+ 0.979+ 0.887+
0.0034 0.0275 0.0267 0.0424 0.0411 0.0036 0.0205 0.0080 0.0269
GIN 0.977+ 0.818+ 0.829+ 0.839+ 0.823+ 0.987+ 0.913+ 0.980+ 0.894+
0.0045 0.0362 0.0342 0.0582 0.0495 0.0047 0.0282 0.0109 0.0383
GCN 0.971+ 0.765+ 0.779+ 0.787+ 0.774+ 0.984+ 0.885+ 0.974+ 0.844+
0.0038 0.0291 0.0274 0.0386 0.0445 0.0043 0.0186 0.0075 0.0283
GAT 0.972+ 0.773+ 0.785+ 0.783+ 0.796+ 0.985+ 0.884+ 0.975+ 0.865+
0.0044 0.0366 0.0370 0.0731 0.0603 0.0058 0.0348 0.0084 0.0255
AFP 0.976+ 0.799+ 0.812+ 0.809+ 0.816+ 0.987+ 0.898+ 0.974+ 0.865+
0.0048 0.0379 0.0356 0.0383 0.0503 0.0043 0.0194 0.0064 0.0255
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Table S5 Optimal parameters for the binary classification model of near-infrared dyes

LGBM GBRT XGBoost RF SAM
'boosting_type': 'gbdt’
'objective':
'objective': 'binary’
'binary:logistic'
'class_weight': 'balanced' 'bootstrap': True
‘eval _metric': 'logloss'
'colsample_bytree': 1 'criterion': 'gini'
'booster': 'gbtree’
'importance_type': 'split' 'max_depth": None
'learning_rate': 0.1 ‘colsample_bylevel": 1
'learning_rate': 0.1 'max_features': 'auto'
'max_depth": 10 'colsample_bynode'": 1
'max_depth": -1 'min_samples leaf": 1 'C': 100.0
'min_samples_leaf": 1 'colsample bytree': 1
‘'min_child_samples': 30 'min_samples_split': 2 kernel: 'rbf

'min_child weight":
0.001
'n_estimators': 200
'num_leaves': 31
'reg_alpha': 0.1
'reg_lambda': 0.0
'subsample': 1

'subsample freq': 0

'min_samples_split': 10
'n_estimators": 300
'subsample': 1.0,

'max_features'": 'sqrt'

'gamma': 0
'max_depth": 6
'min_child weight'": 1
'n_estimators': 200
'reg_alpha': 0
'reg_lambda': 0
'scale_pos_weight'": 1

'subsample': 1

'n_estimators": 600
'n_jobs'": -1
'oob_score': False
'random_state': seed
‘verbose': 0

'warm_start': False

'gamma': 0.01

probability: True

GT

GIN

GCN

GAT

AFP

"hidden_channels": 256
"num_layers": 3
"dropout": 0.5

"Ir": 0.0001

"weight decay": 1e-05
"gamma": 1
"pos_weight": 1.079
"batch_size": 64

"n_heads": §

"hidden_channels": 128
"num_layers": 5
"dropout": 0.2

"Ir'": 0.0001

"weight decay": 1e-05
"gamma": 1
"pos_weight": 1.808

"batch_size": 128

"hidden_channels": 64
"num_layers": 2
"dropout": 0.2

"Ir": 0.001

"weight decay": 1e-05
"gamma": 1
"pos_weight": 1.015

"batch_size": 100

"hidden_channels": 256
"num_layers": 2
"dropout": 0.2

"Ir'": 0.0001

"weight decay": 1e-05
"gamma": 1
"pos_weight": 1.08

"batch_size": 32

"hidden_channels": 256
"num_layers": 5
"dropout": 0.3

"Ir": 0.001

"weight decay": 1e-05
"gamma": 1
"pos_weight": 1.006
"batch_size": 32

"num_timesteps": 5
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Table S6 Display of some forward transformation rules

Index NIR transformation rules

Frequency

(non-NiR —>-- NIR) label_value

! X
OH >>>
0 \fj\ g | OH
i s

62 0.025
N#CC(=C[1:*])C(=0)0 --->>>--- 0=C(0)[1:*]
N O
1 |l
o >>> OH
1 61 0.043
0 qix
N#CC(=Cclccc([1:*])cc1)C(=0)0 --->>>--- 0=C(0)c1ccc([1:*])cc
g s 1:*
2 - 7 0.0014
8)
COclcec([1:*])ccT --->>>--- cTcee([1:*])cc
>>>
e
3 'Tl 65 0.1391
cleee([1:*])ecct -=->>>--- CN(C)cTccc([1:*])cc
INI o]
1:—~O sy >55 OH
4 = 59 0.1612
o) 1>
N#CC(=Cc1ccc([1:*])s1)C(=0)O --->>>--- O=C(O)c1ccc([1:*])cc
O
>>> OH
5 - 60 0.1812
O=C(0)c1ccc([1:*])s1 --->>>--- O=C(O)cTccc([1:*])cc
(]
1:* 1:*
>>> HO '
6 N N\ 295 1

\

CN1C(=C[1*)C(C)(C)c2cccec2T --->>>---
CN1C(=C[1:¥])C(C)(C)c2cc(C(=0)0)ccc21
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Table S7 Fluor-pred Features Description

Object Characterization

Description *

Methods

Molecular Graph

Dye Scaffold Type
MMP Fingerprint
Dye Morgan Fingerprint

Quantum Chemistry
Information

Molecular Properties

Including 39 node features and 10 edge
features

A total of 17 scaffold types
A total of 136 dimensions
A total of 1024 dimensions

A total of 1 dimension, including HOMO-
LUMO gap

A total of 5 dimensions, including molecular
weight, LogP, number of rings, number of
double bonds, and TPSA

Attentive FP

Zhu's script
Custom script

RDKit

Uni-mol+

Solvent Type
Solvent
Morgan Fingerprint

A total of 71 solvent types

A total of 1024 dimensions

Custom script

RDKit

2For more detailed technical specifications, please refer to the open-source code of Fluor-pred.
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Table S8 Model evaluation metrics and their corresponding formulas

Index Name Equation
+
1 ACC = " " "
— %
2 MCC
V( O+ 0+ X
2
3 FI Score 1= —— -
4 Recall = -
5 Precision = -
6 SP (Specificity) = "
+
7 BA (Balanced Accuracy) = >
1
8 AUC = @)
0
9 PRAUC = )
1
10 MAE =— |C = )l
=
1 2
11 RMSE == ( =)
=1
— )2
12 R? 2=1- ( )
- )?
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Table S9 Statistics on the number of molecules for each scaffold type

Scaffold Count Count (non-NIR) Count (NVIR)
5n6 (6-n-5) 931 912 19
5p6 ([6+5]) 2546 2431 115
6n6 (6-n-6) 1463 1406 57
6p6 ([616]) 887 845 42
Acridines 954 933 21
Azo (Diazo) 38 38 0
BODIPY 1526 1324 202
Benz (Benzene) 699 689 10
Carbazole 1257 1240 17
Coumarin 779 696 83
Cyanine 980 584 396
Naphthalimide 257 255 2
PAHs 1683 1631 52
Porphyrin 321 297 24
SquaricAcid (Squaraine) 320 280 40
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List of Abbreviations

ACC, accuracy; AD, applicability domain; Al, artificial intelligence; BA, balanced accuracy;
CNN, convolutional neural networks; DL, deep learning; DM, distance-based method; GCN,
graph convolutional networks; GNN, graph neural network; KDE, kernel density estimation;
LDS, label distribution smoothing; MCC, matthews correlation coefficient; ML, machine
learning; MMPA, matched molecular pair analysis; NIR, near-infrared; non-NIR, non-near-
infrared; QSAR-MMP, quantitative structure-activity relationship-molecular matching pair;
RLAT, residual lightweight attention; SARs, structure-activity relationships; SP, specificity; TD-
DFT, time-dependent density functional theory; TPSA, topological polar surface area; Aabs,
absorption wavelength; Aem, emission wavelength; ®pr, fluorescence quantum yield; €max, molar

absorption coefficient
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