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1 Dataset preparation

Table S1 lists the initial, discarded, and final numbers of molecules for the benchmark datasets QM7-X,
TDCommons-LD50, and MoleculeNet-Lipophilicity. Molecules in the NEQ subset of QM7-X were discarded
due to unsuccessful completion of DFTB calculations required to obtain QM features. In the Toxicity
and Lipophilicity datasets, samples were discarded based on chemical composition criteria and failures in
generating initial molecular structures using RDKit, as described in the main text.

Table S1 Specification of the number of conformers considered in each dataset.

Dataset Initial
Number of
Molecules

Number of
Discarded
Molecules

Final
Number of
Conformers

QM7-X (eq) 41,537 0 41,537
QM7-X (neq) 41,537 2 41,535
Toxicity 7,385 112 (=1.5%) 7,273
Lipophilicity 4,200 127 (=3.0%) 4,073

2 Hyperparameter optimization via KRR-OPT

For all models and datasets, the number of training iterations was scaled with the size of the training
set to ensure manageable computational cost (see Table S2). Each dataset was partitioned into training,
validation, and test subsets. The validation set was used solely for hyperparameter selection, and all final
performance metrics reported in this manuscript were evaluated on the test set. For instance, in the QM7-X
dataset (≈41k structures), using 25k samples for training results in 5k validation samples and approximately
11k test samples.
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Table S2 Training and validation set sizes for the development of Kernel Ridge Regression (KRR) models across all benchmark
datasets, including adjusted iteration counts used for hyperparameter optimization.

Dataset Training
points

Validation
points

Iterations

QM7-X

500 2,000 16
1,000 2,000 12
2,000 2,000 8
4,000 4,000 4
8,000 4,000 2
16,000 4,000 1
25,000 5,000 1

Toxicity

100 800 32
500 2,000 16
1,000 2,000 12
2,000 2,000 8
4,000 2,000 8
5,000 1,250 4

Lipophilicity

100 800 32
500 2,000 16
1,000 2,000 12
2,000 1,600 8
3,000 600 8

3 Hyperparameter search range for XGBoost

Table S3 summarizes the hyperparameter space explored during optimization. For model training, the
dataset was split into training and testing subsets. For physicochemical property prediction on the QM7-X
dataset, the models were trained using 25k samples. For toxicity and lipophilicity prediction, the number
of training points specified in Table S2 was used to construct the learning curves.

Table S3 XGBoost Hyperparameter Search Space

Parameter Type Search Range / Values

λ Log-uniform [10−3, 10]
α Log-uniform [10−3, 10]
colsample bytree Categorical {0.1, 0.2, . . . , 1.0}
subsample Categorical {0.1, 0.2, . . . , 1.0}
learning rate Categorical {0.008, 0.010, 0.012, 0.014, 0.016, 0.018, 0.020}
n estimators Categorical {200, 300, 400, 500, 600, 800, 1000, 1500, 2000, 3000, 4000}
max depth Categorical {5, 7, 9, 11, 13, 15, 17, 20}
min child weight Integer [1, 300]
random state Fixed 20240815
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4 Prediction of atomization energy and HOMO-LUMO gap for QM7-X
molecules

Fig. S1 Performance of models trained on the QM7-X dataset for predicting atomization energies and HOMO–LUMO gaps.
Mean absolute errors (MAEs) of Kernel Ridge Regression (KRR) with DQM, BOB ⊕ DQM, and SLATM ⊕ DQM are shown
as solid lines, with shaded regions indicating the improvement gained by adding DQM to geometric descriptors. Dashed lines
indicate XGBoost performance trained with 25k samples. Panels A and D display property distributions for equilibrium (filled)
and non-equilibrium (step) geometries. Panels B and C present atomization energy learning curves, while panels E and F show
HOMO–LUMO gap learning curves.
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Target Set Metric DQM BOB BOB⊕DQM SLATM SLATM⊕DQM

EAT
EQ

MAE 2.550 0.638 0.560 0.297 0.256
R2 score 0.999 1.000 1.000 1.000 1.000

NEQ
MAE 22.004 11.963 3.940 10.046 2.522
R2 score 0.970 0.992 0.999 0.994 0.999

EGAP
EQ

MAE 1.616 2.225 1.387 1.440 1.090
R2 score 0.982 0.964 0.986 0.982 0.991

NEQ
MAE 4.420 9.928 4.197 9.335 3.944
R2 score 0.942 0.725 0.948 0.754 0.953

POL
EQ

MAE 0.426 0.207 0.185 0.211 0.178
R2 score 0.994 0.999 0.999 0.999 0.999

NEQ
MAE 1.657 1.084 0.985 0.924 0.814
R2 score 0.958 0.985 0.982 0.987 0.988

DIP
EQ

MAE 0.024 0.065 0.021 0.056 0.018
R2 score 0.979 0.864 0.983 0.877 0.987

NEQ
MAE 0.065 0.151 0.059 0.151 0.059
R2 score 0.911 0.513 0.925 0.519 0.924

Table S4 Mean absolute error (MAE) and R2 score values for direct learning of target properties via Kernel Ridge Regression.
EAT: atomization energy [kcal/mol]; EGAP: HOMO–LUMO gap [kcal/mol]; POL: polarizability [a3

0]; DIP: dipole moment [eÅ].

Target Set Metric DQM BOB⊕DQM SLATM⊕DQM

EAT
EQ

MAE 2.576 1.822 2.875
R2 score 0.999 0.999 0.999

NEQ
MAE 14.605 10.004 10.511
R2 score 0.985 0.993 0.993

EGAP
EQ

MAE 1.472 1.333 1.311
R2 score 0.984 0.988 0.988

NEQ
MAE 4.278 3.732 3.789
R2 score 0.947 0.958 0.957

POL
EQ

MAE 0.552 0.377 0.403
R2 score 0.988 0.995 0.995

NEQ
MAE 1.620 1.196 1.030
R2 score 0.957 0.975 0.984

DIP
EQ

MAE 0.023 0.018 0.017
R2 score 0.982 0.986 0.988

NEQ
MAE 0.062 0.057 0.056
R2 score 0.919 0.933 0.933

Table S 5 Mean absolute error (MAE) and R2 score values for direct learning of target properties via XGBoost. EAT:
atomization energy [kcal/mol]; EGAP: HOMO–LUMO gap [kcal/mol]; POL: polarizability [a3

0]; DIP: dipole moment [eÅ].
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Target Set Metric DQM BOB BOB⊕DQM SLATM SLATM⊕DQM

EAT
EQ

MAE 0.921 0.417 0.372 0.243 0.241
R2 score 1.000 1.000 1.000 1.000 1.000

NEQ
MAE 7.178 3.733 3.091 2.913 2.487
R2 score 0.997 0.999 0.999 0.999 1.000

EGAP
EQ

MAE 1.812 2.712 1.411 1.575 1.066
R2 score 0.978 0.945 0.986 0.979 0.991

NEQ
MAE 4.564 7.470 4.234 6.557 3.886
R2 score 0.939 0.767 0.947 0.800 0.954

Table S6 Mean absolute error (MAE) and R2 score values for delta learning of target properties via Kernel Ridge Regression
models trained on 25k samples. EAT: atomization energy [kcal/mol]; EGAP: HOMO–LUMO gap [kcal/mol].

Fig. S2 Evaluation of atomization energy and HOMO–LUMO gap prediction models combining SLATM with subsets of the
DQM descriptor using Kernel Ridge Regression models trained on 16k samples. Panels A and B show residual distributions
(prediction – true) for KRR atomization energy models on equilibrium and non-equilibrium geometries, respectively, using
global (Dglob), molecular orbital energy (DeMO), and atomic (Datom) components. Panels C and D show the corresponding
residual distributions for HOMO–LUMO gap.
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5 Correlation between target properties and QM properties

Fig. S3 Pearson correlation coefficients between the properties included in DQM and the target properties: dipole moment (DIP),
polarizability (POL), atomization energy (EAT), HOMO–LUMO gap (EGAP), toxicity (LD50), and lipophilicity (LIPO). For
Mulliken charges, instead of reporting individual correlations, the minimum and maximum values across each set are provided.
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6 Prediction of toxicity

Geom. Desc. Metric - ⊕DQM ⊕Dglob ⊕DeMO ⊕Datom

BOB
MAE 0.476 0.469 0.479 0.480 0.476
RMSE 0.643 0.635 0.629 0.631 0.626
R2 score 0.544 0.555 0.534 0.532 0.539

SLATM
MAE 0.433 0.445 0.426 0.429 0.452
RMSE 0.606 0.616 0.597 0.603 0.627
R2 score 0.595 0.581 0.607 0.600 0.567

Table S7 Evaluation of toxicity prediction models using Kernel Ridge Regression, combining geometric descriptors with subsets
of the DQM descriptor: global (Dglob), molecular orbital energy (DeMO), and atomic (Datom) components.
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7 Prediction of lipophilicity

Fig. S4 Performance of models trained on the MoleculeNet–Lipophilicity dataset. Mean absolute errors (MAEs) obtained with
DQM, BOB⊕DQM, and SLATM⊕DQM are shown as solid lines, with shaded areas indicating improvements from adding DQM

to geometric descriptors. Panel A presents the property distribution, while panels B and C display the lipophilicity learning
curves for Kernel Ridge Regression (KRR) and XGBoost models, respectively.

Geom. Desc. Metric - ⊕DQM ⊕Dglob ⊕DeMO ⊕Datom

BOB
MAE 0.584 0.593 0.584 0.585 0.593
RMSE 0.751 0.755 0.751 0.750 0.756
R2 score 0.568 0.563 0.569 0.569 0.563

SLATM
MAE 0.480 0.476 0.480 0.478 0.479
RMSE 0.679 0.661 0.679 0.673 0.661
R2 score 0.624 0.643 0.624 0.630 0.644

Table S8 Evaluation of lipophilicity prediction models using Kernel Ridge Regression, combining geometric descriptors with
subsets of the DQM descriptor: global (Dglob), molecular orbital energy (DeMO), and atomic (Datom) components.
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8 Computational costs within QUED framework

Figure S5 shows the computation times for each step of the QUED framework evaluated on 345 randomly
selected molecules (165 from the toxicity dataset and 180 from the lipophilicity dataset). Model train-
ing times are excluded, as training costs depend strongly on hardware, hyperparameter optimization, and
parallelization strategies.

The conformational search performed with CREST was run on a node equipped with 104 processors, and
the computational cost is reported in CPU-hours in Panel A. This step represents the most computationally
demanding component of the QUED workflow. We also calculated the computational time required to
generate the electronic (DQM ) and geometric (BOB, SLATM, and SOAP) descriptors for the 345 randomly
selected molecules. Because the configuration of the geometric representations (e.g., cutoff size and many-
body terms) depends on the dataset, these timings are reported separately for each dataset, i.e., Panel B
for toxicity and Panel C for lipophilicity. The descriptor dimensionalities for the three datasets used in this
work are reported in Table S9. Finally, Panels D and E present the time required to make a prediction
using the best-performing models identified in this work. This inference time includes the generation of the
molecular representation, loading of the trained model, and computation of the prediction.

As an illustrative example, we analyzed a subset of 137 molecules selected from the previously combined
toxicity and lipophilicity datasets. These molecules contain between 30 and 60 atoms, and their SMILES
representations are available in the QUED GitHub repository. For this subset, the conformational search
required a total of 10,455 CPU-hours and generated 63,494 conformers. Of the 137 molecules, 76 were
processed using the default CREST configuration described in the Methods section, including up to 10
metadynamics restart cycles. This group accounted for 8,465 CPU-hours. The remaining 61 molecules
were treated using an accelerated setup, with reduced settings for iterative metadynamics genetic Z-matrix
crossing (iMTD-GC) and molecular dynamics restricted to lower-energy conformers. These settings were
enabled via the mquick and norotmd options in CREST, together with only five metadynamics restart
cycles, resulting in a computational cost of 1,990 CPU-hours. The next step in QUED is the selection of the
most stable conformers, those with the lowest DFTB3+MBD energies, and the corresponding calculation
of descriptors. For this final set of 137 conformers, the generation of geometric descriptors requires a total
of 6, 7, and 22 seconds for SOAP, BOB, and SLATM, respectively. In comparison, the computation of
QM properties for the DQM descriptor takes approximately 72 seconds. Thus, the cost of generating the
electronic descriptor is comparable to that of SLATM and only about one order of magnitude higher than
that of SOAP and BOB, indicating that it does not introduce a significant additional computational burden
in the overall model construction.

Table S9 Dimensions of employed descriptors (i.e., number of entries in arrays).

Descriptor
Dataset DQM BOB SLATM SOAP

QM7-X 40 528 17,895 8,272
Toxicity 213 39,349 79,945 22,680
Lipophilicity 220 24,753 58,786 18,396
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Fig. S5 Computation times for the different stages of the QUED framework as a function of molecular size, measured by
the total number of atoms per molecule. Panel A shows the CPU hours required for the conformational search performed
with the CREST code. Panels B and C report the time required to compute the electronic descriptor (DQM, pink) and the
geometric descriptors BOB (green), SLATM (blue), and Smooth Overlap of Atomic Positions (SOAP, yellow) for the toxicity
and lipophilicity datasets, respectively. Panels D and E display the inference time of the best-performing ML models reported
in this work.
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9 Property prediction with SOAP and MACE

In addition to the models using the BOB and SLATM descriptors, we also tested the QUED framework with
the Smooth Overlap of Atomic Positions (SOAP) descriptor. SOAP represents local atomic environments by
calculating the overlap of Gaussian-smeared neighbor densities, producing a representation that is invariant
to rotations, translations, and permutations, making it well-suited for ML models.

Table S10 summarizes the metrics obtained from XGBoost models trained with SOAP and SOAP⊕DQM.
The SOAP descriptor was constructed using a cut-off radius of rcut = 6.0 Å, nmax = 8 radial basis functions,
and lmax = 6 (the maximum degree of the spherical harmonics). This produces an atomic-level descriptor
(i.e., a vector for each atom), which is then averaged over the power spectrum of different sites to yield a
uniform-sized descriptor for each dataset.

Table S10 Mean absolute error (MAE), root-mean-squared error (RMSE), and R2 score values for direct learning of target
properties via XGBoost with the SOAP descriptor. EAT: atomization energy [kcal/mol]; EGAP: HOMO–LUMO gap [kcal/mol];
POL: polarizability [a3

0]; DIP: dipole moment [eÅ].

MAE RMSE R2 score
Target Set SOAP SOAP⊕DQM SOAP SOAP⊕DQM SOAP SOAP⊕DQM

EAT
EQ 4.926 2.214 9.194 4.852 0.998 0.999
NEQ 14.586 11.283 18.837 14.416 0.989 0.993

EGAP
EQ 2.821 1.442 4.559 2.207 0.938 0.985
NEQ 10.922 4.071 13.915 5.480 0.674 0.949

POL
EQ 0.406 0.325 0.693 0.540 0.995 0.997
NEQ 1.156 0.977 1.537 1.293 0.981 0.986

DIP
EQ 0.046 0.017 0.073 0.030 0.924 0.987
NEQ 0.129 0.054 0.173 0.073 0.646 0.937

Toxicity Stable 0.429 0.436 0.584 0.601 0.633 0.625

Lipophilicity Stable 0.465 0.465 0.611 0.608 0.728 0.728

Furthermore, we employed the state-of-the-art equivariant neural network architecture MACE to develop
predictive models for our benchmark datasets. Our calculations focused solely on biological responses, since
flexible molecules and intensive properties, such as lipophilicity and toxicity, present greater challenges for
MACE. After tuning the cut-off radius in MACE models with 128 channels, third-degree correlations, two
interaction blocks, and lmax = 2 (default parameters), the best-performing model achieved mean absolute
errors (MAE) of 0.549 for toxicity and 0.458 for lipophilicity, using cut-off values of 6 Å and 4 Å, respectively
(see Table S11). These errors are larger than those obtained with simpler geometric descriptors, such as
BOB or SLATM, especially when combined with electronic descriptors.

Table S11 Mean absolute error (MAE) for direct learning of target properties using ML models trained with state-of-the-art
equivariant neural network architecture MACE.

Target cut-off MAE

Toxicity
4.0 0.564
5.0 0.553
6.0 0.549

Lipophilicity
4.0 0.458
5.0 0.474
6.0 0.481
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