Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2026

Supplemental Material for "LivePyxel: Accelerating image anno-
tations with a Python-integrated webcam live streaming"

Uriel Garcilazo-Cruz,*? ", Joseph O. Okeme®?, and Rodrigo A. Vargas-Herndndez®*/<f

The purpose of this supplemental material is to provide addi-
tional details about the proposed work in the main draft. Section
presents the additional details of the vision model for micro-
scopic organism segmentation, including hardware specifications,
model architecture, dataset characteristics, and training perfor-
mance. Section |4 complements this with a different application
case focused on data engineering using snail shell images, detail-
ing its specialized dataset and training results. Each section is
organized to provide: (1) hardware/experimental setup details,
(2) model architecture specifications (with Tablebeing particu-
larly relevant for technical implementation), (3) dataset compo-
sition analysis (including class distributions shown in Figures
and , and (4) quantitative training evaluations (with F1-score
trajectories in Figs. [3|and [6).

1 Dataset preparation

All datasets in the study shared the same preprocessing in prepa-
ration to enter the vision model. A python script traversed across
all image/mask pairs in the dataset, quantifying the relative
frequency of pixels for each category. This information was later
used to calibrate the network’s cross-entropy loss function and
make it frequency-dependent. The dataset was prepared using a
custom set of scripts that read the config. json file to generate
indexes for each label, and mapped it to each of the masks
created by LivePyxel, by replacing the color of the mask with the
corresponding index, and having the background color of the
mask: (0,0,0), as a category. All required scripts that address
the dataset, model, and training modules are available in the
GitHub repository examples folder. Future releases of LivePyxel
are planned to include a pipeline to import a trained dataset that
automates the annotation process using models trained by the
user.

2 Vision Model Architecture

All datasets in this study were trained using the same U-Net net-
work. The original dataset was split into training and valida-
tion, using 90% of image/mask pairs for training and 10% for
validation. The network was trained using a custom number of
epochs, but using a batch size of 32, a learning rate of 3 x 1074,
the AdamW optimizer, and the cross-entropy loss function. All
training was performed using the Compute Canada resources lo-
cated in the Narval cluster, using a single node with up to 4 GPUs

@ Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON,
Canada

b School of Computational Science and Engineering, McMaster University, Hamilton,
ON, Canada

¢ Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON,
Canada

T garcilau@mcmaster.ca, vargashr@mcmater.ca

connected.

The U-Net’s encoder consisted of four downsampling stages
(downsamplel to downsample4), each comprising convolutional
layers (with ReLU activation) and max-pooling. The first two
stages used double convolutions (e.g., Conv2d(3—64—64)
and Conv2d(64—128—128)), while the deeper stages
(downsample3, downsample4) employed quadruple convolu-
tions (e.g., Conv2d(128—256—256—256—256) to capture
complex features. The bottleneck (bottle_neck) expands the
channel dimension to 1024 via two convolutions. The decoder
(upsamplel to upsample4) used transposed convolutions for
upsampling, followed by double convolutions that halved the
channel dimensions (1024—512—512), with skip connections
concatenating encoder features. The final 1x1 convolution
(out) reduced the output to 8 channels, corresponding to the
segmentation classes, each encoding a unique color; see Table
The model contained 26.3 million trainable parameters, with
the decoder and bottleneck layers fine-tuned (as indicated by
True in the parameter table), while the encoder weights remain
fixed (False). This design balanced computational efficiency with
multi-scale feature learning, suitable for pixel-wise segmentation
tasks. We used a U-Net architecture'l, composed of an encoder
and decoder portion and skip connections. The encoder, or
downsampling module of the architecture, was initialized with
the weights and biases of the VGG-19 architecture? (Table .

Index | Label Color (RGB)
0 ostracod (0, 255, 0)
1 rotifer (211, 179, 145)
2 algae (164, 251, 233)
3 diatom (202, 215, 220)
4 square_algae | (230, 226, 246)
5 paramecium | (207, 198, 149)
6 vorticella (23, 54, 255)
7 tardigrade (255, 8, 8)

Table 1 Labels and corresponding colors used in the segmentation task.

3 Examples of Usage: Water Tank

In this section, we provide the necessary information for the seg-
mentation task presented in Section 3.1 from the main draft.

3.1 Hardware Setup

The imaging setup consisted of a custom configuration using a
Zeiss compound microscope (model X-100) with a 10x achro-
matic objective lens (NA 0.25) and bright-field (Koehler) illumi-
nation. Images were captured using a modified GoPro camera
equipped with an M12 CCTV lens, affixed to a standard 10x wide-
angle eyepiece. A video capture card streamed the camera out-

1 11

https://github.com/UGarCil/LivePyxel

Layer Configuration Trainable

downsamplel | Conv2d(3—64—64) False
MaxPool2d

downsample2 | Conv2d(64—128—128) False
MaxPool2d

downsample3 | Conv2d(128—256x4) False
MaxPool2d

downsample4 | Conv2d(256—512x4) False
MaxPool2d

bottle_neck Conv2d(512—1024—1024) True
ReLU(inplace=True)

upsamplel ConvTranspose2d(1024—512) True
Conv2d(1024—512x2)

upsample2 ConvTranspose2d(512—256) True
Conv2d(512—256x2)

upsample3 ConvTranspose2d (256—128) True
Conv2d(256—128x2)

upsample4 ConvTranspose2d(128—64) True
Conv2d(128—64x2)

out Conv2d(64—8, kernel=1x1) True

Table 2 U-Net architecture. Encoder layers (fixed weights) downsample
via convolutions and max-pooling; decoder layers (trainable) upsample
with transposed convolutions and skip connections. RelLU activations
follow all convolutions except the final layer. Total parameters: 26.3M.

put as a webcam, ensuring compatibility with OpenCV. A drawing
tablet model XP-PEN 15.6 Pro was used to assist with annotations,
by duplicating the display and projecting LivePyxel as a secondary
screen. Fig.|1|depicts the complete imaging setup.

3.2 Dataset Information

The dataset was composed of 1.25K image/mask pairs, and in-
cluded a wide asymmetric distribution of categories, as seen in
the relative frequency of such classes Fig. [2). The three main
classes in the dataset were samples of paramecia, vorticella, and
green algae, which constitute 79% of the number of pixels in pix-
els in any category other than background.

3.3 Model Architecture

The water tank dataset was trained on 1,250 images, each with an
original resolution of 720x480 pixels. Training was carried out
over 131 epochs, with an additional set of 200 images reserved
for testing and detection, none of which were used during train-
ing or validation. All training was performed using two NVIDIA
V100 16 GB GPUs, totaling 8 hours of computation.

Fig. [illustrates the model’s performance by plotting the train-
ing and validation losses. The plot clearly shows a sharp decline
in both training and validation loss from epoch 0 to 20, followed
by a gradual increase in validation loss afterward. This pattern
suggests the model began overfitting, learning noise from the
training data rather than generalizing effectively.

3.4 Training

In addition to the pattern seen in the loss function, the perfor-
mance of the model can be seen in Fig. §3|with the F1 scores of ev-

2| 1

BSoNesnsen

Fig. 1 Custom camera setup for deploying LivePyxel. The configu-
ration includes a microscope equipped with a mounted digital camera,
connected to a laptop and a pen display tablet for real-time image ac-
quisition and analysis.

ery class, which rapidly increases in the early training stages and
begins to plateau around epoch 20. While the F1 scores for most
classes stabilize at high values, minor fluctuations and slower im-
provements occur in some classes beyond epoch 20. Together,
the loss and F1 score trends indicate that the model reached its
optimal generalization capability around epoch 20, making it the
most reliable checkpoint for downstream tasks.

4 Examples of Usage: Data Engineering with snail
shells

In this section, we provide the necessary information for Sec-
tion 3.2 in the main draft. The snail shell dataset incorporated
an ’engineered’ technique in data augmentation (see Fig. 8 in the
main manuscript) that expanded an original dataset with 1.4Kim-
age/mask pairs into a dataset of size 10,000, making it a contrast-
ingly larger dataset than the water tank section. The motivation
for this dataset was to evaluate the capacity of LivePyxel’s binary
mask to greatly automate the gathering of data of image/mask
pairs for segmentation tasks, and to evaluate its effects in the
capacity of the U-Net model to accurately predict and identify
among the 4 different classes of shells.

4.1 Dataset Information

The augmented dataset was produced via data engineering, using
the masks to extract pixels from the original images as described
in Section 3.2 in the main manuscript. The produced dataset was
weighted and prepared as described in Section [1} A total of 9K
images were used for training, while 1K were used for validation
purposes.

4.2 Model Architecture

The snail-shell dataset was trained on 10K images/mask pairs,
each with an original resolution of 720x480 pixels. Training was
carried out over 10 epochs. An additional set of 100 images, not

Relative pixel frequency per class (without Background)

tardigrade
133%

vorticella
31.3%

paramecium
24.9%

rotifer
’ 16% diatom square algae
% 38% ’

Fig. 2 Relative pixel frequency distribution for each annotated class in
the EM dataset (N = 1,250 images), excluding background pixels (RGB
0,0,0). Percentages were computed from annotation masks after normal-
ization, showing the proportional representation of Vorticella, Ostracod,
Paramecium, and other taxa.

08
mmm background
mm ostracod
rotifer
o6
algae
diatom
square algae

loss

0.4
paramecium

. vorticella

. tardigrade
02

0.0

o 20 40 60 80 100
Epoch

Fig. 3 F1 score progression during U-Net training for the nine annotated
categories in the EM dataset. The model was initialized with weights
from a pretrained VGG19 network. Each curve represents the per-class
F1 score over 100 training epochs.

used during training or validation, were reserved for testing and
detection. All training was performed using four NVIDIA V100 16
GB GPUs for a total duration of training that spanned 10 hours.

4.3 Training

The training and validation loss curves [5| indicate a rapid de-
crease in both losses during the first few epochs, followed by a
steady convergence. By epoch 10, the training loss continues to
decrease slightly, while the validation loss flattens, showing mini-
mal signs of overfitting. This suggests that the model generalizes
well within this training window. Furthermore, the F1 scores per
class |§| improve sharply in the early epochs and stabilize above
0.95 for all classes in epoch 3, demonstrating consistent and bal-
anced performance across shell categories. Based on this perfor-
mance, we selected the final model weights of epoch 8-10, where
both the loss and the F1 scores suggest optimal training without

0.6-
e Validation
m Train

0.5-

0.4-

Loss

0.3-

0.2-

0.1-

0.0-

0 20 40 60 80 100 120

Epochs

Fig. 4 Cross-entropy loss curves for the training and validation sets during
U-Net model training on the water tank dataset. The rapid decrease in
both losses during the initial epochs is followed by a divergence after
approximately epoch 20, indicating the beginning of overfitting.

Index | Label Color (RGB)
0 smooth_tiger (0, 255, 0)
1 sierpinsky (0, 47, 255)
2 silky (255, 255, 19)
3 toque (255, 64, 255)

Table 3 Labels and corresponding RGB color codes used in the segmen-
tation task to train the Snail-shells dataset.

overfitting.

5 Benchmarking Annotation Tools

The benchmark comparing LivePyxel with other annotation tools
was performed using a reference image containing five distinct
polygonal shapes with varying curvature complexity (see the
Original panel in Fig. 10 of the main paper). LivePyxel achieved
balanced performance, with 5.7% false positives and 0.5% false
negatives—comparable to other software. CVAT produced the
lowest overall error (2.5% false positives, 1.3% false negatives)
by leveraging an Al segmentation tool, but required a more com-
plex setup and data management workflow. VIA and LabelMe
showed slightly higher false-positive rates, while COCO Annota-
tor exhibited the strongest tendency toward over-segmentation.
To assess efficiency, we measured the time required to label this
set of shapes across different annotation tools. The labeling times
are reported in Table 4] and Fig. [8] displays zoomed views of the
annotated boundary for five different annotation tools. Except
for LivePyxel, which used Bézier splines to better capture curved
contours, polygons were used in all other software. Notably, CVAT
integrates the Segment Anything Model (SAM), which can accel-
erate the annotation process.

Data availability

LivePyxel and all trained vision models and data presented in
this paper are freely available at https://github.com/UGarCil/
LivePyxel|and can be installed through PyPI. All datasets used in
this study are available at https://doi.org/10.5281/zenodo.
17858610.

1ﬂ|3

https://github.com/UGarCil/LivePyxel
https://github.com/UGarCil/LivePyxel
https://doi.org/10.5281/zenodo.17858610
https://doi.org/10.5281/zenodo.17858610

0.30 s Validation
: m— Train
0.25
A o020
[e]
-
0.15
0.10
0.05
2 4 6 8 10

Epochs

Fig. 5 Cross-entropy loss curves for the training and validation sets
during 10 epochs of U-Net model training on the snail-shell dataset.
Both losses decrease rapidly in the initial epochs and converge steadily,
indicating good generalization without signs of overfitting.

Per-Class F1 Score Over Epochs
Lo — smaoth-tigor
/
sierpinski
08 |
124
0
o silky ,\
06 £
)
L
togue
04 — ‘
0 1 2 3 4 5 6 7 8
Epoch

Fig. 6 Per-class F1 score progression during U-Net training on the snail-
shell dataset. All categories show rapid improvement in the first two
epochs, stabilizing above 0.95 by epoch 3, indicating balanced and con-
sistent segmentation performance across classes.

Software | Time [s]

COCO 180

LabelMe 254

VIA 248
CVAT* 60

LivePyxel® 173

Table 4 Time taken to annotate Fig. 10 in the main paper. *CVAT
incorporates SAM. T Bézier splines.

References

1 O. Ronneberger, P. Fischer and T. Brox, Medical image comput-
ing and computer-assisted intervention-MICCAI 2015: 18th in-
ternational conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18, 2015, pp. 234-241.

2 K. Simonyan and A. Zisserman, arXiv preprint arXiv:1409.1556,
2014, N/A.

4 1

Relative Pixel Frequency per class
(excluding background)

34.5%

sierpinski

Fig. 7 Relative pixel frequency distribution (excluding background) for
the four classes in the snail-shell dataset. Percentages were calculated
from annotation masks after normalization, highlighting the proportional
representation of each shell category.

Coco annotator

livepyxel

VIA CVAT - SAM Original

labelme

Fig. 8 Differences in boundary smoothness and contour accuracy il-
lustrate the variability in mask generation between traditional polygons,
splines, and Al-based annotation tools; LivePyxel uses Bézier splines,
CVAT uses SAM, and Labelme, COCO, and VIA use polygons.

	Dataset preparation
	Vision Model Architecture
	Examples of Usage: Water Tank
	Hardware Setup
	Dataset Information
	Model Architecture
	Training

	Examples of Usage: Data Engineering with snail shells
	Dataset Information
	Model Architecture
	Training

	Benchmarking Annotation Tools

