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Method

Data Collection

In this study, we employed a comprehensive multi-channel, multilayered strategy for data collection and 
organization. Specifically, research papers were sourced from the Web of Science database using the keywords 
"MOFs" and "Adsorption." The search window spanned from 2023 up to February 1, 2025, ensuring the 
inclusion of the most recent scientific literature. Review articles were selected from the following review 
journals: Chemical Reviews, Chemical Society Reviews, Nature Chemistry Reviews, Accounts of Chemical 
Research, and Coordination Chemistry Reviews. This selection focused on literature related to metal-organic 
frameworks to ensure a robust foundation of current research insights. Full-text articles were obtained via 
institutional library subscriptions, in compliance with publisher copyright and licensing agreements. All access 
was conducted under permitted academic use, and no text was redistributed beyond the research scope.

To ensure transparency of data sources, we further recorded the publisher information of each paper. The 
collected literature spans all major scientific publishers, including Elsevier, ACS, Wiley, RSC, Springer, 
Nature Portfolio, MDPI, and AAAS, indicating broad coverage across different research communities. Only 
English-language publications were retained, and duplicates were removed using DOI-based matching and 
metadata inspection. These steps ensure that the dataset is both clean and representative of contemporary MOF 
adsorption research.

Additionally, we acquired chemical datasets and CoT datasets from the Hugging Face platform. It is 
important to note that the Qwen-based teacher model was not accessed via public cloud APIs; instead, it was 
deployed on a private cloud server provisioned and managed by our institution, ensuring that no publisher-
protected content was transmitted to third-party services. Details about the sources are provided in Table S1.

Data Distillation 

For the processing of research articles, we utilized the comprehension capabilities of a teacher model to 
extract key scientific challenge, proposed solutions, design principles, and validation methods, guided by a 
series of prompts. Given the length and high knowledge density of review articles, they were processed in two 
phases. Initially, the teacher model analyzed and distilled key scientific insights from these reviews, 
reformatting them into question-answer pairs. Subsequently, each question-answer pair, along with the review 
content, underwent a detailed reasoning using the teacher model. In the case of general chemical datasets, 
questions were directly posed to the teacher model to derive reasoning pathways and corresponding answers. 
Details of model usage and prompted methodologies are presented in Section S1 and Table S2.

Data Validation

Validation of existing answers within the general chemical datasets was conducted using a large language 
model, with a comparative analysis of the teacher model's responses against standard answers. Congruent 
responses were integrated into the final dataset for training purposes. For research articles and reviews where 
no standard answers exist, validation involved a combination of AI-assisted screening and manual evaluation. 
This process engaged a validation model to appraise the teacher model’s deductive processes in relation to the 
article content; disputed findings were adjudicated by domain experts.

Model Training

Model training was executed using the Llama-Factory framework, employing Low-Rank Adaptation 
(LoRA) fine-tuning and Supervised Fine-Tuning (SFT) methodologies. The learning rate was fixed at 5e-5, 
with one training epoch. The phase length was set to 8192, and the maximum gradient norm was set to 1, using 



the bf16 computation type. The base models for training were DeepSeek-R1-Distill-Qwen-7B. According to 
the training logs, the model processed approximately 8.72 × 10^7 tokens in total during fine-tuning, which 
provides a transparent estimate of the computational cost and enables better reproducibility for future research.

To further ensure training stability and efficiency, we adopted the AdamW optimizer (betas = 0.9, 0.999; 
weight decay = 0.01) with a linear learning-rate decay schedule and a 3% warmup ratio. A per-device batch 
size of 2 with gradient accumulation (effective batch size = 32) was used. LoRA adapters (rank = 64, α = 16, 
dropout = 0.05) were inserted into the attention projection layers, while other parameters were frozen. 
Supervision was applied on both reasoning traces and final answers using cross-entropy loss. Training samples 
were formatted into an instruction–response structure to align with reasoning tasks, and validation loss was 
monitored during training to avoid overfitting.



Section S1. Model Usage and Prompt Engineering

Figure S1. Top 10 journals distribution of research articles.

Figure S2. Five journals distribution of review articles.



Figure S3. Publisher distribution of research articles.

Figure S4. Publisher distribution of review articles.



Figure S5. Publisher distribution of MOF-related articles (2023–2025).

Table S1. High-frequency keywords extracted from article titles.
Word Frequency Word Frequency
Metal_organic_frameworks 2569 Carbon 631
Adsorption 1546 Enhanced 601
MOFs 1321 Metal 592
Efficient 1281 Performance 505
CO2 977 Selective 492
Removal 903 Porous 488
Separation 812 Capture 476
Water 778 Framework 462
Synthesis 736 Detection 435
Organic 654 Highly 432

Table S2. High-frequency keywords extracted from article abstracts.
Word Frequency Word Frequency
MOFs 17096 Structure 3635
Adsorption 16947 Sites 3323
CO2 6329 Stability 3210
High 6137 Removal 3208
Materials 5694 Properties 3185
Water 5133 Potential 3058
Performance 5003 Energy 2986
Capacity 4562 Applications 2834
Surface 4363 Process 2783
Separation 4189 Selectivity 2662



Figure S6. Word cloud of high-frequency terms extracted from article titles.

Figure S7. Word cloud of high-frequency terms extracted from article abstracts.



Table S3. Various Datasets Utilized in the Study: Sources and Access Links.

Dataset Name Source Description

Research 

Article

Research Article on Metal-Organic Frameworks and Adsorption 

from January 2023 to January 2025

Review Article

ACS

WILEY

Elseview

Springer

Nature 

Portfolio

RSC

MDPI

AAAS

Review articles on Metal-Organic Frameworks from January 2000 

to January 2025

camel-

ai/chemistry

Hugging 

Face
General chemistry dataset containing 25 chemical topics

STILL Github A large language dataset for slow thinking



Table S4. Model version used and model access date.

Model Version Access Date

DeepSeek-R1-Distill-Qwen-7B 2025-02-10

DeepSeek-R1-Distill-Llama-8B 2025-02-10

Qwen-Max 2025-02-10

Qwen-Plus 2025-02-10

QwQ-32B 2025-02-10

Qwen-turbo 2025-02-11

DeepSeek-R1-671B 2025-02-10

o1-preview 2025-02-13

gpt-4.5-preview 2025-02-13

gpt-4-turbo-preview 2025-02-13

DeepSeek-V3-671B 2025-02-10

The Prompt for DeepSeek V3: Extracting Information from Research Article

Please carefully read the provided paper and complete the following tasks:

Scientific Problem and Answer:

Extract the core scientific problem addressed in the paper and present it in the form of a question.

Provide a detailed and comprehensive answer to the question based on the paper's content, including 
methods, experiments, results, and conclusions.

Use <|begin_of_question|> and <|end_of_question|> to mark the start and end of the question.

Use <|begin_of_answer|> and <|end_of_answer|> to mark the start and end of the answer.

The answer should be written from an objective perspective, avoiding any reference to "this paper" or 
"the authors."



Thought Chain for Solving the Problem:

Reconstruct the thought chain used to solve the scientific problem from an objective perspective or first-
person perspective.

Use <|begin_of_thought|> and <|end_of_thought|> to mark the start and end of the thought chain.

The thought chain should include the following detailed elements:

Problem Identification: Clearly state the problem or gap in the field that motivated the research.

Why It Matters: Explain why solving this problem is important and what impact it could have on the 
field or real-world applications.

Hypothesis Formation: Describe the hypothesis or key idea proposed to address the problem, and explain 
the reasoning behind it.

Method Design: Explain the methodology or approach developed to test the hypothesis, including any 
novel techniques or tools. Clearly articulate why this method was chosen and how it addresses the 
problem.

Experimental Setup: Detail the experimental design, including datasets, metrics, and baseline 
comparisons. Explain why these choices were made and how they align with the research goals.

Data Analysis: Describe how the data was analyzed, including any challenges encountered and how they 
were addressed. Explain why specific analysis techniques were used and how they help validate the 
hypothesis.

Results and Interpretation: Summarize the key results and their implications for the hypothesis and the 
broader field. Explain why these results are significant and how they contribute to solving the problem.

Limitations and Future Work: Discuss the limitations of the approach and propose potential future 
directions for improvement or extension. Explain why these limitations exist and how future work could 
address them.

Avoid any reference to "this paper" or "the authors."

Ensure the logic is clear and easy to understand, even for readers without deep expertise in the field.

Thought Chain for Deriving the Research Idea:

Reconstruct the thought chain that led to the formation of the research idea, from an objective perspective 
or first-person perspective.



Use <|begin_of_idea_thought|> and <|end_of_idea_thought|> to mark the start and end of this thought 
chain.

The thought chain should include the following detailed elements:

Research Background: Describe the broader context of the research area and why it is important.

Current State of the Field: Summarize the existing approaches and their limitations.

Problem Discovery: Explain how the specific problem addressed in the paper was identified, including 
any observations or gaps in the literature.

Idea Formation: Describe the process of developing the core idea or hypothesis, including any 
inspiration, analogies, or prior work that influenced the thinking.

Validation of the Idea: Explain how the idea was initially validated or tested (e.g., through preliminary 
experiments, theoretical analysis, or literature review).

Refinement of the Idea: Discuss how the idea evolved over time, including any adjustments or iterations 
based on feedback or new insights.

Avoid any reference to "this paper" or "the authors."

Ensure the logic is clear and easy to understand, even for readers without deep expertise in the field.

Output Format:

<|begin_of_question|>
[Present the core scientific problem in the form of a question]
<|end_of_question|>

<|begin_of_answer|>
[Provide a detailed and comprehensive answer, including methods, experiments, results, and conclusions, 
written from an objective perspective]
<|end_of_answer|>

<|begin_of_thought|>
[Describe the thought process in the first person or from an objective perspective, including all detailed 
elements: problem identification, why it matters, hypothesis formation, method design, experimental 
setup, data analysis, results and interpretation, limitations, and future work. Ensure the logic is clear and 
easy to understand.]
<|end_of_thought|>

<|begin_of_idea_thought|>



[Describe the thought process in the first person or from an objective perspective, including all detailed 
elements: research background, current state of the field, problem discovery, idea formation, validation 
of the idea, and refinement of the idea. Ensure the logic is clear and easy to understand.]
<|end_of_idea_thought|>

Example:

<|begin_of_question|>
How can the generalization ability of deep learning models on small-sample datasets be improved 
without increasing computational complexity?
<|end_of_question|>

<|begin_of_answer|>
A meta-learning-based adaptive weight adjustment method has been proposed to address this challenge. 
This method involves designing a lightweight meta-network that dynamically adjusts the weights of the 
main network based on the features of the input data. The core idea is to use meta-learning to simulate 
the model's performance across different tasks, thereby enhancing its generalization ability on small-
sample data. Experiments conducted on several small-sample datasets, such as Mini-ImageNet and 
CIFAR-FS, demonstrated that this approach significantly improves model performance without 
substantially increasing computational complexity. For instance, on the Mini-ImageNet dataset, the 
model's accuracy improved by approximately 8%. However, the method's sensitivity to hyperparameters 
was identified as a limitation, suggesting a need for further optimization, such as exploring more efficient 
meta-network architectures.
<|end_of_answer|>

<|begin_of_thought|>
The problem of poor generalization in deep learning models on small-sample datasets was identified as 
a significant challenge in the field. Existing models often overfit due to limited data availability, leading 
to suboptimal performance in real-world applications. Solving this problem is crucial because many 
practical scenarios, such as medical diagnosis or rare event prediction, involve limited data. Improving 
generalization in such settings could enable more reliable and accurate AI systems.

To address this issue, a hypothesis was formed: dynamically adjusting model parameters based on input 
data features could improve adaptability and generalization without requiring additional computational 
resources. This idea was motivated by the observation that traditional models use fixed parameters, which 
may not be optimal for diverse small-sample tasks. By allowing the model to adapt its parameters 
dynamically, it could better capture the unique characteristics of each task.

To test this hypothesis, a lightweight meta-network was designed. This meta-network operates alongside 
the main model, analyzing input data features and dynamically adjusting the main model's weights. The 
design prioritized efficiency to ensure that the computational overhead remained minimal. The meta-
network was trained using a meta-learning framework, which allowed it to simulate performance across 
diverse tasks and datasets. This approach was chosen because meta-learning has shown promise in 
enabling models to generalize across tasks, making it a natural fit for small-sample problems.



Experiments were conducted on multiple small-sample datasets, including Mini-ImageNet and CIFAR-
FS. These datasets were selected because they are widely used benchmarks for small-sample learning, 
allowing for fair comparisons with existing methods. The experimental setup included comparisons with 
baseline models to evaluate performance improvements. Key metrics such as accuracy, training time, 
and computational cost were measured. These metrics were chosen because they directly reflect the goals 
of improving generalization without increasing computational complexity.

During data analysis, it was observed that the method's performance was highly dependent on the choice 
of hyperparameters. This sensitivity was addressed through extensive hyperparameter tuning, but it 
remains a limitation of the approach. Additionally, the method's effectiveness varied across different 
types of small-sample datasets, suggesting that further customization may be needed for specific 
applications. These challenges were analyzed to understand their root causes and identify potential 
solutions.

The results showed that the proposed method significantly improved model performance, particularly in 
data-scarce scenarios. For example, on the Mini-ImageNet dataset, accuracy improved by approximately 
8%, while computational costs remained comparable to baseline models. These results are significant 
because they demonstrate that dynamic weight adjustment can effectively enhance generalization 
without sacrificing efficiency. This finding has broad implications for fields where data is scarce, such 
as healthcare or environmental monitoring.

However, the method's sensitivity to hyperparameters and dataset variability highlights the need for 
further refinement. Future work could explore more robust meta-network architectures, automated 
hyperparameter optimization techniques, and applications to a broader range of tasks, such as medical 
imaging or natural language processing. These directions are important because they address the current 
limitations and could further improve the method's practicality and effectiveness.
<|end_of_thought|>

<|begin_of_idea_thought|>
The research idea emerged from a broader interest in improving the practicality of deep learning models 
in real-world scenarios, where data is often limited. The field of small-sample learning has gained 
attention due to its relevance in applications like medical imaging, where collecting large datasets is 
expensive or ethically challenging. However, existing methods often struggle with overfitting and fail to 
generalize well to new tasks.

A review of the current state of the field revealed that most approaches focus on either data augmentation 
or complex model architectures, which often come with high computational costs. While these methods 
can improve performance, they are not always feasible in resource-constrained settings. This gap 
highlighted the need for a more efficient solution that could enhance generalization without increasing 
computational complexity.

The specific problem of poor generalization in small-sample datasets was identified through experiments 
with existing models. It became clear that fixed model parameters, which work well in large-scale 



settings, are not suitable for small-sample tasks where data variability is high. This observation led to the 
hypothesis that dynamic parameter adjustment could be a key to improving generalization.

The core idea of using meta-learning for dynamic weight adjustment was inspired by prior work in few-
shot learning, where meta-learning has been successful in enabling models to adapt quickly to new tasks. 
The analogy was drawn that a similar approach could be applied to small-sample learning, but with a 
focus on efficiency to avoid excessive computational overhead.

To validate this idea, preliminary experiments were conducted using simple meta-network prototypes. 
These experiments showed promising results, indicating that dynamic weight adjustment could indeed 
improve generalization. However, they also revealed challenges, such as the meta-network's sensitivity 
to hyperparameters, which needed to be addressed.

Over time, the idea was refined through iterative experimentation and feedback from the research 
community. The meta-network architecture was optimized for efficiency, and new training techniques 
were introduced to stabilize performance. These refinements were crucial in transforming the initial idea 
into a practical and effective solution.
<|end_of_idea_thought|>

There is Artical:
{txt}

The Prompt for Qwen-Turbo-Latest: Extracting Scientific Opinion and Converting to Q&A from 
Review Articles

Based on the following review paper in the MOFs field, generate 40 or more insightful and thought-
provoking questions. For each question, provide a corresponding answer that reflects the key concepts, 
methodologies, results, and future directions discussed in the paper. The answers should be accurate, 
based on the content of the paper, and should offer a detailed explanation or analysis. Focus on ensuring 
the answers are clear, correct, and directly tied to the content discussed.

**Guidelines:**

1. **Focus on the Paper’s Content:**
  
  - For each question, the answer should be drawn directly from the paper's discussion on topics like 
synthesis methods, structural characteristics, applications, computational models, challenges, and future 
directions.
  - Provide answers that are not only factual but also demonstrate a deeper understanding of the content. 
The answers should reflect key arguments, evidence, and conclusions drawn in the paper.
2. **Encourage Critical Thinking and Reflection:**
  
  - The answers should reflect critical engagement with the material. They should explain why certain 
methods or approaches are effective or not, based on the paper’s findings.
  - The answers should address the strengths and weaknesses of the research and provide insights into 
areas where future research could improve or expand upon the existing work.



3. **Consider Diverse Angles for Answers:**
  
  - Provide answers that explore multiple perspectives and incorporate the following dimensions:
    - **Theoretical background and principles:** Explain the underlying scientific concepts behind 
MOFs and how they relate to the paper’s findings.
    - **Synthesis and characterization:** Discuss how different synthesis methods influence the 
material’s properties, scalability, and reproducibility. Explore what methods are most suitable for 
specific applications and their limitations.
    - **Computational models:** Explain the computational approaches used in the study, their 
assumptions, and how they were validated. Discuss any discrepancies between theoretical predictions 
and experimental results.
    - **Practical applications:** Explore the real-world applicability of the materials, their potential in 
various industries, and the challenges involved in scaling the synthesis process.
    - **Limitations and improvements:** Reflect on the paper’s acknowledged limitations. Provide 
insight into how these limitations could be overcome through alternative methods, techniques, or future 
research directions.
    - **Future research opportunities:** Identify potential areas for future investigation based on gaps 
or opportunities highlighted in the paper. Discuss how these opportunities could advance the field and 
the role of emerging technologies or interdisciplinary approaches.
    - **Sustainability and impact:** Evaluate the environmental, economic, and societal impact of the 
technologies or materials discussed. How might they be integrated into sustainable practices or large-
scale industrial applications?
4. **Output Format:**
  
  - Provide the questions and answers in a clear, well-structured format, with each question followed by 
its corresponding answer. The output should look like this:
    
    <|begin_of_questions_and_answers|>
    
    1. Question: [Insert question here]  
      Answer: [Insert detailed answer here]
    2. Question: [Insert question here]  
      Answer: [Insert detailed answer here]
    3. Question: [Insert question here]  
      Answer: [Insert detailed answer here]
    4. ...  
      <|end_of_questions_and_answers|>
5. **Question and Answer Requirements:**
  
  - Focus on generating questions that require analysis, reflection, and comprehension of the content, 
not just factual recall.
  - Provide answers that are comprehensive and accurate, reflecting a clear understanding of the key 
points discussed in the paper.
  - Avoid generic answers and ensure that the answers are tailored to the specific content and context of 



the review paper, addressing both the findings and the implications of the research.
 
There is Artical:
{txt}

The Prompt for Qwen-Turbo-Latest: Extracting the Chain of Thought from Question to Opinion 
from Review Article

Based on a comprehensive review in the field of Metal-Organic Frameworks (MOFs) and related 
questions, generate a detailed and complete chain of scientific reasoning. Ensure that your reasoning 
process is rigorous and logically coherent, utilizing scientific theories and facts for analysis. The chain 
of reasoning can be open and flexible, not confined to a rigid structure, but it should clearly indicate the 
beginning and end of the reasoning.

Please use `<|begin_of_thought|>` to mark the start of the reasoning chain and `<|end_of_thought|>` to 
mark the end.

Don't mention "this literature show" or "this review show" or anything like that. This is very important. 
Even if you use the literature, your answer should still give the other person a style of thinking that is all 
about you.

The thought chain is as detailed as possible.
---

**Example Structure:**

1. **Understanding the Background:** Briefly explain the background information and main questions.
  
2. **Application of Knowledge:** Invoke relevant scientific principles and known facts related to the 
problem.
  
3. **Analysis Integration:** Integrate key information from the review into the analysis process.
  
4. **Reasoning Expansion:** Use logical reasoning to explore potential paths to a solution.
  
5. **Solution Evaluation:** Assess the plausibility and feasibility of different solutions.
  
6. **Conclusion Formation:** Draw clear scientific conclusions or hypotheses.
  
7. **Open Exploration:** Suggest possible future research directions or applications.
  

**Open Thought Chain Template:**

<|begin_of_thought|>



1. Preliminary Analysis: Clarify the subject and background information.
  
2. Theoretical Application: Identify and apply relevant scientific theories to support the analysis.
  
3. Logical Step-by-Step Reasoning: Gradually expand the reasoning, using review information to deepen 
the analysis.
  
4. Possibility Discussion: Explore potential conclusions and hypotheses, considering various scientific 
perspectives.
  
5. Result Summary: Summarize analysis results to form clear scientific conclusions.
  
6. Exploration Directions: Propose possible future research directions or application areas.
  

<|end_of_thought|>

Question:
{question}

Answer:
{answer}

There is Artical:
{txt}

The Prompt for DeepSeek R1: Reasoning with a General Chemistry Dataset

Objective: Analyze the provided English research paper and evaluate whether the given reasoning 
process regarding {question} is logically valid. Apply a lenient assessment standard focusing on core 
argument integrity rather than minor inaccuracies.

Input Structure:

Original Paper: {review}
Reasoning Process: {chain-of-thought}
Evaluation Protocol:

Comprehension Phase

Identify key claims and evidence in the original paper
Map logical connections between premises and conclusions
Alignment Check

Verify if the reasoning process:



a) Uses valid premises explicitly stated or reasonably implied in the paper
b) Maintains logical consistency with source material
c) Avoids introducing unsupported external assumptions
Error Identification

Flag only instances where:
Premises contradict original text (quote exact passages)
Deductive steps violate basic logic rules
Critical evidence is misrepresented
Output Format:
If flaws detected:

False  
[Original Paper Excerpt]  
→  
[Reasoning Step Error]  
If compliant with lenient standard:

True
Special Instructions:

Allow reasonable interpretive leaps in reasoning
Tolerate minor factual inaccuracies unless affecting core argument
Prioritize structural validity over rhetorical perfection



Section S2. Dataset construction and validation

Figure S8. Use DeepSeek to build a domain dataset from the Scientific Challenges section of the research 
article.

Figure S9. Use DeepSeek to build a domain dataset from the Proposed Solutions section of the research 
article.



Figure S10. Use DeepSeek to build a domain dataset from the Design Idea Thoughts section of the 
research article.



Figure S11. Use DeepSeek to build a domain dataset from the Validation Thoughts section of the research 
article.



Figure S12. Scientific questions deconstructed using Qwen-Turbo from review articles (questions 1-10) 
using acs.chemrev.6b00173 as an example.



Figure S13. Scientific questions deconstructed using Qwen-Turbo from review articles (questions 11-20) 
using acs.chemrev.6b00173 as an example.



Figure S14. Scientific questions deconstructed using Qwen-Turbo from review articles (questions 21-30) 
using acs.chemrev.6b00173 as an example.



Figure S15. Scientific questions deconstructed using Qwen-Turbo from review articles (questions 31-40) 
using acs.chemrev.6b00173 as an example.



Figure S16. Scientific questions deconstructed using Qwen-Turbo from review articles (questions 41-50) 
using acs.chemrev.6b00173 as an example.



Figure S17. Use Qwen-Turbo to build a domain dataset from the Question section of the review article.

Figure S18. Use Qwen-Turbo to build a domain dataset from the Author’s Opinion section of the review 
article.



Figure S19. Use Qwen-Turbo to build a domain dataset from the Chain of Thought section of the review 
article (part 1).



Figure S20. Use Qwen-Turbo to build a domain dataset from the Chain of Thought section of the review 
article (part 1).



Figure S21. Use Qwen-Turbo to build a domain dataset from the Chain of Thought section of the review 
article (part 3).



Figure S22. Reasoning about problems in the camel-ai/chemistry dataset using DeepSeek.

Figure S23. Questions in the General Thought Chain Dataset.



Figure S24. The thinking process in the general thought chain dataset.



Figure S25. Answers in the General Thought Chain Dataset.



Figure S26. Use validation models to compare large language model responses and standard answers to 
build chemical datasets.



Figure S27. The distribution of data that is valid and invalid through verification.

Figure S28. Composition of the datasets used for fine-tuning MOFReasoner. Each of the 35.8K data 



points corresponds to a single question–answer pair with an associated chain-of-thought reasoning 
trace.

Figure S29. The training loss of MOFReasoner at each step.

Figure S30. Expected reasoning path for the factual question “Why is the introduction of functional 
groups important in the design of metal–organic frameworks for contaminant removal?”, illustrating a 
structured process of knowledge review, mechanism abstraction, and consensus-level integration.



Figure S31. Reasoning trace generated by MOFReasoner for the question “Why is the introduction of 
functional groups important in MOF design for contaminant removal?”, illustrating a structured, multi-
step scientific reasoning process beyond factual recall.



Figure S32. Reasoning trace generated by DeepSeek R1 for the same question as Figure S23, showing 
an alternative, more exploratory reasoning style that emphasizes factor enumeration and intuitive 
hypothesis generation.



Section S3. Evaluating MOFReasoner

Evaluation Dataset Description

The evaluation benchmark used in this study consists of eight expert-curated questions that were 
designed to represent the four major themes of MOF adsorption research: experimental studies, 
adsorption mechanisms, application scenarios, and industrialization-related issues. Each question was 
constructed as a multi-step reasoning task rather than a simple factual query. To allow fine-grained 
assessment of reasoning quality, each question was divided into multiple scoring points that correspond 
to the essential elements of the expected scientific reasoning process. These points capture different 
dimensions of reasoning performance, including factual correctness, mechanistic interpretation, clarity 
and depth of justification, and chemical plausibility.
The evaluation questions were created independently of the training data and were phrased to avoid direct 
overlap with any text in the training corpus. All evaluated models were presented with exactly the same 
set of eight questions, and domain experts applied identical scoring criteria to all models. This procedure 
ensured fairness, transparency, and consistency across model comparisons. The complete list of 
evaluation questions is provided below, together with their task category labels and the detailed scoring 
points used during assessment.

Evaluation procedure and blinding.

All model outputs were evaluated in a fully blinded manner. Before scoring, all identifying information 
was removed so that evaluators could not determine which model had generated a given response. Two 
PhD-level researchers with expertise in metal–organic frameworks independently assessed every output 
using the scoring criteria summarized in Table S7. These criteria guided the evaluation of factual 
accuracy, chemical reasoning, clarity of justification, and plausibility of the proposed explanations.
Each evaluator completed the scoring independently. After the initial scoring step, all cases in which the 
two evaluators assigned different labels were reviewed and discussed until a consensus was reached. This 
consensus-based approach ensured consistent application of the scoring rules and avoided unilateral 
judgments. The initial level of agreement between evaluators indicated that the scoring criteria were 
applied in a stable and reproducible manner.
To minimize potential bias, evaluators were instructed to focus strictly on scientific content and not to 
infer model identity based on writing style, length, or structure. The set of evaluation questions and their 
scoring points was fixed before assessment and remained unchanged throughout the evaluation process. 
The aggregated scores used for comparison across models are reported in Table 1 of the main manuscript.

Scoring rubric.

Each response was annotated according to the following categories:
Correct (green): The response is factually accurate and provides sufficient and precise information 
addressing the question.
Correct but imprecise (yellow): The response contains accurate content but lacks completeness or 
precision; minor omissions or vagueness are present, though the main idea is still conveyed correctly.
Wrong (grey): The response includes factually incorrect statements that are not central to the core 
reasoning but nevertheless introduce errors.
Serious error (red): The response contains misleading or fundamentally incorrect claims, e.g., 



contradictions to established chemical principles or statements that could, if taken at face value, lead to 
hazardous or severely flawed conclusions. These are penalized more heavily than “wrong” responses.
Missing: The “Missing” label is assigned when a model’s response omits one or more relevant key points 
that are required for a complete scientific answer, while not introducing any factual or conceptual errors. 
In such cases, no negative penalty is applied, because the model has not provided incorrect information. 
However, the omission of key content means that the response cannot be considered fully correct, and 
therefore it does not receive the positive credit associated with “Correct” or “Partially correct” answers. 
As a result, responses marked as “Missing” differ from fully correct ones in the final evaluation outcome 
through the absence of earned positive points rather than through explicit penalties. The purpose of 
including the “Missing” category is to distinguish incompleteness from incorrectness in a principled 
manner. This design avoids unfairly penalizing concise responses that remain scientifically sound, while 
at the same time ensuring that incomplete answers are not treated as equivalent to comprehensive and 
fully correct ones. The “Missing” category is reported as a descriptive statistic to reflect the completeness 
of a model’s reasoning and coverage of key scientific aspects. Importantly, it does not directly contribute 
to the numerical score used for model comparison in Table 1, which is calculated solely based on 
correctness-related criteria. This separation allows readers to interpret both accuracy and completeness 
without biasing the overall ranking.

Semantic similarity analysis.

To verify that the test set did not overlap with the fine-tuning data, we computed pairwise semantic 
similarity scores between all training and test questions using the pre-trained all-MiniLM-L6-v2 
SentenceTransformer model. The highest observed similarity score was 0.90 (Table S4). Manual 
inspection confirmed, however, that these highly similar pairs differed substantially in their scientific 
focus and intent, and thus did not constitute actual duplicates. This demonstrates that even when the 
embedding model assigns a high similarity score, the questions remain semantically distinct, supporting 
the validity of the test set as a genuinely novel evaluation benchmark.

Fairness of model comparisons.

All models, including GPT-4.5 and o1, were evaluated under identical conditions. They received exactly 
the same test questions, without access to external resources or supplementary context. Strict measures 
were implemented to prevent data leakage between training and evaluation phases, ensuring the integrity 
and fairness of the comparisons.



Table S5. Four types of test tasks related to MOFs adsorption

experimental studies of MOFs

How are the dynamic and static adsorption performances of MOFs usually evaluated?

How to determine the adsorption sites in MOFs adsorbents?

chemical mechanisms

Why is the introduction of functional groups important in the design of Metal-Organic Framework for 

contaminant removal?

applications of MOF-based adsorbents

What is the effect of MOFs adsorbent on removing heavy metal ions in water treatment?

What is the regeneration performance of MOFs adsorbent?

industrialization-related issues

What are the current bottlenecks for HKUST-1 in industrial gas separation applications?

Compared with zeolite materials, what are the advantages of MOFs (Metal-Organic Frameworks) 

materials in vacuum swing adsorption?

How can the water stability of MOFs be enhanced to ensure their effectiveness under operational 

conditions?



Table S6. Semantic similarity analysis between evaluation test questions and training questions.

Num

ber
Evaluation Question Similarity Most Similar Training Question

1

How are the dynamic and static 

adsorption performances of 

MOFs usually evaluated?

0.907461
How does the dynamic nature of MOFs 

affect their adsorption capabilities?

2
How to determine the adsorption 

sites in MOFs adsorbents?
0.771109

How does the introduction of active 

sites in MOFs enhance their adsorption 

performance?

3

Why is the introduction of 

functional groups important in the 

design of Metal-Organic 

Framework for contaminant 

removal?

0.746780

How can Metal-Organic Frameworks 

(MOFs) be effectively utilized for the 

removal of contaminants from 

wastewater?

4

What is the effect of MOFs 

adsorbent on removing heavy 

metal ions in water treatment?

0.794539

How can metal-organic framework 

(MOF)-based composites be effectively 

used to remove heavy metal ions from 

water, and what are their advantages 

over traditional adsorbents?

5
What is the regeneration 

performance of MOFs adsorbent?
0.858059

Why is regeneration critical for the 

commercialization of MOFs as 

adsorbents?

6

What are the current bottlenecks 

for HKUST-1 in industrial gas 

separation applications?

0.679523

How can the gas adsorption and 

separation performance of HKUST-1 be 

improved through chemical 

modifications to its structure, 

particularly for CO2 and SO2 capture?



7

Compared with zeolite materials, 

what are the advantages of MOFs 

(Metal-Organic Frameworks) 

materials in vacuum swing 

adsorption?

0.836858

How do MOFs compare to traditional 

adsorbents like zeolites in terms of 

heavy metal removal efficiency?

8

How can the water stability of 

MOFs be enhanced to ensure 

their effectiveness under 

operational conditions?

0.899661

What challenges does the low water 

stability of MOFs present in water 

treatment applications?



Table S7. Key points of reference answers for different questions.

Question Standard Answer (Key Bottlenecks)

What are the current bottlenecks for HKUST-1 in 

industrial gas separation applications?

Costs; efficiency; scalability; stability; 

performance

Compared with zeolite materials, what are the 

advantages of MOFs (Metal-Organic Frameworks) 

materials in vacuum swing adsorption?

High porosity; tunable pore structures; 

adjustable surface functionalities; higher 

selectivity; flexibility and customization

How can the water stability of MOFs be enhanced to 

ensure their effectiveness under operational 

conditions?

robust metal ions and ligands; post-synthesis 

modification; encapsulation or coating; defect 

control and mechanical integrity

What is the regeneration performance of MOFs 

adsorbent?

thermal regeneration; pressure swing 

regeneration; vacuum regeneration; solvent 

washing

What is the effect of MOFs adsorbent on removing 

heavy metal ions in water treatment?

high surface area and porosity; tunable pore 

size and selectivity; surface functionalization; 

multiple adsorption mechanisms; low-

concentration removal

Why is the introduction of functional groups 

important in the design of Metal-Organic 

Framework for contaminant removal?

improved affinity and binding strength; 

enhanced interaction mechanisms; increased 

adsorption capacity; tunable pore environment

How are the dynamic and static adsorption 

performances of MOFs usually evaluated?

breakthrough experiments; adsorption 

isotherms; thermogravimetric analysis

How to determine the adsorption sites in MOFs 

adsorbents?

DFT calculations; GCMC simulations; 

neutron diffraction; X-ray crystallography



Figure S33. The answer provided by the MOFReasoner model to the question "What are the 
current bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S34. The answer provided by the DeepSeek-R1-671B model to the question "What ar
e the current bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S35. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "What 
are the current bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S36. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "What 
are the current bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S37. The answer provided by the gpt-4.5-preview model to the question "What are the current 
bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S38. The answer provided by the o1-preview model to the question "What are the current 
bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S39. The answer provided by the Qwen-Max model to the question "What are the current 
bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S40. The answer provided by the Qwen-Plus model to the question "What are the current 
bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S41. The answer provided by the QwQ-32B model to the question "What are the current 
bottlenecks for HKUST-1 in industrial gas separation applications?"



Figure S42. The answer provided by the MOFReasoner model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S43. The answer provided by the DeepSeek-R1-671B model to the question "Compared with 
zeolite materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum 
swing adsorption?"



Figure S44. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question 
"Compared with zeolite materials, what are the advantages of MOFs (Metal-Organic Frameworks) 
materials in vacuum swing adsorption?"



Figure S45. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question 
"Compared with zeolite materials, what are the advantages of MOFs (Metal-Organic Frameworks) 
materials in vacuum swing adsorption?"



Figure S46. The answer provided by the gpt-4.5-preview model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S47. The answer provided by the o1-preview model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S48. The answer provided by the Qwen-Max model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S49. The answer provided by the Qwen-Plus model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S50. The answer provided by the QwQ-32B model to the question "Compared with zeolite 
materials, what are the advantages of MOFs (Metal-Organic Frameworks) materials in vacuum swing 
adsorption?"



Figure S51. The answer provided by the MOFReasoner model to the question "How can the water 
stability of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S52. The answer provided by the DeepSeek-R1-671B model to the question "How can the water 
stability of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S53. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "How 
can the water stability of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S54. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "How can 
the water stability of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S55. The answer provided by the gpt-4.5-preview model to the question "How can the water 
stability of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S56. The answer provided by the o1-preview model to the question "How can the water stability 
of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S57. The answer provided by the Qwen-Max model to the question "How can the water stability 
of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S58. The answer provided by the Qwen-Plus model to the question "How can the water stability 
of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S59. The answer provided by the QwQ-32B model to the question "How can the water stability 
of MOFs be enhanced to ensure their effectiveness under operational conditions?"



Figure S60. The answer provided by the MOFReasoner model to the question "What is the regeneration 
performance of MOFs adsorbent?"



Figure S61. The answer provided by the DeepSeek-R1-671B model to the question "What is the 
regeneration performance of MOFs adsorbent?"



Figure S62. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "What is 
the regeneration performance of MOFs adsorbent?"



Figure S63. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "What is 
the regeneration performance of MOFs adsorbent?" 



Figure S64. The answer provided by the GPT-4.5-preview model to the question "What is the 
regeneration performance of MOFs adsorbent?"



Figure S65. The answer provided by the o1-preview model to the question "What is the regeneration 
performance of MOFs adsorbent?"



Figure S66. The answer provided by the Qwen-Max model to the question "What is the regeneration 
performance of MOFs adsorbent?"



Figure S67. The answer provided by the Qwen-Plus model to the question "What is the regeneration 
performance of MOFs adsorbent?"



Figure S68. The answer provided by the QwQ-32B model to the question "What is the regeneration 
performance of MOFs adsorbent?"



Figure S69. The answer provided by the MOFReasoner model to the question "What is the effect of 
MOFs adsorbent on removing heavy metal ions in water treatment?"



Figure S70. The answer provided by the DeepSeek-R1-671B model to the question "What is the effect 
of MOFs adsorbent on removing heavy metal ions in water treatment?"



Figure S71. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "What is 
the effect of MOFs adsorbent on removing heavy metal ions in water treatment?"



Figure S72. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "What is 
the effect of MOFs adsorbent on removing heavy metal ions in water treatment?"



Figure S73. The answer provided by the GPT-4.5-preview model to the question "What is the effect of 
MOFs adsorbent on removing heavy metal ions in water treatment?"



Figure S74. The answer provided by the o1-preview model to the question "What is the effect of MOFs 
adsorbent on removing heavy metal ions in water treatment?"



Figure S75. The answer provided by the Qwen-Max model to the question "What is the effect of MOFs 
adsorbent on removing heavy metal ions in water treatment?"



Figure S76. The answer provided by the Qwen-Plus model to the question "What is the effect of MOFs 
adsorbent on removing heavy metal ions in water treatment?"



Figure S77. The answer provided by the QwQ-32B model to the question "What is the effect of MOFs 
adsorbent on removing heavy metal ions in water treatment?"



Figure S78. The answer provided by the MOFReasoner model to the question " Why is the introduction 
of functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S79. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question " Why is 
the introduction of functional groups important in the design of Metal-Organic Framework for 
contaminant removal?"



Figure S80. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "Why is 
the introduction of functional groups important in the design of Metal-Organic Framework for 
contaminant removal?"



Figure S81. The answer provided by the DeepSeek-R1-671B model to the question "Why is the 
introduction of functional groups important in the design of Metal-Organic Framework for contaminant 
removal?"



Figure S82. The answer provided by the gpt-4.5-preview model to the question "Why is the introduction 
of functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S83. The answer provided by the o1-preview model to the question "Why is the introduction of 
functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S84. The answer provided by the Qwen-Max model to the question "Why is the introduction of 
functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S85. The answer provided by the Qwen-Plus model to the question "Why is the introduction of 
functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S86. The answer provided by the QwQ-32B model to the question "Why is the introduction of 
functional groups important in the design of Metal-Organic Framework for contaminant removal?"



Figure S87. The answer provided by the MOFReasoner model to the question "How are the dynamic and 
static adsorption performances of MOFs usually evaluated?"



Figure S88. The answer provided by the DeepSeek-R1-671B model to the question "How are the 
dynamic and static adsorption performances of MOFs usually evaluated?"



Figure S89. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "How 
are the dynamic and static adsorption performances of MOFs usually evaluated?"



Figure S90. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "How are 
the dynamic and static adsorption performances of MOFs usually evaluated?"



Figure S91. The answer provided by the GPT-4.5-preview model to the question "How are the dynamic 
and static adsorption performances of MOFs usually evaluated?"



Figure S92. The answer provided by the o1-preview model to the question "How are the dynamic and 
static adsorption performances of MOFs usually evaluated?"



Figure S93. The answer provided by the Qwen-Max model to the question "How are the dynamic and 
static adsorption performances of MOFs usually evaluated?"



Figure S94. The answer provided by the Qwen-Plus model to the question "How are the dynamic and 
static adsorption performances of MOFs usually evaluated?"



Figure S95. The answer provided by the QwQ-32B model to the question "How are the dynamic and 
static adsorption performances of MOFs usually evaluated?"



Figure S96. The answer provided by the MOFReasoner model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S97. The answer provided by the DeepSeek-R1 -671B model to the question "How to determine 
the adsorption sites in MOFs adsorbents?"



Figure S98. The answer provided by the DeepSeek-R1-Distill-Llama-8B model to the question "How to 
determine the adsorption sites in MOFs adsorbents?"



Figure S99. The answer provided by the DeepSeek-R1-Distill-Qwen-7B model to the question "How to 
determine the adsorption sites in MOFs adsorbents?"



Figure S100. The answer provided by the gpt-4.5-preview model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S101. The answer provided by the o1-preview model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S102. The answer provided by the Qwen-Max model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S103. The answer provided by the Qwen-Plus model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S104. The answer provided by the QwQ-32B model to the question "How to determine the 
adsorption sites in MOFs adsorbents?"



Figure S105. The answer generated by the trained Qwen2.5-7B-Math model to the question: “What are 
the current bottlenecks for HKUST-1 in industrial gas separation applications?”

Figure S106. The answer generated by the trained Qwen2.5-7B-Math model to the question: 
“Compared with zeolite materials, what are the advantages of MOFs (Metal-Organic Frameworks) 
materials in vacuum swing adsorption?”



Figure S107. The answer generated by the trained Qwen2.5-7B-Math model to the question: “How can 
the water stability of MOFs be enhanced to ensure their effectiveness under operational conditions?”



Figure S108. The answer generated by the trained Qwen2.5-7B-Math model to the question: “What is 
the regeneration performance of MOFs adsorbent?”



Figure S109. The answer generated by the trained Qwen2.5-7B-Math model to the question: “What is 
the effect of MOFs adsorbent on removing heavy metal ions in water treatment?”



Figure S110. The answer generated by the trained Qwen2.5-7B-Math model to the question: “Why is 
the introduction of functional groups important in the design of Metal-Organic Framework for 
contaminant removal?”

Figure S111. The answer generated by the trained Qwen2.5-7B-Math model to the question: “How are 
the dynamic and static adsorption performances of MOFs usually evaluated?”

Figure S112. The answer generated by the trained Qwen2.5-7B-Math model to the question: “How to 
determine the adsorption sites in MOFs adsorbents?”

Figure S113. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “What are the current bottlenecks for HKUST-1 in industrial gas 
separation applications?”



Figure S114. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “Compared with zeolite materials, what are the advantages of MOFs 
(Metal-Organic Frameworks) materials in vacuum swing adsorption?”

Figure S115. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “How can the water stability of MOFs be enhanced to ensure their 
effectiveness under operational conditions?”

Figure S116. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “What is the regeneration performance of MOFs adsorbent?”

Figure S117. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “What is the effect of MOFs adsorbent on removing heavy metal ions 
in water treatment?”

Figure S118. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “Why is the introduction of functional groups important in the design 
of Metal-Organic Framework for contaminant removal?”



Figure S119. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “How are the dynamic and static adsorption performances of MOFs 
usually evaluated?”

Figure S120. The answer generated by the fine-tuned DeepSeek-R1-Distill-Qwen-7B model (without 
reasoning process) to the question: “How to determine the adsorption sites in MOFs adsorbents?”

Table S8. The evaluation results of the MOFReasoner, fine-tuned Qwen-7B-Math and fine-tuned 
DeepSeek-R1-Distill-Qwen-7B (without reasoning process) models.

Model Correct Inaccurate
Wrong or 

controversial
Serious 

error
Missing

Total 
score

MOFReasoner 25 2 1 0 10 25.5

fine-tuned 
Qwen-7B-Math

17 5 3 4 18 14

fine-tuned 
DeepSeek-R1-
Distill-Qwen-
7B (without 
reasoning 
process)

12 7 0 1 23 14.5



Section S4. Details of adsorption of benzothiophene by metal SBUs

Computational Details. DFT calculations were carried out using the CP2K code.1 All calculations 
employed a mixed Gaussian and planewave basis sets. Core electrons were represented with norm-
conserving Goedecker-Teter-Hutter pseudopotentials,2-4 and the valence electron wavefunction was 
expanded in a triple-zeta basis set with polarization functions5 along with an auxiliary plane wave basis 
set with an energy cutoff of 360 Ry. The generalized gradient approximation exchange-correlation 
functional of Perdew, Burke, and Enzerhof (PBE)6 was used. Each configuration was optimized with the 
OT algorithm with SCF convergence criteria of 1.0×10-8 au. To compensate the long-range van der Waals 
dispersion interaction between the adsorbate and the MOFs, the DFT-D3 scheme7 with an empirical 
damped potential term was added into the energies obtained from exchange-correlation functional in all 
calculations.

The adsorption energy between the adsorbate and the SBUs can be calculated using the following 
equation:

 =  –  –            (1)∆𝐸𝑎𝑑𝑠 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒@𝑀𝑂𝐹 𝐸𝑀𝑂𝐹 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

In Eq. (1),  and  represent the total energies of substrate with and without adsorbate, 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒@𝑀𝑂𝐹 𝐸𝑀𝑂𝐹

respectively.  is the energy of the adsorbate. According to this equation, a negative adsorption 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒
energy corresponds a stable adsorption structure.

MOFReasoner reasoning process and answers

<|begin_of_thought|>

Okay, so I need to figure out how to rank these paddle-wheel SBUs (Cu²⁺, Zn²⁺, Co²⁺) based on their 
adsorption strength for benzothiophene. Let me start by recalling what I know about metal SBUs and 
their adsorption properties.

First, paddle-wheel SBUs are metal clusters where two metal ions are connected by carboxylate ligands 
in a square-planar arrangement. The strength of adsorption for a molecule like benzothiophene probably 
depends on the metal's size, charge, and the nature of the ligands involved.

I remember that the adsorption strength can be influenced by the Lewis acidity of the metal center. More 
acidic metals might have stronger interactions with electron-rich molecules like benzothiophene. So, the 
metal's Lewis acidity would be a key factor here.

Let me think about the common paddle-wheel SBUs. For example, Zn²⁺ is known for its Lewis acidity, 
which is often used in catalysis and adsorption. Co²⁺ is also a Lewis acid but maybe less so than Zn²⁺? 
Cu²⁺ is a transition metal, but how does its Lewis acidity compare?



Wait, I think the order of Lewis acidity for transition metals in this context might be something like Zn²⁺ 
> Co²⁺ > Cu²⁺. Because Zn²⁺ is in the first transition series and has a +2 charge, while Co²⁺ is in the third, 
and Cu²⁺ is in the fourth. But maybe the actual acidity values are different. I should check some data or 
examples.

Alternatively, maybe the size of the metal ion affects the adsorption. Larger ions might create a more 
open structure, allowing better interaction. But paddle-wheel SBUs are usually pretty compact. However, 
the charge density might matter. Higher charge density (like Zn²⁺ compared to Co²⁺) could lead to 
stronger electrostatic interactions.

Another angle: the coordination number. Paddle-wheel SBUs typically have a coordination number of 4, 
but if the metal is part of a larger cluster, maybe the number of ligands around it changes. But the question 
specifies paddle-wheel SBUs, so maybe each SBU is a 4-coordinate cluster. In that case, the charge and 
size of the metal would still be the main factors.

I recall that in some studies, the adsorption of benzothiophene on metal SBUs was compared. For 
example, in a paper by Smith et al., they found that Co(II) SBUs showed higher adsorption of 
benzothiophene compared to Zn(II) SBUs. Wait, but that might be because Co(II) has a higher Lewis 
acidity? Or maybe the size of the metal ion affects the pore space.

Wait, another thought: the size of the metal ion might influence the accessibility of the adsorption site. 
If the metal ion is too large, the pore might be too big, making it harder for benzothiophene to fit. But 
paddle-wheel SBUs are usually small enough to allow certain molecules to enter. Alternatively, if the 
metal is smaller, the coordination environment might be more open, leading to stronger interactions.

Alternatively, the d-orbital participation. For transition metals, the d-orbitals' ability to participate in 
bonding might affect adsorption. For example, Co²⁺ has d⁷ configuration, which might engage in more 
covalent bonding with benzothiophene compared to Zn²⁺ (d¹⁰), which has a closed d-shell. But I'm not 
sure if that's the case here.

Wait, benzothiophene is a planar molecule with a conjugated system. The adsorption might involve the 
aromatic ring interacting with the metal cluster. The Lewis acidity of the metal would determine how 
strongly the molecule is held. So a more acidic metal would form stronger bonds.

So, ranking the metals by their Lewis acidity. Zn²⁺ is more acidic than Co²⁺, which is more acidic than 
Cu²⁺. Therefore, Zn paddle-wheel SBU would have the strongest adsorption, followed by Co, then Cu.



But I should verify this. Let me think of specific examples. For instance, in some metal-organic 
frameworks (MOFs), Zn paddle-wheel SBUs are known to have good adsorption of certain molecules 
due to their Lewis acidity. Co paddle-wheel SBUs might be used in applications where moderate acidity 
is needed, and Cu might be less effective unless in specific conditions.

Another consideration: the size of the metal ion. Zn²⁺ is smaller than Co²⁺, which is smaller than Cu²⁺. 
Smaller ions might create a more open structure, allowing better interaction. But if the metal is too small, 
maybe the coordination environment is too tight. Alternatively, a balance between size and charge.

Alternatively, the charge-to-size ratio. Zn²⁺ has a higher charge density compared to Co²⁺ and Cu²⁺. 
Higher charge density could lead to stronger electrostatic interactions, which might be beneficial for 
adsorption. So Zn would be better than Co, which is better than Cu.

But I'm not entirely sure. Maybe I should look for some data or references. For example, in a study by 
Zhang et al., they compared the adsorption of benzothiophene on various metal SBUs. They found that 
Co(II) SBUs showed higher adsorption capacity than Zn(II) and Cu(II) SBUs. Wait, that contradicts my 
earlier thought. If that's the case, then maybe Co is better than Zn, which is better than Cu.

But why would that be? Maybe the coordination environment in Co(II) is more suitable for 
benzothiophene's structure. Alternatively, the d-orbital participation is different. Co²⁺ has a d⁷ 
configuration, which might engage in more bonding with the benzothiophene's aromatic ring compared 
to Zn²⁺ (d¹⁰) or Cu²⁺ (d⁹).

Alternatively, maybe the number of coordination sites available. If the Co(II) SBU has more open sites 
or a different geometry that allows better interaction with the benzothiophene's electron-rich regions.

Wait, another angle: the isosteric heat of adsorption. If Co(II) has a higher isosteric heat, that would 
indicate stronger adsorption. But I don't have exact values here.

Alternatively, considering the size of the pore. If the Co(II) SBU has a larger pore, it can accommodate 
benzothiophene more easily, leading to higher adsorption. But paddle-wheel SBUs are usually small, so 
maybe the accessibility is limited.

Alternatively, the steric hindrance around the metal site. If the metal is smaller, the molecule might fit 
better, but the adsorption strength might be lower. So there's a balance between size and Lewis acidity.

Hmm, this is a bit confusing. Let me try to summarize:



Lewis acidity: Zn²⁺ > Co²⁺ > Cu²⁺ (if Zn is more acidic)

Size: Zn²⁺ is smaller than Co²⁺, which is smaller than Cu²⁺

Charge density: Zn²⁺ has higher charge density

Possible d-orbital involvement: Co²⁺ has d⁷, which might interact differently

If Lewis acidity is the main factor, then Zn paddle-wheel SBU would be the most suitable, followed by 
Co, then Cu. But if steric factors or d-orbital interactions are more important, the order might be different.

Alternatively, maybe the stability of the SBU is a factor. More stable SBUs might be more likely to 
adsorb. But the question is about adsorption strength, not stability.

Another thought: the adsorption is also influenced by the polarity of the metal-ligand bonds. Zn²⁺ has a 
higher electronegativity compared to Co²⁺ and Cu²⁺, so the bonds might be more polar, leading to stronger 
interactions with the aromatic ring of benzothiophene.

Alternatively, the electronic structure of the benzothiophene molecule. If the metal can stabilize the 
molecule through charge transfer or π-π interactions, then the adsorption strength would be higher. For 
example, if the metal has a vacant d-orbital that can interact with the π-system of benzothiophene, that 
would enhance adsorption.

Co²⁺ has a d⁷ configuration, which might have a vacant d-orbital that can interact with the π-electrons of 
benzothiophene. Zn²⁺ is d¹⁰, so no d-orbital available for such interaction, but it has a strong Lewis acidity. 
Cu²⁺ is d⁹, which might also have some d-orbital participation.

Wait, but d¹⁰ ions like Zn²⁺ don't have available d-orbitals for bonding, so they rely more on Lewis acidity. 
Co²⁺, with d⁷, might have some d-orbital involvement, which could be beneficial. Cu²⁺, with d⁹, also has 
some d-orbital participation.

So maybe the order is determined by both Lewis acidity and d-orbital involvement. If Co²⁺ has a better 
combination of these factors, it might be better than Zn²⁺, even if Zn is more acidic.

But I'm not sure. Let me think of specific examples. For instance, in some MOFs, Co(II) paddle-wheel 
SBUs have been used for adsorbing benzothiophene. If that's the case, then Co might be more suitable 
than Zn, which might be less effective.

Alternatively, maybe the size of the metal ion affects the accessibility. If Zn²⁺ is too small, the pore might 



be too tight, preventing benzothiophene from entering. Co²⁺ is larger, providing more space for the 
molecule, while Cu²⁺ is even larger, but maybe the interaction is weaker due to lower Lewis acidity.

So, perhaps the ranking is Co paddle-wheel SBU > Zn paddle-wheel SBU > Cu paddle-wheel SBU, 
based on a balance of size and Lewis acidity. Co offers a moderate size with decent Lewis acidity, 
providing both a suitable pore size and strong interaction through Lewis acid-base chemistry.

But I'm still a bit unsure. Another approach: look up some data or studies that compare these SBUs for 
benzothiophene adsorption. For example, in a paper by Johnson et al., they might have measured the 
adsorption capacities. If Co(II) shows higher capacity than Zn(II) and Cu(II), then that would support the 
Co > Zn > Cu order.

Alternatively, in another study by Lee et al., they found that Co(II) SBUs have higher adsorption of 
benzothiophene compared to Zn(II) and Cu(II) SBUs. If that's the case, then the ranking would be Co > 
Zn > Cu.

But I need to be careful here. Since I don't have specific data, I have to rely on general trends. Let me try 
to think of the common understanding.

From what I remember, transition metals with higher Lewis acidity tend to have stronger adsorption. So 
Zn²⁺ is more acidic than Co²⁺, which is more acidic than Cu²⁺. Therefore, the order would be Zn > Co > 
Cu. However, steric effects and d-orbital interactions might change this.

Alternatively, the size of the metal ion. If the metal is too small, the pore might be too narrow, reducing 
adsorption. So Co²⁺, being larger than Zn²⁺, might provide a better balance between size and Lewis 
acidity.

But I think the primary factor is Lewis acidity. So Zn paddle-wheel SBU would have the strongest 
adsorption, followed by Co, then Cu. However, in practice, maybe Co is better because of its moderate 
size and some d-orbital interactions.

Alternatively, maybe the number of available sites. Co(II) might have more open sites or a different 
coordination geometry that allows better interaction with benzothiophene.

Wait, another thought: the d-electron count. Co²⁺ has a d⁷ configuration, which might have a different 
electron configuration compared to Zn²⁺ (d¹⁰) and Cu²⁺ (d⁹). The d⁷ configuration might allow for more 
effective bonding with the aromatic ring.



Alternatively, the redox potential of the metal. If the metal is more redox-active, it might facilitate 
electron transfer, enhancing adsorption. But I'm not sure how that applies here.

In summary, considering the primary factors of Lewis acidity and d-orbital interactions, the ranking 
would likely be Zn > Co > Cu. However, if steric effects and pore size are significant, Co might be better 
than Zn. Since the question is about adsorption strength, which is primarily a chemical interaction, the 
Lewis acidity is the main driver. Therefore, Zn paddle-wheel SBU would be the most suitable, followed 
by Co, then Cu.<|end_of_thought|>

<|begin_of_solution|>

Based on the adsorption strength of benzothiophene on metal paddle-wheel SBUs, the ranking is 
determined primarily by the Lewis acidity and the d-orbital interactions of the metal centers. Here's the 
step-by-step reasoning:

Lewis Acidity:

Zn²⁺ exhibits higher Lewis acidity compared to Co²⁺ and Cu²⁺ due to its higher charge density and smaller 
ionic radius, creating stronger electrostatic interactions with the electron-rich benzothiophene molecule.

d-Orbital Interactions:

Co²⁺ (d⁷ configuration) may engage in more covalent bonding with the benzothiophene’s aromatic ring 
due to its partially filled d-orbitals, enhancing adsorption strength.

Steric Effects:

While Zn²⁺ is smaller than Co²⁺, the latter provides a balance between size and Lewis acidity, which 
might be advantageous for accommodating benzothiophene while maintaining strong interaction.

Final Ranking by Adsorption Strength:

Zn²⁺ (Paddle-Wheel SBU)

Highest Lewis acidity and favorable d-orbital interactions.

Co²⁺ (Paddle-Wheel SBU)

Moderate size and effective bonding with the aromatic ring.

Cu²⁺ (Paddle-Wheel SBU)

Least effective due to lower Lewis acidity and larger size, limiting interaction with benzothiophene.

Conclusion: The suitability for adsorbing benzothiophene decreases in the order Zn²⁺ > Co²⁺ > 
Cu²⁺.<|end_of_solution|>



Figure S121. Expected reasoning path for the reasoning-type question “Considering adsorption strength, 
which metal SBUs are most suitable for benzothiophene adsorption?”, highlighting alternative reasoning 
modes based on integrative analysis and mechanism-focused inference.



Figure S122. Reasoning trace generated by DeepSeek R1 for the benzothiophene adsorption task, 
illustrating a mechanism-driven reasoning process based on sulfur–metal interactions and electronic 
structure considerations to rank different paddle-wheel metal SBUs.

Table S9. Calculated adsorption energies (ΔEads) of benzothiophene on paddle-wheel metal sites (Zn, 
Cu, and Co).

Metal Site Zn Cu Co

Paddle-Wheel (hartree) -333.7417015 -308.8449858 -503.58878

Benzothiophene (hartree) -274.4719485 -249.5797098 -444.31362

benzothiophene and Paddle-Wheel (hartree) -59.25116851 -59.25116851 -59.251169

ΔEads (hartree) 0.018584507 0.01410747 0.023994

ΔEads (kJ/mol) 48.79362443 37.03916193 62.99703

Atomic coordinates of benzothiophene

  C        13.0489357340       19.2552538534        0.0693099690



  C        13.7834323311       18.0515196461        0.0602694936

  C        15.1707706455       18.0634828637       19.9544099114

  C        15.8535121093       19.2945667130       19.8546493900

  C        15.0913586529        0.4972849917       19.8653458789

  C        13.6940316189        0.4875690671       19.9722087983

  S        16.1381032521        1.9071926893       19.7305906886

  C        17.5598110340        0.8825070982       19.6628605199

  C        17.2640575646       19.5511157968       19.7375239583

  H        11.9611939238       19.2243833284        0.1534510636

  H        13.2544924839       17.0999405742        0.1374745550

  H        15.7351723161       17.1284445503       19.9480236890

  H        13.1238768876        1.4178909343       19.9793904199

  H        18.5375848374        1.3493962837       19.5701572546

  H        18.0208971033       18.7672513992       19.7108318480

Atomic coordinates of Co Paddle-Wheel

  O         8.1605104993       10.2197726978       12.0327273738

  O         8.0772046593        7.5562201918        9.3667898518

  O         8.0761838113        7.5560818506       12.0313262079

  O         8.1603617872       10.2222710044        9.3677473313

  O        10.4444478771       10.1976947844        9.3847568681

  O        10.3576991585        7.4714531494       12.0260263964

  O        10.3593061808        7.4845738332        9.3653944880

  O        10.4429441485       10.1248448174       12.0908391870

 Co         8.1520852849        8.8889572402       10.6993882017

 Co        10.3713126773        8.8120615407       10.7020062927

  C         9.3086957173       10.5735466675       12.4762166174

  C         9.2044797834        7.1101779524        8.9577805565

  C         9.2022595721        7.1030935626       12.4363806892

  C         9.3105093481       10.6245739401        8.9749001360

  H         9.3232979737       11.4176705983        8.2090754087

  H         9.1805648071        6.3282103597        8.1813800888

  H         9.1755629699        6.3220428896       13.2136081112



  H         9.3178838495       11.3396095165       13.2690021363

Atomic coordinates of Cu Paddle-Wheel

  O         8.2309608523       10.7017113618       12.1830511296

  O         8.2311132398        7.8992659603        9.3804793359

  O         8.2310231624        7.8989484605       12.1830234253

  O         8.2314504264       10.7018191742        9.3802093075

  O        10.5345930736       10.7013431143        9.3806400565

  O        10.5344147590        7.8986143868       12.1830048740

  O        10.5344197286        7.8991396603        9.3803244062

  O        10.5340834607       10.7015324612       12.1835774312

 Cu         8.1240420221        9.3009827105       10.7815718069

 Cu        10.6413221230        9.3003609570       10.7822967320

  C         9.3824696759       11.0827617604       12.5660465705

  C         9.3827600689        7.5169609495        8.9988789924

  C         9.3825938600        7.5170006624       12.5649035120

  C         9.3831531996       11.0828204141        8.9977667993

  H         9.3839142991       11.8637509491        8.2139912363

  H         9.3826661885        6.7344449289        8.2165281352

  H         9.3824420217        6.7335680364       13.3463272426

  H         9.3818893147       11.8635623333       13.3500771617

Atomic coordinates of Zn Paddle-Wheel

  O         8.1562628854       11.0352783450       12.5174418200

  O         8.0731476280        8.1478019007        9.7052841102

  O         8.0709718937        8.1502190763       12.5152438359

  O         8.0710345808       11.0275690333        9.6319995130

  O        10.3644624703       10.9513035593        9.6304188460

  O        10.3643355266        8.1491649252       12.5905107513

  O        10.3658731440        8.1336869750        9.7056085544

  O        10.4496078103       11.0282141612       12.5097490235

 Zn         7.9580341969        9.6217368350       11.1036411818

 Zn        10.5421860379        9.5517987169       11.1152227942

  C         9.3066030977       11.4311888237       12.9035314963



  C         9.2151214775        7.7406664465        9.3152524527

  C         9.2037417996        7.7526295007       12.9435273846

  C         9.2309978039       11.3713520292        9.2256052967

  H         9.2545662487       12.1290650193        8.4185235172

  H         9.2133632132        6.9474441818        8.5429891155

  H         9.1785141974        6.9620788700       13.7185599769

  H         9.3101564959       12.2233243433       13.6766026507

Atomic coordinates of benzothiophene and Co Paddle-Wheel

  O         8.1548102864        1.2316375305       11.0225019306

  O         8.0009575441       18.5975886778        8.2950256344

  O         8.0718852644       18.5266431206       10.9458211756

  O         8.0878990648        1.3028741634        8.3204219017

  O        10.3675107597        1.1556527512        8.2290603039

  O        10.3573389549       18.5206374639       11.0275599154

  O        10.2807451836       18.4344365843        8.3104107930

  O        10.4405974201        1.2348044189       10.9468770843

 Co         8.1256265971       19.9181663992        9.6353186200

 Co        10.3822290668       19.8354962140        9.6283426308

  C         9.3083928975        1.6363806187       11.3888313031

  C         9.1124038355       18.1057608065        7.9033238469

  C         9.1987859059       18.1206473814       11.3909442714

  C         9.2366548042        1.6323981434        7.8696419426

  H         9.3359362664        2.4143227635       12.1714320844

  H         9.0625778266       17.3145963616        7.1357358185

  H         9.1718144141       17.3399788318       12.1706856031

  H         9.2594264379        2.4100272089        7.0866688344

  C        13.6036832511       15.7862598227       10.0534867334

  C        14.3146987324       15.8821950298       11.2632543150

  C        14.5275549655       17.1186380299       11.8723515748

  C        14.0214613446       18.2828220599       11.2674608860

  C        13.3183488613       18.1597893989       10.0426548561

  C        13.0994826171       16.9283667770        9.4253813156



  S        12.7876766610       19.7486370823        9.4603895564

  C        13.4749836280        0.5316999146       10.8866020017

  C        14.0923948801       -0.3461874934       11.7196151761

  H        13.4402340171       14.8080027262        9.5985292211

  H        14.7015180539       14.9760217901       11.7321258461

  H        15.0777164856       17.1884809386       12.8127709947

  H        12.5328182374       16.8630106826        8.4968546804

  H        13.3502054758        1.6051206194       10.9939485849

  H        14.5870166488       -0.0451377389       12.6431798892

Atomic coordinates of benzothiophene and Cu Paddle-Wheel

  O         8.1562000000        1.2646000000       11.0040000000

  O         8.1096000000       18.5218000000        8.2594000000

  O         8.1064000000       18.5210000000       11.0032000000

  O         8.1594000000        1.2654000000        8.2600000000

  O        10.3828000000        1.2250000000        8.2626000000

  O        10.3298000000       18.4808000000       11.0058000000

  O        10.3330000000       18.4814000000        8.2620000000

  O        10.3796000000        1.2242000000       11.0066000000

 Cu         7.9300000000       19.8968000000        9.6314000000

 Cu        10.5592000000       19.8492000000        9.6346000000

  C         9.2748000000        1.6488000000       11.4100000000

  C         9.2144000000       18.0972000000        7.8560000000

  C         9.2102000000       18.0964000000       11.4090000000

  C         9.2790000000        1.6496000000        7.8570000000

  H         9.3436000000        2.4526000000       12.2156000000

  H         9.2558000000       17.2914000000        7.0508000000

  H         9.2498000000       17.2902000000       12.2142000000

  H         9.3498000000        2.4538000000        7.0522000000

  C        13.5752058032       15.6813662437        9.8716257446

  C        14.0719446599       15.6161372757       11.1882150941

  C        14.2680748204       16.7737776211       11.9365295096

  C        13.9679738154       18.0270790675       11.3678852674



  C        13.4777755492       18.0658826803       10.0355463830

  C        13.2728277883       16.9083989000        9.2801167917

  S        13.1729256641       19.7313997157        9.5286019767

  C        13.6717596220        0.3354029749       11.1062195351

  C        14.0659303207       -0.6583911628       11.9495907595

  H        13.4212244057       14.7609068002        9.3060133011

  H        14.3022295064       14.6438442728       11.6268013160

  H        14.6478911157       16.7180567748       12.9586902122

  H        12.8700713940       16.9649697956        8.2688282298

  H        13.6202178929        1.4048580624       11.2908380181

  H        14.4106629788       -0.4750357342       12.9669806873

Atomic coordinates of benzothiophene and Zn Paddle-Wheel

  O         8.1562000000        1.2646000000       11.0040000000

  O         8.1096000000       18.5218000000        8.2594000000

  O         8.1064000000       18.5210000000       11.0032000000

  O         8.1594000000        1.2654000000        8.2600000000

  O        10.3828000000        1.2250000000        8.2626000000

  O        10.3298000000       18.4808000000       11.0058000000

  O        10.3330000000       18.4814000000        8.2620000000

  O        10.3796000000        1.2242000000       11.0066000000

 Zn         7.9300000000       19.8968000000        9.6314000000

 Zn        10.5592000000       19.8492000000        9.6346000000

  C         9.2748000000        1.6488000000       11.4100000000

  C         9.2144000000       18.0972000000        7.8560000000

  C         9.2102000000       18.0964000000       11.4090000000

  C         9.2790000000        1.6496000000        7.8570000000

  H         9.3436000000        2.4526000000       12.2156000000

  H         9.2558000000       17.2914000000        7.0508000000

  H         9.2498000000       17.2902000000       12.2142000000

  H         9.3498000000        2.4538000000        7.0522000000

  C        13.5702423135       15.7191071980        9.7854885143

  C        14.0183387193       15.6199417504       11.1159038450



  C        14.1652966794       16.7559017089       11.9088025496

  C        13.8625141953       18.0200992872       11.3690642181

  C        13.4224037552       18.0913261017       10.0230893027

  C        13.2671359609       16.9598440489        9.2213633620

  S        13.1123685393       19.7743376440        9.5572706242

  C        13.5280266935        0.3338400011       11.1826073885

  C        13.9099877281       -0.6824657031       11.9992893405

  H        13.4523813654       14.8153879065        9.1856436297

  H        14.2488899997       14.6378978065       11.5318696594

  H        14.5061862053       16.6733966417       12.9425571956

  H        12.8979827675       17.0427768243        8.1993571416

  H        13.4378415060        1.3938681840       11.4013665791

  H        14.2087774312       -0.5302484723       13.0362120263
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