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OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured
Ionic Conductivities for Lithium Solid-State Electrolytes

I. PARITY PLOTS AND DATA FROM FIGURE 4

Table contains the information from Figure 4 in a tabulated form. Figure presents parity plots for bench-
marking experiments discussed in Section 4.

II. BASELINE MODELS

We trained and tested 7 ML models which are briefly described below:

1. RF, as an ensemble of decision trees, is robust to noisy data and provides feature importance insights, making
it a strong baseline for structured datasets.

2. MLP, a neural network-based approach, captures complex nonlinear relationships, offering a comparison to deep
learning-based methods.

3. PaiNN [I] enforces E(3)-equivariance, enabling accurate modeling of atomic interactions and force predictions.
4. SchNet [2] learns continuous filter representations, making it effective for capturing atomic environments.

5. M3GNet [3]integrates message passing with three-body interactions, improving property predictions for crys-
talline materials.

6. SO3Net [4] leverages spherical harmonics to enhance equivariant representations for molecular and solid-state
systems.

7. CGCNN [5] models crystal structures directly as graphs, making it a strong baseline for learning structure-
property relationships.

Table [52] shows the best hyperparameter sets for each model presented in Table

III. EFFECTS OF ADDED RANDOM NOISE

Table [S3] presents the cross-validation and test MAEs for the models trained on randomized atomic positions. The
models were trained on the randomized data and tested on the original CIFs. There is no significant difference in
performance between models trained on the original data and models trained on data with added random noise on
atomic positions.

IV. COMPUTATIONAL RESOURCES USED FOR BENCHMARKING

Table [54] presents the resources used to find optimal hyperparameters and train each model.
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FIG. S1. Parity plots for benchmarked models. a) Random Forest b) Multilayer perceptron c¢) PaiNN d) SchNet e¢) M3GNet
f) SO3Net g) CGCNN h) PaiNN with pretraining i) SchNet with pretraining j) M3GNet with pretraining k) CGCNN with
pretraining 1) CGCNN with disorder (partial occupancy) m) SO3Net with disorder (partial occupency)



TABLE S1. Benchmarking of various ML models with and without pretraining. For the median prediction, the random forest
(RF) and the multilayer perceptron (MLP), results are presented for the full dataset and numbers in parenthesis are results for
the subset of the test set that has CIF files. All other results apply only to entries with CIF files. ”p-” indicates a model that
was pretrained and ”dis-” indicates a model that was modified to take partial occupancy (disorder) into account.

Model Cross-val. MAE Test MAE
Avg. £ SD

Experiment 0.41
Median pred. 2.16 (2.81)
RF 1.04 £+ 0.06 1.59 (1.85)
MLP 1.35 £ 0.27 1.72 (2.10)
PaiNN 1.65 £ 0.21 2.88
SchNet 1.79 £+ 0.23 2.89
M3GNet 1.89 £+ 0.31 2.74
SO3Net 2.02 + 0.25 2.76
CGCNN 1.87 £ 0.35 2.84
p-PaiNN 2.05 + 0.25 2.69
p-SchNet 2.18 + 0.67 2.61
p-M3GNet 1.85 £ 0.25 3.08
p-CGCNN 1.84 + 0.33 2.52
dis-CGCNN 1.52 £ 0.29 2.71
dis-SO3Net 1.72 £ 0.07 2.86




TABLE S2. The selected hyperparameters for the baseline models.

Model Hyperparameter Value Model Hyperparameter Value
RF max_depth 36 PaiNN  cutoff 5
max_features sqrt n_interactions 2
min_samples_leaf 1 n_atom_basis 80
n_estimators 50 batch_size 32
MLP  activation relu maz.c,epochs 100
batch size 16 weight_decay 0.0001
early_stopping True Schnet  cutoff 5
hidden layer sizes [64, 64, 64, n_interactions 3
B b 64] n_atom_basis 80
learning rate adaptive batch_size 32
learning rate_init 0.01 max_epochs 100
max_iter 1000 weight_decay 0.01
n-iternochange 100 M3GNet cutoff 5.0
solver adam threebody_cutoff 5.0
is_intensive True
readout_type ”set2set”
nblocks 3

dim node_embedding 128
dim_edge_embedding 128

units 64
batch_size 35
max_epochs 50
1r 0.001
weight_decay 0.01
SO3Net cutoff 5.0
is_intensive True
nmax 2
Imax 1
target_property " graph”
readout_type ”set2set”
nblocks 3
dim node_embedding 64
nlayers_readout 3
units 32
batch_size 35
max_epochs 80
1r 0.001
weight_decay 0
CGCNN n_conv 3
nh 1
atom_fea len 64
h_fea_len 64
batch_size 35
epochs 50
1r 0.001
weight_decay 0

TABLE S3. Performance of the 5 geometric models on the public dataset with added random noise to the atomic positions.
Test results are on the original test set.

Model Cross-validation MAE Test MAE

PaiNN 2.03 £ 0.27 2.95
SchNet 1.99 + 0.22 2.78
M3GNet 1.83 £ 0.29 291
SO3Net 1.98 + 0.23 2.79

CGCNN 1.94 £+ 0.42 2.95




TABLE S4. Resource usage for benchmarking

Model Hardware Hyperparameter tuning Final training
RF  AMD EPYC 7502 (1 core) Tmin 1s
MLP AMD EPYC 7502 (1 core) 50min 14s
PaiNN NVidia A100 GPU 2h40min 2min
SchNet NVidia A100 GPU 1h55min 2min
M3GNet NVidia A100 GPU 3h35min 2min
SO3Net NVidia A100 GPU 2h25min 2min

CGCNN NVidia A100 GPU 1h40min 1min
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