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(@) Electron density-DFT (b) Electron density-fit

E,, =-186.235 eV E,, =-186.237 eV

Fig. S1 Isosurface plots and corresponding total energy values of (a) DFT-calculated and (b)
spherically-fitted charge density distributions for Li* ion with the isosurface value of 0.00001e/bohr?.



(a) Isosurface: 0.046 e/bohr? Isosurface: 0.001 e/bohr? Isosurface: 0.0001 e/bohr? (d)
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Fig. S2 TTE molecule analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron
density isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe
configurations.
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Fig. S3 FSI-anion analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron density
isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe

configurations.
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Fig. S4 EGDME molecule analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower)
electron density isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic
forces across configurations; (d) Probe charge position Rp distribution at a representative probe-
molecule distance; (e) Correlation between DFT-calculated and fitted polarization energies under

varied probe configurations.
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Fig. S5 EC molecule analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron
density isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe
configurations.
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Fig. S6 DMC molecule analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron
density isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe
configurations.
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Fig. S7 PF¢ analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron density
isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe

configurations.
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Fig. S8 DME analysis: (a) DFT-calculated (upper) vs. spherically-fitted (lower) electron density
isosurfaces at multiple values; (b) MLFF-predicted total energy and (c) atomic forces across
configurations; (d) Probe charge position Rp distribution at a representative probe-molecule distance;
(e) Correlation between DFT-calculated and fitted polarization energies under varied probe
configurations.
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Fig. S9 (a) Comparison of intermolecular interaction energies for the EA-Li* system between the
DBMLFF model and DFT (PBE-D3) calculations, with random molecular displacements and
orientations. (c)-(d) Comparison of DME-DME intermolecular interaction energies between the
DBMLEFF model and DFT (PBE-D3) for three representative configurations.
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Fig. S10 Structural snapshots of (a) the LiFSI/EA/TTE system, (b) the LIFS/EGDME/TTE system,
and (c) the LiPF¢/EC/DMC system.
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Fig. S11 Benchmarking of simulated atomic forces against DFT for a 460-atom LiFSI/EA/TTE

GROMACS atomic force (eV/A)

(b)

—
w

—
=
T

W
T

=
T

RMSE = 1.412 eV/A
MAE = 1.000 eV/A
R’ =-0.439 P

MACE atomic force (eV/A)

-10 -5 0 5
DFT atomic force (eV/A)

10

15

12

(=]

=
T

=)
T

1
=
T

|
(=]
T

RMSE = 0.354 eV/A
MAE = 0.278 eV/A ,

R?=10.831 »>

—
'S

-12

-8 -4 0 4
DFT atomic force (eV/A)

electrolyte system. (a) GROMACS. (b) MACE.

12



(a) (b)

Z A e t)-r(0)][r(t)-r0)])

f(t)

1 1 L 0 L 1 1 1

5 10 15 20 25 30 35 0 20 40 60 80 100 120
Time (ps) Time (ps)

Fig. S12 Compute a(t) using the initial 4% segment of the MD trajectory for (a) LIFSVEGDME/TTE
and (b) LiPF¢/EC/DMC electrolyte systems. Here, K,y 1s the time correlation function for collective
ion conduction; self;;* and selfrg; denote the self-diffusion correlation functions for Li* and FSI-,
respectively.
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Fig. S13 Nyquist plot of the LIFS/EGDME/TTE electrolyte system, showing an ionic conductivity
of 2.20 mS/cm.
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Fig. S14 Mean square displacement (MSD) of Li* and PF¢™ in the LiPF¢/EC/DMC system from (a)
DBMLFF and (b) GROMACS simulations.
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Fig. S15 Benchmarking of ML-predicted atomic forces against reference DFT calculations. (a, b)
Forces in the LiFSI/EGDME/TTE system predicted by (a) the DBMLFF and (b) the MACE model.
(c, d) Forces in the LiPFs/EC/DMC system predicted by (c¢) the DBMLFF and (d) the MACE model.
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Table S1. Diffusion coefficients and ionic conductivities (k) in the LiIFS/EGDME/TTE system,
determined using various techniques.

+ -

Methods (10-1]3 NEREN (10-3};?112 s (mS IZm-l)
GROMACS 0.486 0.704 1.511
DBMLFF 0.849 1.030 2.386
Experiments 1.377 1.180 2.200
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Table S2. Diffusion coefficients and ionic conductivities (k) in the LiPF¢/EC/DMC system,
determined using various techniques.

+ -
Methods (10-1]3 NEREN (10-313;?2 s (mS IZm-l)

GROMACS 0.211 0.422 1.393
DBMLFF 3.581 4.205 13.800

Experiments 1.8 2.7 11.2
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Table S3. Enthalpies of vaporization of different substances at 298 K and 1 atm.

GROMACS DBMLFF .
Molecule (kJ-mol™") (kJ-mol™) Experiments
(kJ-mol)
Mean SE Mean SE
DME 26.37 0.01 23.40 0.03 21.2!
EA 53.87 0.03 38.91 0.02 35.692
TTE 44.79 0.05 36.21 0.09 40.23
EGDME 50.08 0.39 38.36 0.06 36.764
DMC 62.92 0.02 43.75 0.09 37.705
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