Supporting Information

for

Reaction of a non-heme iron-nitrosyl with dioxygen: Decomposition of the

ligand through NOD-like activity

Riya Ghosh, Rakesh Mazumdar, Bapan Samanta, Shankhadeep Saha, and Biplab Mondal

Department of Chemistry, Indian Institute of Technology Guwahati, Assam – 781039, India. Email: biplab@iitg.ac.in; Phone: (+)91-361-258-2317; Fax: (+)91-361-258-2339

Sl	Description	Page
No.		No.
1	Figure S1: FT-IR spectrum of 1-(hydroxymethyl)-3,5-dimethyl-1-pyrazole in	S3
	KBr.	
2	Figure S2: ¹ H NMR spectrum of 1-(hydroxymethyl)-3, 5-dimethyl-1-	S3
	pyrazole in CDCl ₃ .	
3	Figure S3: ¹³ C NMR spectrum of 1-(hydroxymethyl)-3,5-dimethyl-1-pyrazole	S4
	in CDCl ₃ .	
4	Figure S4: FT-IR spectrum of TPz in KBr.	S4
5	Figure S5: ¹ H NMR spectrum of TPz in CDCl ₃ .	S5
6	Figure S6: ¹³ C NMR spectrum of Tpz in CDCl ₃ .	S5
7	Figure S7: ESI-mass spectrum of ligand TPz in acetonitrile.	S6
8	Figure S8: FT-IR spectrum of complex 1 in KBr.	S6
9	Figure S9: UV-visible spectrum of complex 1 in acetonitrile at RT.	S7
10	Figure S10: X-band EPR spectrum of complex 1 in acetonitrile at 77 K.	S 7
11	Figure S11: ESI-mass of complex 1 in acetonitrile. [Inset: (a) experimental	S8
	and (b) simulated isotopic distribution pattern].	
12	Figure S12: ORTEP diagram of complex 1 (30% thermal ellipsoid plot, H	S8
	atoms are omitted for clarity).	
13	Figure S13: FT-IR spectrum of complex 2 in KBr pellet.	S9
14	Figure S14 : UV-visible spectrum of complex 2 in acetonitrile at RT.	S9
15	Figure S15: X-band EPR spectrum of complex 2 in methanol at 77K.	S10
16	Figure S16: X-band EPR Spectra of reaction of complex 2 with O ₂ at 77 K in	S10
	methanol.	
17	Figure S17: FT-IR spectrum of complex 3 in KBr.	S11
18	Figure S18: UV-visible spectrum of complex 3 in acetonitrile at RT.	S11
19	Figure S19: X-band EPR spectrum of complex 3 in DMSO at 77 K.	S12

20	Figure S20: FT-IR spectrum of L' in KBr.	S12
21	Figure S21: ¹ H NMR spectrum of L' in CD ₃ CN.	S13
22	Figure S22: ¹³ C NMR spectrum of L' in CD ₃ CN.	S13
23	Figure S23: COSY NMR spectrum of L' in CD ₃ CN.	S14
24	Figure S24: FT-IR spectrum of complex 4 in KBr.	S14
25	Figure S25: UV-visible spectrum of complex 4 in DMSO at RT.	S15
26	Figure S26: X-band EPR spectrum of complex 4 in DMSO at 77 K.	S15
27	Figure S27: ¹ H NMR spectrum of 2,4-di- <i>tert</i> -butyl-6-nitrophenol in CDCl ₃ .	S16
28	Figure S28. ¹³ C NMR spectrum of 2,4-di- <i>tert</i> -butyl-6-nitrophenol in CDCl ₃ .	S16
29	Figure S29. ESI-mass spectrum of 2,4-di- <i>tert</i> -butyl-6-nitrophenol in	S17
	methanol.	
30	Figure S30: FT-IR spectrum of complex 5 in KBr.	S17
31	Figure S31: UV-visible spectrum of complex 5 in DMSO at RT.	S18
32	Figure S32: X-band EPR spectrum of complex 5 in DMSO at 77 K.	S18
33	Figure S33: ¹ H NMR spectrum of (tmpH ₂ ⁺)(NO ₃ ⁻)in CDCl ₃ .	S19
34	Figure S34: ¹³ C NMR spectrum of (tmpH ₂ ⁺)(NO ₃ ⁻) in CDCl ₃ .	S19
35	Table A1: Crystallographic data for complexes 1, 2, L' and (tmpH ₂ ⁺)(NO ₃ ⁻)	S20
36	Table A2: Selected bond lengths (Å) of complexes 1, 2, L' and	S20
	$(tmpH_2^+)(NO_3^-)$	
37	Table A3: Selected bond angles (°) of complexes 1, 2, L' and $(tmpH_2^+)(NO_3^-)$	S21
38	Figure S35 : ESI-mass spectrum of complex 3 in acetonitrile. [Inset: (a)	S22
20	experimental and (b) simulated isotopic distribution pattern].	622
39	Figure 836: ESI-mass spectrum of modified ligand (L') in acetonitrile.	823
40	Figure S37. ESI-mass spectrum of complex 5 in acetonitrile. [Inset: (a)	S23
	experimental and (b) simulated isotopic distribution pattern].	
41	Figure S38: FT-IR spectra of reaction of complex I with NO gas (black line)	S24
42	and "NO gas (blue line) in acctonitrile medium at room temperature.	524
42	Figure S39: F1-IK spectra of $\{Fe(NO)\}$ of formed in the reaction of complex 2 with O2. Bed trace represents with NO and green trace for it's 15NO labelled	524
	analogue	
43	Figure S40: FT-IR spectral monitoring of the reaction of complex $2(^{15}NO)$	S25
	labeled) with O_2 in acetonitrile medium. [complex 2 (blue), after O_2 addition	~=0
	(green)].	
44	Figure S41: FT-IR spectral monitoring of the reaction complex 2 with AgClO ₄	S25
	in acetonitrile medium.	
45	Figure S42: FT-IR spectral monitoring of the decomposition of {Fe(NO)} ⁶	S26
	intermediate in acetonitrile solution.	

Figure S1: FT-IR spectrum of 1-(hydroxymethyl)-3,5-dimethyl-1-pyrazole in KBr.

Figure S2: ¹H NMR spectrum of 1-(hydroxymethyl)-3,5-dimethyl-1-pyrazole in CDCl₃.

Figure S3: ¹³C NMR spectrum of 1-(hydroxymethyl)-3,5-dimethyl-1-pyrazole in CDCl₃.

Figure S4: FT-IR spectrum of TPz in KBr.

Figure S5: ¹H NMR spectrum of TPz in CDCl₃.

Figure S6: ¹³C NMR spectrum of Tpz in CDCl₃.

Figure S7: ESI-mass spectrum of ligand TPz in acetonitrile.

Figure S8: FT-IR spectrum of complex 1 in KBr.

Figure S9: UV-visible spectrum of complex 1 in acetonitrile at RT.

Figure S10: X-band EPR spectrum of complex 1 in acetonitrile at 77 K.

Figure S11: ESI-mass of complex 1 in acetonitrile. [Inset: (a) experimental and (b) simulated isotopic distribution pattern].

Figure S12. ORTEP diagram of complex 1 (30% thermal ellipsoid plot, H atoms are omitted for clarity).

Figure S13: FT-IR spectrum of complex 2 in KBr pellet.

Figure S14: UV-visible spectrum of complex 2 in acetonitrile at RT.

Figure S15: X-band EPR spectrum of complex 2 in methanol at 77K. [Note: a very small amount impurity (< 0.5%) accounting for the isotropic signal near g = 2 in the EPR spectrum]

Figure S16: X-band EPR Spectra of reaction of complex 2 with O_2 at 77 K in methanol medium. [Complex 2 (black) at $g \sim 4.11$ and 2.04, after O_2 addition final product (red) at $g \sim 5.05$].

[Note: a very small amount impurity (< 0.5%) accounting for the isotropic signal near g = 2 in the EPR spectrum]

Figure S17: FT-IR spectrum of complex 3 in KBr.

Figure S18: UV-visible spectrum of complex 3 in DMSO at RT.

Figure S19: X-band EPR spectrum of complex 3 in DMSO at 77 K ($g \sim 5.05$).

Figure S20: FT-IR spectrum of L' in KBr.

Figure S21: ¹H NMR spectrum of modified crystal L' in CDCl₃. (* for solvent)

Figure S22: ¹³C NMR spectrum of L' in CD₃CN.

.

S13

Figure S23: COSY NMR spectrum of L' in CD₃CN.

Figure S24: FT-IR spectrum of complex 4 in ATR.

Figure S25: UV-visible spectrum of complex 4 in DMSO at RT.

Figure S26: X-band EPR spectrum of complex 4 in DMSO at 77 K ($g \sim 5.04$).

Figure S28: ¹³C NMR spectrum of 2, 4-di-*tert*-butyl-6-nitrophenol in CDCl₃.

Figure S29: ESI-mass spectrum of 2, 4-di-*tert*-butyl-6-nitrophenol in methanol.

Figure S30: FT-IR spectrum of complex 5 in KBr.

Figure S31: UV-visible spectrum of complex 5 in DMSO at RT.

Figure S32: X-band EPR spectrum of complex 5 in DMSO at 77 K (g ~5.06).

Figure S33: ¹H NMR spectrum of (tmpH₂⁺)(NO₃⁻) in CDCl₃.

Figure S34: ¹³C NMR spectrum of (tmpH₂⁺)(NO₃⁻) in CDCl₃.

	1	2	L'	(tmpH ₂ ⁺)(NO ₃ ⁻)
Formulae	$C_{20}H_{34}Cl_2N_8O_{10}Fe$	C ₂₀ H ₃₀ Cl ₂ N ₉ O ₉ Fe	C ₁₅ H ₂₃ Cl ₂ N ₇ O ₁₀	$C_9H_{20}N_2O_3$
Mol. wt.	673.30	667.28	532.30	204.27
Crystal system	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P -1	P 21/n	P 21	Pca21
Temperature /K	296(2)	101(2)	293(2)	293(2)
Wavelength /Å	0.71073	0.71073	0.71073	0.71073
a /Å	11.9018(6)	10.4501(6)	8.3825(5)	15.56(4)
b /Å	11.9774(6)	19.7521(12)	9.5056(5)	9.90(2)
c /Å	12.2326(6)	15.8247(9)	15.3798(8)	15.75(4)
α/°	84.555(3)	90	90	90
β/°	74.331(3)	91.422(4)	94.911(5)	90
$\gamma/^{\circ}$	68.652(2)	90	90	90
V/ Å ³	1563.78(14)	3265.4(3)	1220.97(12)	2426(10)
Ζ	2	4	2	8
Density/Mgm ⁻³	1.430	1.357	1.448	1.118
Abs. Coeff. /mm ⁻¹	0.714	0.682	0.328	0.083
Abs. correction	none	none	multi-scan	none
F(000)	700	1380	552	896
Total no. of reflections	5502	5764	3475	4258
Reflections, $I > 2\sigma(I)$	4355	3822	2853	2392
Max. 20/°	25.000	24.999	24.993	24.990
Ranges (h, k, l)	$-14 \le h \le 14$ $-14 \le k \le 14$ $-14 \le l \le 14$	$\begin{array}{c} -12 \leq h \leq 12 \\ -23 \leq k \leq 23 \\ -18 \leq 1 \leq 18 \end{array}$	$-9 \le h \le 7$ $-10 \le k \le 11$ $-17 \le l \le 18$	$-18 \le h \le 18$ $-11 \le k \le 11$ $-18 \le 1 \le 18$
Complete to 2θ (%)	1.000	1.000	1.000	0.999
Refinement method	Full-matrix least- squares on <i>F</i> ²	Full-matrix least-squares on F^2	Full-matrix least- squares on <i>F</i> ²	Full-matrix least-squares on F^2
$Goof(F^2)$	1.012	1.024	1.026	1.023
R indices $[I > 2\sigma(I)]$	0.0564	0.0770	0.0641	0.0725
R indices (all data)	0.0723	0.1158	0.0780	0.1360

Table A1: Crystallographic data for complexes 1, 2, L' and $(tmpH_2^+)(NO_3^-)$

Table A2: Selected bond lengths (Å) of complexes 1, 2, L' and $(tmpH_2^+)(NO_3^-)$

Atoms	1	2	L'	$(tmpH_2^+)(NO_3^-)$
Fe1-N1	2.161(4)	2.101(5)		
N1-N2	1.365(6)	1.354(6)	1.370(8)	
Fe1-N3	2.293(4)	2.330(4)		
Fe1-N8	2.118(5)	1.732(6)		
N8-01		1.13(1)		

Fe1-N9		2.195(5)		
Fe1-O1	2.100(3)			
C1-C2	1.48(1)	1.476(9)	1.49(1)	1.549(1)
C2-C3	1.40(1)	1.395(9)	1.36(1)	
C3-C4	1.358(9)	1.379(9)	1.36(1)	
N1-C2	1.332(6)	1.343(8)		
N2-C2			1.357(9)	
Cl1-O3	1.417(7)	1.424(9)	1.36(1)	
Cl2-07	1.412(5)	1.378(8)	1.372(7)	
N2-01			1.50(1)	1.226(8)
N3-01			1.442(9)	
N1-C1				1.552(1)
C1-C2				1.549(1)
C4-C5				1.563(13)
C5-C6				1.533(14)
C6-C7				1.511(11)
N2-O2				1.250(9)

Table A3: Selected bond angles (°) of complexes 1, 2, L' and $(tmpH_2^+)(NO_3^-)$

Atoms	1	2	L'	(tmpH ₂ ⁺)(NO ₃ ⁻)
N1-Fe1-N3	76.8(1)	76.0(2)		
N3-Fe1-N5	76.4(1)	75.3(2)		
N3-Fe1-N7	77.6(1)	77.1(2)		
N1-Fe1-N8	103.9(2)	104.3(2)		
Fe1-N8-O1		174.2(6)		
N1-Fe1-N9		86.2(2)		
N1-Fe1-O1	87.4(1)			
O3-Cl1-O4	106.6(4)	96.6(6)	109.2(7)	
O7-Cl2-O8	112.6(4)	116.5(7)	112.2(5)	
O1-N3-O2			117.9(6)	
N3-C7-N6			113.9(6)	
C6-N6-C8			118.3(6)	
N1-C1-C4				107.8(7)
C1-C4-C5				112.8(8)
C4-C5-C6				109.9(8)
01-N2-O2				124.0(9)
O1-N2-O3				119.0(9)

Figure S35. ESI-mass spectrum of complex **3** in acetonitrile. [Inset: (a) experimental and (b) simulated isotopic distribution pattern].

Figure S36: ESI-mass spectrum of modified ligand (L') in acetonitrile. ESI-mass of modified ligand: [L'(ClO₄)]⁺ unit: calculated: 391.113; found: 391.283.

Figure S37. ESI-mass spectrum of complex **5** in acetonitrile. [Inset: (a) experimental and (b) simulated isotopic distribution pattern].

Figure S38: FT-IR spectra of reaction of complex **1** with NO gas (black line) and ¹⁵NO gas (blue line) in acetonitrile medium at room temperature.

Figure S39: FT-IR spectra of $\{Fe(NO)\}^6$ formed in the reaction of complex 2 with O₂. Red trace represents with NO and green trace for it's ¹⁵NO labelled analogue.

Figure S40: FT-IR spectral monitoring of the reaction of complex 2 (15 NO labeled) with O₂ in acetonitrile medium. [complex 2 (blue), after O₂ addition (green)].

Figure S41: FT-IR spectral monitoring of the reaction complex **2** with AgClO₄ in acetonitrile medium.

Figure S42: FT-IR spectral monitoring of the decomposition of $\{Fe(NO)\}^6$ intermediate in acetonitrile solution.