Heavier Alkaline Earth and heterobimetallic s-block "ate" complexes of a di(amido)siloxane ligand: solid-state structure and dynamic solution-phase behaviour

Supplementary information

Matthew D. Haynes,^a Andrea O'Reilly,^b Alice J. M. Poole,^a Aisling F. Roper,^a Stefan Thum,^c Louis J. Morris,^a Martyn P. Coles,^{*b} J. Robin Fulton,^{*b} Sjoerd Harder,^c Zoë R. Turner,^{*a} and Dermot O'Hare,^{*a}

a: Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom. Email: zoe.turner@earth.ox.ac.uk, dermot.ohare@chem.ox.ac.uk

b: School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand. E-mail: martyn.coles@vuw.ac.nz, j.robin.fulton@vuw.ac.nz

c: Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany; Email: sjoerd.harder@fau.de

Table of Contents

- I. General considerations
- II. Experimental details and characterising data
- III. NMR spectra
- IV. Crystallographic data
- V. References

I. General Considerations

All manipulations were carried out using standard Schlenk line or drybox techniques under an atmosphere of dinitrogen or argon. Protio solvents were degassed by sparging with dinitrogen, dried by passing through a column of activated sieves (pentane, hexane, toluene, benzene) and stored over potassium mirrors, or distilled from sodium metal (thf) and stored over activated 4 Å molecular sieves, or distilled from sodium-potassium alloy (diethyl ether) and stored over a potassium mirror. Deuterated solvents were dried over potassium (C_6D_6 , C_7D_8) or CaH_2 (C_4D_8O), distilled under reduced pressure and freeze-pump-thaw degassed three times prior to use.

¹H NMR spectra were recorded at 298 K, unless otherwise stated, on Bruker AVIII 400 nanobay or Bruker AVIII 500 or Bruker NEO 600 spectrometers. ¹³C{¹H} spectra were recorded on the same spectrometers at operating frequencies of 100, 125 and 151 MHz respectively, as were ²⁹Si spectra at operating frequencies of 80, 99 and 119 MHz respectively. Two dimensional ¹H-¹H, ¹³C-¹H & ²⁹Si-¹H correlation experiments were used, when necessary, to confirm ¹H and ¹³C assignments. All NMR spectra were referenced internally to residual protio solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). Chemical shifts are quoted in δ (ppm) and coupling constants in Hertz. Samples were prepared in a glove box under a dinitrogen atmosphere as pellets pressed with anhydrous potassium bromide, which was dried above 150 °C at 10⁻⁶ mbar for 24 hours prior to use.

Crystals were mounted on MiTeGen MicroMounts using perfluoropolyether oil and rapidly transferred to a goniometer head on a diffractometer fitted with an Oxford Cryostream open-flow nitrogen cooling device.¹ Data collections were carried out at 150 K using an Oxford Diffraction Supernova diffractometer using mirror-monochromated Cu K α radiation ($\lambda = 1.54178$ Å) or Mo K α radiation ($\lambda = 0.71073$ Å) and the data processed using CrysAlisPro.² The structures were solved using direct methods (SIR-92),³ a flipping algorithm (SUPERFLIP),⁴ or intrinsic phasing (SHELXT)⁵ and refined by full-matrix least squares procedures using the WinGX software suite,⁶ CRYSTALS,⁷ or the SHELXL⁸ refinement package implemented in Olex2.⁹ Where required, interplanar distances and angles were calculated using Olex2⁹ and molecular structures were generated using Ortep (with ellipsoids shown at 30% probability).¹⁰

FTIR spectra were measured using a Nicolet iS5 ThermoScientific spectrometer, with a background spectrum run prior to the sample and subtracted from the sample spectrum.

Elemental analyses were carried out at London Metropolitan University and Friedrich-Alexander Universität Erlangen-Nürnberg.

^{NON-Dipp}LH₂;¹¹ [(^{NON-Dipp}L)Mg]₂;¹² [AeN"₂]₂ (Ae = Ca and Sr);¹³ [BaN"₂]₂;¹⁴ and [AeN"₃K] (Ae = Ca and Sr),¹⁵ were prepared according to published literature procedures. [MgN"₂]₂ was purchased from Sigma-Aldrich and used as received.

II Experimental details and characterising data

[{(^{NON-Dipp}L)Mg}₂(thf)] (1·thf)

Crystallisation of a sample of $[(^{NON-Dipp}L)Mg]_2$ (129.2 mg, 0.12 mmol) by the slow evaporation of a thf/hexane solution at room temperature affords $[\{(^{NON-Dipp}L)Mg\}_2(thf)]$ (1·thf). Yield = 132.2 mg, 99%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 , 323K) δ 7.07 (d, J = 7.6, 4H, C₆ H_3), 6.95 (t, J = 7.6, 2H, C₆ H_3), 3.88 (br. s, 4H, CHMe₂), 3.56 (br. s, 4H, thf-H), 1.45 (br. s, 4H, thf-H), 1.33 (d, J = 6.9, 12H, CHMe₂), 1.02 (br. s, 12H, CHMe₂), 0.40 (br. s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 , 323K) δ 147.6, 144.5, 123.8, 121.3 (C_6H_3), 67.9 (thf-C), 27.6 (CHMe₂), 26.1 (thf-C), 25.8, 25.0 (CHMe₂), 3.8 (SiMe₂).

[(^{NON-Dipp}L)Mg(thf)]₂ (1·thf₂)

Crystallisation of a sample of $[(^{NON-Dipp}L)Mg]_2$ (125.2 mg, 0.12 mmol) by the slow evaporation of a thf solution at room temperature affords $[(^{NON-Dipp}L)Mg(thf)]_2$ (1·thf₂). Yield = 90.2 mg, 65%.

¹H NMR (500 MHz, C₆D₆:thf-*d*₈, 333K): δ 7.01 (d, *J* = 7.6, 4H, C₆*H*₃), 6.88 (t, *J* = 7.6, 2H, C₆*H*₃), 3.89 (br. s, 4H, *CH*Me₂), 3.55 (br. s, 8H, thf-*H*), 1.50 (br. s, 8H, thf-*H*), 1.27 (br. d, 12H, CH*M*e₂), 1.01 (br. s, 12H, CH*M*e₂), 0.41 (br. s, 12H, Si*M*e₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf-*d*₈, 333K) δ 148.4, 144.7, 123.8, 121.1 (*C*₆H₃), 67.8 (thf-*C*), 27.5 (*C*HMe₂), 25.9 (thf-*C*), 25.9 (CH*M*e₂), 3.9 (Si*M*e₂).

 $[(^{NON-Dipp}L)Ca]_2(2)$

UK (Oxford) and Germany (Erlangen) procedure

A solution of ^{NON-Dipp}LH₂ (500 mg, 1.03 mmol, 2 eq.) in *n*-hexane (2.5 mL) was layered over a solution of $[Ca \{N(SiMe_3)_2\}_2]_2$ (372 mg, 0.52 mmol, 1 eq.) in *n*-hexane (2.5 mL). The reaction mixture was left to stand for 16 hours, resulting in the formation of colourless crystals. The solution was decanted and the crystalline solid washed with *n*-pentane (3 x 0.5 mL), then dried *in vacuo* for 1 hour. $[(^{NON-Dipp}L)Ca]_2 \cdot (C_6H_{14})$ (383 mg, 0.34 mmol, 65% (**2**)) was isolated as a colourless crystalline solid. IR (KBr): 2963, 2928, 2866, 1424, 1254, 1038, 959, 788 cm⁻¹. Anal. calcd. for $C_{56}H_{92}Ca_2N_4O_2Si_4 \cdot (C_6H_{14})$: C, 65.78; H, 9.44; N, 4.95. Found: C, 65.52; H, 9.29; N, 4.92. Colourless single crystals of **2** suitable for X-ray diffraction studies were grown by conducting the reaction on a smaller scale (25 mg ^{NON-Dipp}LH₂) in benzene (0.5 mL) or *n*-hexane (0.5 mL).

Dissolving **2** in thf- d_8 resulted in conversion to $[(^{NON-Dipp}L)Ca(thf)_2]$ (**5**), which could be characterised by multinuclear NMR spectroscopy.¹H NMR (C₄D₈O, 298 K, 600 MHz): δ (ppm) = 6.83 (d, ³J_{H-H} = 7.5 Hz, 8H, 3,5-C₆H₃), 6.49 (t, ³J_{H-H} = 7.5 Hz, 4H, 4-C₆H₃), 3.95 (hept, ³J_{H-H} = 7.0 Hz, 8H, CHMe₂), 1.12 (d, ³J_{H-H} = 7.0 Hz, 48H, CH(CH₃)₂), 0.13 (s, 24H, Si(CH₃)₂). ¹³C{¹H} NMR (C₄D₈O, 298 K, 151 MHz): δ (ppm) = 151.23 (1-C₆H₃), 142.37 (2,6-C₆H₃), 123.04 (3,5-C₆H₃), 117.28 (4-C₆H₃), 27.74 (CHMe₂), 25.77 (CH(CH₃)₂), 4.89 (Si(CH₃)₂). ²⁹Si NMR (C₄D₈O, 298 K, 119 MHz): δ (ppm) = -19.77 (OS*i*Me₂N).

NZ (Wellington) procedure

A benzene solution of ^{NON-Dipp}LH₂ (408.8 mg, 0.84 mmol) was added to a solution of $[Ca{N(SiMe_3)_2}_2]_2$ (304.2 mg, 0.84 mmol) in benzene while stirring at room temperature. The reaction mixture was stirred for 2 hours to give a white suspension. The suspension was allowed to settle, and the white solid was isolated. The solid was redissolved in hot benzene colourless crystals of $[(^{NON-Dipp}L)Ca]_2$ (2) were obtained by slow evaporation of the solvent. Yield = 289.4 mg, 66%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)): δ 7.18 (d, J = 7.4, 4H, C₆ H_3) 6.92 (t, J = 7.4, 2H, C₆ H_3), 4.12 (sept, J = 6.9, 4H, CHMe₂), 1.30 (d, J = 6.9, 24H, CHMe₂), 0.44 (s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 (~5:1)): δ 150.2, 141.8, 122.9, 117.5 (C₆H₃), 27.3 (CHMe₂), 25.5 (CHMe₂), 4.8 (SiMe₂). IR (solid, cm⁻¹): 2959 (s), 2868 (m), 1620 (w), 1459 (m), 1382 (m), 1254 (s), 1043 (s), 908 (s), 788 (s), 685 (w). Anal. Calcd. for C₅₆H₉₂Ca₂N₄O₂Si₄ (*1045.874*): C 64.31, H 8.87, N 5.36 %; Found: C 62.61, H 8.76, N 5.35 %.

$[(^{\text{NON-Dipp}}\text{L})\text{Sr}]_2(3)$

UK (Oxford) and Germany (Erlangen) procedure

A solution of ^{NON-Dipp}LH₂ (500 mg, 1.03 mmol, 2 eq.) in *n*-hexane (2.5 mL) was carefully layered over a solution of $[Sr{N(SiMe_3)_2}_2]_2$ (422 mg, 0.52 mmol, 1 eq.) in *n*-hexane (5 mL). The reaction mixture was left to stand for 16 hours, resulting in the formation of colourless crystals. The solution was decanted and the crystalline solid washed with *n*-pentane (3 x 0.5 mL), then dried *in vacuo* for 1 hour. $[^{NON-Dipp}LSr]_2 \cdot (C_6H_{14})$ (362 mg, 0.29 mmol, 57% (**3**)) was isolated as a colourless crystalline solid. IR (KBr): 3055, 2960, 2866, 1587, 1421, 1259, 990, 781, 686 cm⁻¹. Anal. calcd. for $C_{56}H_{92}Sr_2N_4O_2Si_4 \cdot (C_6H_{14})$: C, 60.97; H, 8.77; N, 4.51. Found: C, 60.50; H, 8.47; N, 4.59. Colourless single crystals of **20** suitable for X-ray diffraction studies were grown by conducting the reaction on a smaller scale (25 mg $^{NON-Dipp}LH_2$) in benzene (0.5 mL) or *n*-hexane (0.5 mL).

Dissolving **3** in thf- d_8 resulted in conversion to $[(^{NON-Dipp}L)Sr(thf)_3]$ (**6**), which could be characterised by multinuclear NMR spectroscopy. ¹H NMR (C₄D₈O, 298 K, 600 MHz): δ (ppm) = 6.80 (d, ³J_{H-H} = 7.5 Hz, 8H, 3,5-C₆H₃), 6.42 (t, ³J_{H-H} = 7.5 Hz, 4H, 4-C₆H₃), 3.98 (hept, ³J_{H-H} = 6.9 Hz, 8H, CH(Me₂), 1.13 (d, ³J_{H-H} = 6.9 Hz, 48H, CH(CH₃)₂), 0.10 (s, 24H, Si(CH₃)₂). ¹³C{¹H} NMR (C₄D₈O, 298 K, 151 MHz): δ (ppm) = 153.62 (1-C₆H₃), 142.10 (2,6-C₆H₃), 123.06 (3,5-C₆H₃), 116.09 (4-C₆H₃), 27.57 (CHMe₂), 25.90 (CH(CH₃)₂), 5.17 (Si(CH₃)₂). ²⁹Si NMR (C₄D₈O, 298 K, 119 MHz): δ (ppm) = -23.74 (OSiMe₂N).

NZ (Wellington) procedure

A solution of ^{NON-Dipp}LH₂ (29.3 mg, 0.06 mmol) in toluene was added to a solution of $[Sr{N(SiMe_3)_2}_2]_2$ (24.7 mg, 0.06 mmol) in benzene while stirring at room temperature. The reaction mixture was stirred for 2 hours and filtered through celite. The solvent was reduced *in vacuo* and colourless crystals of $[(^{NON-Dipp}L)Sr]_2$ were obtained by slow evaporation at room temperature. Yield = 26.2 mg, 77%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)): δ 7.14 (d, J = 7.4, 4H, C₆ H_3), 6.84 (t, J = 7.4, 2H, C₆ H_3), 4.15 (sept, J = 6.9, 4H, CHMe₂), 1.32 (d, J = 6.9, 24H, CHMe₂), 0.43 (s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 (~5:1)): δ 153.0, 141.6, 122.9, 116.1 (C_6H_3), 27.2 (CHMe₂), 25.6 (CHMe₂), 5.1 (SiMe₂). IR (solid, cm⁻¹): 2950 (m), 2858 (m), 1582 (w), 1452 (m), 1415 (s), 1305 (m), 1248 (s), 1054 (m), 983 (s), 932 (s), 684 (s), 670 (m), 445 (w).

$[(^{NON-Dipp}L)Ba]_2$ (4 and 4a)

UK (Oxford) and Germany (Erlangen) procedure

A solution of ^{NON-Dipp}LH₂ (500 mg, 1.03 mmol, 2 eq.) in *n*-hexane (2.5 mL) was carefully layered over a solution of $[Ba{N(SiMe_3)_2}_2]_2$ (473 mg, 0.52 mmol, 1 eq.) in *n*-hexane (5 mL). The reaction mixture was left to stand for 48 hours, resulting in the formation of large colourless crystals. The solution was decanted and the crystals washed with cold *n*-pentane (0.5 mL), then dried *in vacuo* for 1 hour. $[(^{NON-Dipp}L)Ba]_2$ (302 mg, 0.25 mmol, 48% (4a)) was isolated as a colourless crystalline solid. IR (KBr): 3043, 2957, 2863, 1411, 1341, 1249, 995, 771 cm⁻¹. Anal. calcd. for C₅₆H₉₂Ba₂N₄O₂Si₄: C, 54.23; H, 7.48; N, 4.52. Found: C, 54.20; H, 7.52; N, 4.46. Colourless single crystals of $[(^{NON-Dipp}L)Ba]_2$ suitable for X-ray diffraction studies were grown by conducting the reaction on a smaller scale (25 mg $^{NON-Dipp}LH_2$) in benzene (0.5 mL) or *n*-hexane (0.5 mL) (4 and 4a respectively).

Dissolving **4** in thf- d_8 resulted in conversion to $[(^{NON-Dipp}L)Ba(thf)_3]$ (7), which could be characterised by multinuclear NMR spectroscopy. ¹H NMR (C₄D₈O, 298 K, 600 MHz): δ (ppm) = 6.80 (d, ³J_{H-H} = 7.5 Hz, 8H, 3,5-C₆H₃), 6.39 (t, ³J_{H-H} = 7.5 Hz, 4H, 4-C₆H₃), 3.97 (hept, ³J_{H-H} = 7.0 Hz, 8H, CH(Me₂), 1.12 (d, ³J_{H-H} = 7.0 Hz, 48H, CH(CH₃)₂), 0.10 (s, 24H, Si(CH₃)₂). ¹³C{¹H} NMR (C₄D₈O, 298 K, 151 MHz): δ (ppm) = 152.43 (1-C₆H₃), 141.60 (2,6-C₆H₃), 123.10 (3,5-C₆H₃), 115.63 (4-C₆H₃), 27.50 (CHMe₂), 25.99 (CH(CH₃)₂), 5.48 (Si(CH₃)₂). ²⁹Si NMR (C₄D₈O, 298 K, 119 MHz): δ (ppm) = -26.22 (OSiMe₂N).

NZ (Wellington) procedure

A solution of ^{NON-Dipp}LH₂ (60.7 mg, 0.13 mmol) in benzene was added to a solution of $[Ba{N(SiMe_3)_2}_2]_2$ (57.4 mg, 0.13 mmol) in benzene while stirring at room temperature. The reaction mixture was stirred for 2 hours and filtered through celite. The solvent was reduced *in vacuo* and colourless crystals of $[(^{NON-Dipp}L)Ba]_2$ (4) were obtained by slow evaporation at room temperature. Yield = 35.4 mg, 44%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)) δ 7.14 (d, J = 7.4, 4H, C₆ H_3), 6.81 (t, J = 7.4, 2H, C₆ H_3), 4.15 (sept, J = 6.9, 4H, CHMe₂), 1.31 (d, J = 6.9, 24H, CHMe₂), 0.48 (s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 (~5:1)) δ 151.5, 141.0, 123.0, 115.6 (C₆H₃), 27.1 (CHMe₂), 25.7 (CHMe₂), 5.4 (SiMe₂). IR (solid, cm⁻¹): 2952 (s), 2861 (m) 1647 (m), 1434 (s), 1253 (m), 1041 (m), 906 (m), 761 (s).

* Integration of the thf proton resonances indicate partial loss of coordinated thf during sample preparation.

$[(^{NON-Dipp}L)Ca(thf)_2]$ (5)

Crystallisation of [(^{NON-Dipp}L)Ca]₂ (30.2 mg) from thf yields colourless crystals of [(^{NON-Dipp}L)Ca(thf)₂] (5). Isolated yield 37.2 mg, 97%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)): δ 7.18 (d, J = 7.4, 4H, C₆ H_3) 6.91 (t, J = 7.4, 2H, C₆ H_3), 4.12 (sept, J = 6.9, 4H, CHMe₂), 3.55 (m, 8H, thf-H), 1.43 (m, 8H, thf-H), 1.29 (d, J = 6.9, 24H, CHMe₂), 0.43 (s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 (~5:1)): δ 150.2, 141.8, 122.9, 117.5 (C₆H₃), 67.9 (thf-C), 27.3 (CHMe₂), 25.8 (thf-C), 25.5 (CHMe₂), 4.8 (SiMe₂). Accurate elemental analysis could not be obtained. Best result: Anal. Calcd. for C₃₆H₆₂CaN₂O₃Si₂ (*667.151*): C 64.81, H 9.37, N 4.20 %; Found: C 62.61, H 8.76, N 5.35 %.

$[(^{NON-Dipp}L)Sr(thf)_3]$ (6)

Crystallisation of $[(^{NON-Dipp}L)Sr]_2$ (46.2 mg) from thf yields colourless crystals of $[(^{NON-Dipp}L)Sr(thf)_3]$ (6). Isolated yield 53.0 mg, 83%.

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)): δ 7.14 (d, J = 7.4, 4H, C₆ H_3), 7.00 (t, J = 7.4, 2H, C₆ H_3), 4.12 (sept, J = 6.9, 4H, CHMe₂), 3.54 (m, 8H, thf-H),* 1.46 (m, 8H, thf-H),* 1.28 (d, J = 6.9, 24H, CHMe₂), 0.38 (s, 12H, SiMe₂). ¹³C{¹H} NMR (126 MHz, C₆D₆:thf- d_8 (~5:1)): δ 153.0, 141.6, 122.9, 116.0 (C_6 H₃), 67.8 (thf-C), 27.1 (CHMe₂), 25.8 (thf-C), 25.6 (CHMe₂), 5.0 (SiMe₂). Anal. Calcd. for C₄₀H₇₀N₂O₄Si₂Sr (786.8): C 61.06, H 8.97, N 3.56 %; Found: C 61.41, H 8.40, N 3.19 %.

* Integration of the thf proton resonances indicate partial loss of coordinated thf during sample preparation.

[(^{NON-Dipp}L)Ba(thf)₃] (7)

Crystallisation of [(^{NON-Dipp}L)Ba]₂ (11.4 mg) from THF yields colourless crystals of [(^{NON-Dipp}L)Ba(thf)₃] (7). Isolated yield 11.7 mg, 76%,

¹H NMR (500 MHz, C₆D₆:thf- d_8 (~5:1)) δ 7.08 (d, J = 7.4, 4H, C₆ H_3), 6.74 (d, J = 7.4, 2H, C₆ H_3), 4.12 (sept, 4H, J = 6.9, CHMe₂), 3.54 (m, 8H, thf-H),* 1.46 (m, 8H, thf-H),* 1.27 (d, 24H, J = 6.9, CHMe₂), 0.42 (s, 12H, SiMe₂). Anal. Calcd. for C₃₂H₅₄BaN₂O₂Si₂ (*692.293*)*: C 55.52, H 7.86, N 4.05 %; Found: C 55.49, H 7.49, N 3.65 %.

* Calculated for mono-solvate [(NON-DippL)Ba(thf)] from partial loss of coordinated thf.

[Ba{N(SiMe₃)₂}₃K]

A Schlenk flask was charged with $[Ba{N(SiMe_3)_2}_2]_2$ (0.250g, 0.27 mmol, 1 eq.) and KN(SiMe_3)_2 (0.119 mg, 0.55 mmol, 2 eq.). Toluene (2 mL) and hexane (3 mL) were added, and the reaction mixture stirred for 1 hour. Storage at -30 °C for 16 hours resulted in the growth of colourless crystals, which were isolated by filtration, washed with *n*-hexane (3 x 1 mL) and dried *in vacuo* for 1 hour. $[Ba{N(SiMe_3)_2}_3K]$ (216 mg, 0.33 mmol, 60%) was isolated as a white crystalline solid. ¹H NMR $(C_6D_6, 298 \text{ K}, 400\text{MHz})$: δ (ppm) = 0.21 (s, 54 H, N{Si(CH_3)_3}_2).¹³C NMR (C_6D_6, 298 K, 151 MHz): δ (ppm) = 6.39 (N{Si(CH_3)_3}_2).²⁹Si NMR (C_6D_6, 298 K, 119 MHz): δ (ppm) = -17.43 (N(SiMe_3)_2). Anal. Calcd. for C₁₈H₅₄BaKN₃Si₆: C, 32.88; H, 8.28; N, 6.39. Found: C, 32.73; H, 8.06; N, 6.08. X-ray crystallographic data could not be obtained due to the rapid degradation of crystalline samples of [Ba{N(SiMe_3)_2}_3K] under a non-inert atmosphere.

Synthesis of [(^{NNO-Dipp}L)Mg{µ-N(SiMe₃)₂}K]_n (8)

A solution of KN(SiMe₃) (95.8 mg, 0.48 mmol) in toluene was added to a suspension of $[(^{NON-Dipp}L)Mg]_2$ (248.1 mg, 0.24 mmol) in toluene. The reaction mixture was stirred at 60 °C for 2 days to afford a pale-yellow solution. The solution was filtered through celite, and the solvent was reduced *in vacuo*. Colourless crystals of $[(^{NNO-Dipp}L)Mg{\mu-N(SiMe_3)_2}K]_n$ (8) were obtained by slow evaporation at room temperature. Yield = 194.5 mg, 58%.

¹H NMR (500 MHz, C_7D_8 , 333 K): δ 7.12 (m, 4H, C_6H_3), 7.08 (m, 1H, C_6H_3), 6.92 (m, 1H, C_6H_3), 4.16 (sept, J = 6.9, 2H, CHMe₂), 4.01 (sept, J = 6.9, 2H, CHMe₂), 1.38 (d, J = 6.9, 6H, CHMe₂), 1.36 (d, J = 6.9, 6H, CHMe₂), 1.31 (m, 12H, CHMe₂), 0.16 (s, 6H, SiMe₂), 0.04 (s, 6H, SiMe₂), 0.05 (s, 18H, NSiMe₃). ¹³C{¹H} NMR (126 MHz, C_7D_8 , 333 K): δ 149.0, 147.6, 145.5, 145.4, 124.5, 124.2, 123.6, 120.7 (C_6H_3), 28.4 (CHMe₂), 28.1, 27.3 (CHMe₂), 26.2, 25.3.24.6 (CHMe₂), 6.0 (NSiMe₃), 4.6, 3.9 (SiMe₂).

$[(^{\text{NON-Dipp}}\text{L})\text{Ca}\{\mu\text{-N}(\text{SiMe}_3)_2\}\text{K}]_n(9)$

A Schlenk flask was charged with $[Ca{N(SiMe_3)_2}_3K]$ (1.00g, 1.78mmol, 1 eq.) and ^{NON-Dipp}LH₂ (864 mg, 1.78 mmol, 1 eq.). Toluene (8 ml) was added, with stirring resulting in the precipitation of a white solid. This redissolved upon gentle heating, with crystallisation then observed upon cooling to room temperature. The crystals were isolated by filtration, washed with *n*-hexane (3 x 1 mL) and dried *in vacuo* for 1 hour. $[(^{NON-Dipp}L)Ca{\mu-N(SiMe_3)_2}K]_n$ (620 mg, 0.858 mmol, 48% (9)) was isolated as a white crystalline solid. Crystals suitable for an X-ray diffraction study were grown by slow cooling of a saturated benzene solution to room temperature.

¹H NMR (C₇D₈, 343 K, 500 MHz): δ (ppm) = 6.98 (d, ³J_{H-H} = 9.8 Hz, 4H, 3,5-C₆H₃), 6.65 (br, 2H, 4-C₆H₃), 3.85 (br, 4H, CHMe₂), 1.29 (d, ³J_{H-H} = 6.9 Hz, 24H, CH(CH₃)₂), 0.39 (s, 12H, OSi(CH₃)₂N), - 0.13 (s, 18H, N{Si(CH₃)₃}₂). ¹³C NMR (C₇D₈, 343 K, 126 MHz): δ (ppm) = 142.16 (1-C₆H₃), 128.59 (2,6-C₆H₃), 123.37 (3,5-C₆H₃), 116.88 (4-C₆H₃), 28.10 (CHMe₂), 25.59 (CH(CH₃)₂), 5.90 (N{Si(CH₃)₃}₂), 4.74 (OSi(CH₃)₂N). ²⁹Si NMR (C₇D₈, 343 K, 99 MHz): δ (ppm) = -12.49 (N(SiMe₃)₂), -14.69 (OSiMe₂N).

¹H NMR (C₄D₈O, 298 K, 600 MHz): δ (ppm) = 6.72 (d, ³J_{H-H} = 7.5 Hz, 4H, 3,5-C₆H₃), 6.37 (t, ³J_{H-H} = 7.4 Hz, 2H, 4-C₆H₃), 4.01 (hept, ³J_{H-H} = 6.4 Hz, 4H, CHMe₂), 1.17 (d, ³J_{H-H} = 4.5 Hz, 24H, CH(CH₃)₂), 0.03 (s, 12H, Si(CH₃)₂), -0.31 (s, 18H, N{Si(CH₃)₃)₂). ¹³C NMR (C₄D₈O, 298 K, 151 MHz): δ (ppm) = 153.67 (1-C₆H₃), 142.97 (2,6-C₆H₃), 122.54 (3,5-C₆H₃), 115.89 (4-C₆H₃), 27.41 (CHMe₂), 26.47 (CH(CH₃)₂), 6.14 (N{Si(CH₃)₃)₂), 5.09 (OSi(CH₃)₂N). ²⁹Si NMR (C₄D₈O, 298 K, 119 MHz): δ (ppm) = -19.54 (N(SiMe₃)₂), -22.66 (OSiMe₂N). Anal. Calcd. for C₃₄H₆₄CaKN₃OSi₄: C, 56.53; H, 8.93; N, 5.82. Found: C, 56.63; H, 8.92; N, 5.41. IR (KBr): 3049, 2960, 2865, 1581, 1413, 1339, 1250, 1068, 944, 824 cm⁻¹.

$[(^{\text{NON-Dipp}}\text{L})\text{Sr}\{\mu\text{-N}(\text{SiMe}_3)_2\}\text{K}]_n(10)$

A Schlenk flask was charged with $[Sr{N(SiMe_3)_2}_3K]$ (300 mg, 0.493 mmol, 1 eq.) and ^{NON-Dipp}LH₂ (239 mg, 493 mmol, 1 eq.). Toluene (4 ml) was added, with stirring resulting in the precipitation of a white solid. This redissolved upon gentle heating, with crystallisation then observed upon cooling to room temperature. The crystals were isolated by filtration, washed with *n*-hexane (3 x 1 mL) and dried *in vacuo* for 1 hour. $[(^{NON-Dipp}L)Sr{\mu-N(SiMe_3)_2}K]_n$ (208 mg, 0.270 mmol, 55% (10)) was isolated as a white crystalline solid. Crystals suitable for an X-ray diffraction study were grown by slow cooling of a saturated benzene solution to room temperature.

¹H NMR (C₇D₈, 343 K, 600 MHz): δ (ppm) = 6.95 (d, ³J_{H-H} = 7.4 Hz, 4H, 3,5-C₆H₃), 6.59 (t, ³J_{H-H} = 7.4 Hz, 2H, 4-C₆H₃), 3.88 (h, ³J_{H-H} = 6.7 Hz, 4H, CHMe₂), 1.27 (d, ³J_{H-H} = 6.9 Hz, 24H, CH(CH₃)₂), 0.40 (s, 12H, OSi(CH₃)₂N), -0.18 (s, 18H, N(Si(CH₃)₃)₂). ¹³C NMR (C₇D₈, 343 K, 151 MHz): δ (ppm) = 152.55 (1-C₆H₃), 141.82 (2,6-C₆H₃), 123.20 (3,5-C₆H₃), 115.94 (4-C₆H₃), 27.90 (CHMe₂), 25.54 (CH(CH₃)₂), 5.93 (N{Si(CH₃)₃}₂), 4.71 (OSi(CH₃)₂N).²⁹Si NMR (C₇D₈, 343 K, 119 MHz): δ (ppm) = -21.88 (OSiMe₂N), -22.66 (N(SiMe₃)₂).

¹H NMR (C₄D₈O, 298 K, 600 MHz): δ (ppm) = 6.72 (d, ³J_{H-H} = 7.4 Hz, 4H, 3,5-C₆H₃), 6.32 (t, ³J_{H-H} = 7.4 Hz, 2H, 4-C₆H₃), 4.03 (hept, ³J_{H-H} = 6.9 Hz, 4H, CHMe₂), 1.15 (d, ³J_{H-H} = 6.9 Hz, 24H, CH(CH₃)₂), 0.02 (s, 12H, OSi(CH₃)₂N), -0.36 (s, 18H, N{Si(CH₃)₃}₂). ¹³C NMR (C₄D₈O, 298 K, 151 MHz): δ (ppm) = 154.41 (1-C₆H₃), 142.45 (2,6-C₆H₃), 122.55 (3,5-C₆H₃), 115.21 (4-C₆H₃), 27.43 (CHMe₂), 26.38 (CH(CH₃)₂), 6.27 (N{Si(CH₃)₃}₂), 5.30 (OSi(CH₃)₂N). ²⁹Si NMR (C₄D₈O, 298 K, 119 MHz): δ (ppm) = -17.98 (N(SiMe₃)₂), -25.79 (OSiMe₂N). Anal. Calcd. for C₃₄H₆₄SrKN₃OSi₄: C, 56.53; H, 8.93; N, 5.82. Found: C, 56.63; H, 8.92; N, 5.41. IR (KBr): 3040, 2954, 2866, 1580, 1417, 1249, 1076, 996, 822 cm⁻¹.

$[(^{\text{NON-Dipp}}L)Ba{\mu-N(SiMe_3)_2}K]_n(11)$

A Schlenk flask was charged with $[Ba\{N(SiMe_3)_2\}_3K]$ (300 mg, 0.456 mmol, 1 eq.) and ^{NON-Dipp}LH₂ (221 mg, 456 mmol, 1 eq.). Toluene (3 ml) was added, and the reaction mixture stirred for 10 minutes. Storage at -30 °C for 16 hours resulted in the growth of colourless crystals, which were isolated by filtration, washed with *n*-hexane (3 x 1 mL) and dried *in vacuo* for 1 hour. $[(^{NON-Dipp}L)Ba\{\mu-N(SiMe_3)_2\}K]_n$ (208 mg, 0.270 mmol, 55% (11)) was isolated as a white crystalline solid. Crystals suitable for an X-ray diffraction study were grown by slow cooling of a saturated benzene solution to room temperature.

¹H NMR (C₆D₆, 298 K, 600 MHz): δ (ppm) = 7.00 (d, ³J_{H-H} = 7.5 Hz, 4H, 3,5-C₆H₃), 6.59 (t, ³J_{H-H} = 7.5 Hz, 2H, 4-C₆H₃), 3.88 (hept, ³J_{H-H} = 6.9 Hz, 4H, CHMe₂), 1.28 (d, ³J_{H-H} = 6.9 Hz, 24H, CH(CH₃)₂), 0.57 (s, 12H, OSi(CH₃)₂N), -0.15 (s, br, 18H, N{Si(CH₃)₃}). ¹³C NMR (C₆D₆, 298 K, 151 MHz): δ (ppm) = 155.24 (1-C₆H₃), 141.14 (2,6-C₆H₃), 123.53 (3,5-C₆H₃), 114.98 (4-C₆H₃), 27.73 (CHMe₂), 25.54 (CH(CH₃)₂), 5.09 (N{Si(CH₃)₃}), 2.65 (OSi(CH₃)₂N). ²⁹Si NMR (C₆D₆, 298 K, 119 MHz): δ (ppm) = 2.33 (N(SiMe₃)₂), -27.35 ((OSiMe₂N).

¹H NMR (C₄D₈O, 263 K, 500 MHz): $\delta = 6.72$ (d, ³*J*_{H-H} = 7.4 Hz, 4H, 3,5-C₆*H*₃), 6.27 (t, ³*J*_{H-H} = 7.4 Hz, 2H, 4-C₆*H*₃), 4.08 (hept, ³*J*_{H-H} = 6.8 Hz, 4H, C*H*Me₂), 1.12 (d, ³*J*_{H-H} = 6.9 Hz, 24H, CH(C*H*₃)₂), 0.03 (s, 12H, OSi(C*H*₃)₂N), -0.28 (s, 18H, N{Si(C*H*₃)₃)₂) ppm. ¹³C NMR (C₄D₈O, 263 K, 125 MHz): $\delta = 153.86$ (1-*C*₆H₃), 141.77 (2,6-*C*₆H₃), 122.54 (3,5-*C*₆H₃), 114.23 (4-*C*₆H₃), 27.22 (*C*HMe₂), 26.41 (CH(*C*H₃)₂), 6.19 (N{Si(*C*H₃)₃)₂), 5.61 (OSi(*C*H₃)₂N) ppm. ²⁹Si NMR (C₄D₈O, 263 K, 99 MHz): $\delta = -20.32$ (N(*Si*Me₃)₂), -29.29 (O*Si*Me₂N) ppm. IR (KBr): 3033, 2955, 2867, 1579, 1415, 1248, 1078, 995, 882 cm⁻¹. Anal. Calcd. for C₃₄H₆₄BaKN₃OSi₄: C, 49.82; H, 7.87; N, 5.13 Found: C, 49.42; H, 7.18; N, 4.49.

Figure S1 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 323 K, 500 MHz) of $[\{(^{NON-Dipp}L)Mg\}(thf)]_2$ (1·thf₂). † denotes n-hexane, * denotes residual protio fraction of C_6D_6 .

Figure S2 ¹³C{¹H} NMR spectrum (C₆D₆:C₄D₈O (~5:1), 323 K, 126 MHz) of $[\{(^{NON-Dipp}L)Mg\}_2(thf)]$ (1·thf₂). ‡ denotes *n*-hexane, † denotes C₄D₈O, * denotes C₆D₆.

Figure S3 ¹H NMR spectrum (C₄D₈O, 298 K, 600 MHz) of $[(^{NON-Dipp}L)Ca(thf)_2]$ (5), formed when $[(^{NON-Dipp}L)Ca]_2$ (2) is dissolved in thf. ‡ denotes cyclohexane, † denotes *n*-hexane, * denotes residual protio fraction of C₄D₈O.

Figure S4 ¹³C {¹H} NMR spectrum (C₄D₈O, 298 K, 151 MHz) of $[(^{NON-Dipp}L)Ca(thf)_2](5)$, formed when $[(^{NON-Dipp}L)Ca]_2(2)$ is dissolved in thf. * denotes residual protio fraction of C₄D₈O.

Figure S5 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 500 MHz) of [($^{NON-Dipp}L$)Ca]₂(**2**). ‡ denotes *n*-hexane † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S6 ¹³C {¹H} NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 126 MHz) of [(^{NON-Dipp}L)Ca]₂(**2**). † and * denote C_4D_8O and C_6D_6 respectively.

Figure S7 ¹H NMR spectrum (C_6D_6 : C_4D_8O (~5:1), 298 K, 500 MHz) of [($^{NON-Dipp}L$)Ca(thf)₂] (5). ‡ denotes coordinated thf, † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S8 ¹³C{¹H} NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 126 MHz) of [(^{NON-Dipp}L)Ca(thf)₂] (5). † and * denote C_4D_8O and C_6D_6 respectively.

Figure S9 ¹H NMR spectrum (C₄D₈O, 298 K, 600 MHz) of $[(^{NON-Dipp}L)Sr(thf)_3]$ (6), formed when $[(^{NON-Dipp}L)Sr]_2$ (3) is dissolved in thf. ‡ denotes cyclohexane, † denotes *n*-hexane, * denotes residual protio fraction of C₄D₈O.

Figure S10 ¹³C {¹H} NMR spectrum (C₄D₈O, 298 K, 151 MHz) of [(^{NON-Dipp}L)Sr(thf)₃](6), formed when [(^{NON-Dipp}L)Sr]₂ (**3**) is dissolved in thf. * denotes residual protio fraction of C₄D₈O.

Figure S11 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 500 MHz) of [(^{NON-Dipp}L)Sr]₂(**3**). † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S12 ¹³C{¹H} NMR spectrum (C₆D₆:C₄D₈O (~5:1), 298 K, 126 MHz) of $[(^{NON-Dipp}L)Sr]_2$ (3). † and * denote C₄D₈O and C₆D₆ respectively.

Figure S13 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 500 MHz) of [($^{NON-Dipp}L$)Sr(thf)₃] (6). ‡ denotes coordinated thf, † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S14 ¹³C{¹H} NMR spectrum (C₆D₆:C₄D₈O (~5:1), 298 K, 126 MHz) of [($^{NON-Dipp}L$)Sr(thf)₃] (6). † and * denote C₄D₈O and C₆D₆ respectively.

Figure S15 ¹H NMR spectrum (C₄D₈O, 298 K, 600 MHz) of $[(^{NON-Dipp}L)Ba(thf)_3]$ (7), formed when $[(^{NON-Dipp}L)Ba]_2$ (4a) is dissolved in thf. * denotes residual protio fraction of C₄D₈O.

Figure S16 ¹³C{¹H} NMR spectrum (C₄D₈O, 298 K, 151 MHz) of $[(^{NON-Dipp}L)Ba(thf)_3]$ (7), formed when $[(^{NON-Dipp}L)Ba]_2$ (4a) is dissolved in thf. * denotes residual protio fraction of C₄D₈O.

Figure S17 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 500 MHz) of [(^{NON-Dipp}L)Ba]₂ (4). † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S18 ${}^{13}C{}^{1}H{}^{13}NMR$ spectrum (C₆D₆:C₄D₈O (~5:1), 298 K, 126 MHz) of [(${}^{NON-Dipp}L$)Ba]₂ (4). † and * denote C₄D₈O and C₆D₆ respectively.

Figure S19 ¹H NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 500 MHz) of [($^{NON-Dipp}L$)Ba(thf)₃] (7). ‡ denotes coordinated thf, † and * denote residual protio fractions of C_4D_8O and C_6D_6 respectively.

Figure S20 ¹³C {¹H} NMR spectrum ($C_6D_6:C_4D_8O$ (~5:1), 298 K, 126 MHz) of [(^{NON-Dipp}L)Ba(thf)₃] (7). † and * denote C_4D_8O and C_6D_6 respectively.

Figure S21 ¹H NMR spectrum (C_6D_6 , 298 K, 600 MHz) of [Ba{N(SiMe₃)₂}₃K]. * denotes residual protio fraction of C_6D_6 .

Figure S22 ¹³C{¹H} NMR spectrum (C_6D_6 , 298 K, 151 MHz) of [Ba{N(SiMe₃)₂}₃K]. * denotes residual protio fraction of C_6D_6 .

Figure S23 ²⁹Si NMR spectrum (C_6D_6 , 298 K, 119 MHz) of [Ba{N(SiMe_3)_2}_3K].

7.3 7.1 6.9 6.7 6.5 4.3 4.1 3.9 3.7 3.5 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.1 -0.1 -0.3 δ / ppm

Figure S24 Variable temperature ¹H NMR spectra (C₄D₈O, 500 MHz) showing the complex temperature-sensitive mixture of species formed upon the dissolution of $[(^{NNO-Dipp}L)Mg(\mu-N'')K]_n$ (8) in thf- d_8 . [†] denotes co-crystallised toluene, ^{*} denotes residual protio fraction of thf- d_8 .

Scheme S1 Proposed solution-phase equilibrium resulting from both i) the reversible dissociation of KN" from [(^{NNO-Dipp}L)Mg(μ -N")K] and ii) the reversible coordination of thf to dimeric and monomeric magnesium complexes supported by the [^{NNO-Dipp}L]²-ligand.

Figure S25 ¹H NMR spectrum (C₇D₈, 343 K, 500 MHz) of $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ (9). [†] denotes KN'' released by solution-phase equilibrium between $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ and $[(^{NON-Dipp}L)Ca(tol)_n]$, ^{*} denotes residual protio fraction of C₇D₈.

Figure S26 ¹³C{¹H} NMR spectrum (C₇D₈, 343 K, 126 MHz) of $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ (9). † denotes KN'' released by solution-phase equilibrium between $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ and $[(^{NON-Dipp}L)Ca]$, * denotes C₇D₈.

Figure S27 ¹H NMR spectrum (C₄D₈O, 298 K, 600 MHz) of $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ (9). ‡ denotes co-crystallised benzene, † denotes $[(^{NON-Dipp}L)Ca(thf)_n]$ (5) and KN'' released by a solution-phase equilibrium, * denotes residual protio fraction of C₄D₈O.

Figure S28 ¹³C{¹H} NMR spectrum (C₄D₈O, 298 K, 151 MHz) of $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ (9). Unlabelled peaks result from $[(^{NON-Dipp}L)Ca(thf)_n]$ (5) and KN'' released by a solution-phase equilibrium. ‡ denotes co-crystallised benzene, * denotes C₄D₈O.

Figure S29 Variable temperature ¹H NMR spectra (C_4D_8O , 500 MHz) showing the temperaturesensitive equilibrium between [(^{NON-Dipp}L)Ca(μ -N")K(thf)_n] (**9**^{thf}), [(^{NON-Dipp}L)Ca(thf)_n] (**5**) and KN".

Figure S30 Van 't Hoff plot for the dissociation of $[(^{NON-Dipp}L)Ca(\mu-N'')K(thf)_n]$ (9^{thf}) into $[(^{NON-Dipp}L)Ca(thf)_n]$ (5) and KN''.

Figure S31 ¹H NMR spectrum (C_7D_8 , 343 K, 500 MHz) of [(^{NON-Dipp}L)Sr(μ -N")K] (10). † denotes KN" and [(^{NON-Dipp}L)Sr(tol)_n] released by a solution-phase equilibrium, * denotes residual protio fraction of C_7D_8 .

Figure S32 ¹³C{¹H} NMR spectrum (C₇D₈, 343 K, 126 MHz) of [(^{NON-Dipp}L)Sr(μ -N")K] (10). Unlabelled peaks result from KN" and [(^{NON-Dipp}L)Sr(tol)_n] present due to solution-phase equilibrium with [(^{NON-Dipp}L)Sr(μ -N")K], * denotes C₇D₈.

Figure S33 ¹H NMR spectrum (C₄D₈O, 298 K, 600 MHz) of $[(^{NON-Dipp}L)Sr(\mu-N'')K]$ (10). ‡ denotes co-crystallised benzene, † denotes $[(^{NON-Dipp}L)Sr(thf)_n]$ (6) and KN'' released by a solutionphase equilibrium, * denotes residual protio fraction of C₄D₈O.

Figure S34 ¹³C{¹H} NMR spectrum (C₄D₈O, 298 K, 151 MHz) of $[(^{NON-Dipp}L)Sr(\mu-N'')K]$ (10). Unlabelled peaks result from $[(^{NON-Dipp}L)Sr(thf)_n]$ (6) and KN'' released by a solution-phase equilibrium. † denotes co-crystallised benzene, * denotes C₄D₈O.

Figure S35 Variable temperature ¹H NMR spectra (C_4D_8O , 500 MHz) showing the temperaturesensitive equilibrium between [($^{NON-Dipp}L$)Sr(μ -N")K(thf)_n] (**10**^{thf}), [($^{NON-Dipp}L$)Sr(thf)_n] (**6**) and KN".

Figure S36 Van 't Hoff plot for the dissociation of $[(^{NON-Dipp}L)Sr(\mu-N'')K(thf)_n]$ (10^{thf}) into $[(^{NON-Dipp}L)Sr(thf)_n]$ (6) and KN''.

Figure S37 ¹H NMR spectrum (C_7D_8 , 343 K, 500 MHz) of [(^{NON-Dipp}L)Ba(μ -N")K] (11). † denotes residual HN", * denotes residual protio fraction of C_7D_8 .

Figure S38 ${}^{13}C{}^{1}H$ NMR spectrum (C₇D₈, 343 K, 126 MHz) of [(${}^{NON-Dipp}L$)Ba(μ -N")K] (11). * denotes C₇D₈

Figure S39 ¹H NMR spectrum (C₆D₆, 298 K, 600 MHz). of $[(^{NON-Dipp}L)Ba(\mu-N'')K]$ (11). \dagger denotes KN'' and $[(^{NON-Dipp}L)Ba(C_6D_6)_n]$ released by a solution-phase equilibrium, * denotes residual protio fraction of C₆D₆.

Figure S40 ¹³C{¹H} NMR spectrum (C₆D₆, 298 K, 151 MHz) of $[(^{NON-Dipp}L)Ba(\mu-N'')K]$ (11). Unlabelled peaks result from KN'' and $[(^{NON-Dipp}L)Ba(C_6D_6)_n]$ present due to a solution-phase equilibrium, * denotes C₆D₆.

Figure S41 ¹H NMR spectrum (C₄D₈O, 263 K, 600 MHz) of $[(^{NON-Dipp}L)Ba(\mu-N'')K]$ (11). ‡ denotes co-crystallised benzene, † denotes $[(^{NON-Dipp}L)Ba(thf)_n]$ (7) and KN'' released by a solution-phase equilibrium, * denotes residual protio fraction of C₄D₈O.

Figure S42 ¹³C{¹H} NMR spectrum (C₄D₈O, 263 K, 151 MHz) of $[(^{NON-Dipp}L)Ba(\mu-N'')K]$ (11). Unlabelled peaks result from $[(^{NON-Dipp}L)Ba(thf)_n]$ (7) and KN'' released by a solution-phase equilibrium. † denotes co-crystallised benzene, * denotes C₄D₈O.

Figure S43 Aromatic regions of variable temperature ¹H NMR spectra (C_4D_8O , 500 MHz) showing the coalescence of signals assigned as [(^{NON-Dipp}L)Ba(μ -N")K(thf)_n)] (11^{thf}), [(^{NON-Dipp}L)Ba(thf)_n] (7).

Figure S44 Variable temperature ¹H NMR spectra (C_4D_8O , 500 MHz) showing the temperaturesensitive equilibrium between [(^{NON-Dipp}L)Ba(μ -N")K(thf)_n] (11^{thf}), [(^{NON-Dipp}L)Ba(thf)_n] (7) and KN".

Figure S45 Van 't Hoff plot for the dissociation of $[(^{NON-Dipp}L)Ba(\mu-N'')K(thf)_n)]$ (11^{thf}) into $[(^{NON-Dipp}L)Ba(thf)_n]$ (7) and KN''.

Table S1 Thermodynamic data extracted from Van 't Hoff plots in Figures S30, S36 and S44.

Equilibrium	Ae	$\Delta { m H} \ / \ { m kJ \ mol^{-1}}$	$\Delta S \ / \ J \ K^{-1} \ mol^{-1}$	$\Delta G_{298~K}/kJ~mol^{-1}$
9 ^{thf} /5	Ca	31.58	77.74	8.413
10 ^{thf} /6	Sr	12.72	19.20	6.998
11 ^{thf} /7	Ba	9.69	12.60	5.928

III Crystallographic Data

Complex	[{(^{NON-Dipp} L)Mg} ₂ (thf)] (1·thf)	[(^{NON-Dipp} L)Mg(thf)] ₂ (1·thf ₂)	
	Crystal data		
Chemical formula	$C_{66}H_{114}Mg_2N_4O_3Si_4{\cdot}0.5(C_6H_6)$	$C_{64}H_{108}Mg_2N_4O_4Si_4\cdot 3(C_4H_8O)$	
$M_{ m r}$	1211.64	1374.83	
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	
Temperature (K)	119.99(10)	149.99(10)	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.29922(14), 35.7370(3), 15.62092(17)	21.3834(3), 13.93371(15), 27.2300(3)	
$lpha,eta,\gamma$ (°)	90, 103.0217(10), 90	90, 102.0079(12), 90	
$V(Å^3)$	7233.30(12)	7935.64(16)	
Ζ	4	4	
Radiation type	Cu Ka	Cu Ka	
$\mu (mm^{-1})$	1.27	1.252	
Crystal size (mm)	$0.373 \times 0.212 \times 0.157$	$0.23 \times 0.119 \times 0.085$	
	Data Collection		
Diffractometer	SuperNova, Dual, Cu at home/near, EosS2	SuperNova, Dual, Cu at home/near, EosS2	

Table S2 Selected experimental crystallographic data.
Absorption correction	Gaussian CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Gaussian CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). Numerical absorption correction based on gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.			
T_{\min}, T_{\max}	0.577, 1.000	0.666, 1.000			
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	52183, 14216, 13055	55164, 15587, 13191			
$R_{ m int}$	0.0236	0.0307			
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.0528, 0.1514, 1.032	0.0337, 0.0911, 1.042			
No. of reflections	14216	15587			
No. of parameters	716	746			
No. of restraints	-	-			
$(\Delta/\sigma)_{\rm max}$	-	-			
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$	1.118, -0.77	0.971, -0.326			
Absolute structure	-	-			
Absolute structure parameter	-	-			

Complex	$[(^{\text{NON-Dipp}}L)Ca]_2 \cdot C_6H_6 (2)$	$[(^{\text{NON-Dipp}}\text{L})\text{Sr}]_2 \cdot \text{C}_6\text{H}_6(3)$	$[(^{\text{NON-Dipp}}L)Ba]_2 \cdot C_6H_6 (4)$
	Cryst	al data	
Chemical formula	$C_{56}H_{92}Ca_2N_4O_2Si_4{\cdot}C_6H_6$	$C_{56}H_{92}N_4O_2Si_4Sr_2{\cdot}C_6H_6$	$C_{56}H_{92}Ba_2N_4O_2Si_4{\cdot}C_6H_6$
$M_{ m r}$	1123.96	1219.04	1318.48
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	30.8158 (2), 10.5849 (1), 19.6876 (2)	30.63227 (12), 10.88063 (5), 19.72812 (8)	29.62654 (9), 11.41698 (4), 20.02024 (7)
$lpha,eta,\gamma(^\circ)$	90, 94.094 (1), 90	90, 92.7130 (4), 90	90, 93.5715 (3), 90
$V(Å^3)$	6405.36 (10)	6567.98 (5)	6758.61 (4)
Ζ	4	4	4
Radiation type	Cu Ka	Cu Ka	Cu Ka
μ (mm ⁻¹)	2.59	3.16	9.99
Crystal size (mm)	$0.24\times0.22\times0.09$	$0.2\times0.18\times0.03$	$0.27 \times 0.18 \times 0.15$
	Data C	ollection	
Diffractometer	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas
Absorption correction	Multi-scan CrysAlis PRO 1.171.42.72a (Rigaku Oxford Diffraction, 2022) Empirical	Multi-scan CrysAlis PRO 1.171.42.72a (Rigaku Oxford Diffraction, 2022) Empirical	Gaussian CrysAlis PRO 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical

absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

T_{\min}, T_{\max}	0.641, 1.000	0.642, 1.000	0.497, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	86957, 6721, 6368	84520, 6865, 6399	89686, 7053, 6907
$R_{ m int}$	0.035	0.032	0.036
	Refin	ement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.077, 1.05	0.021, 0.057, 1.05	0.018, 0.046, 1.03
No. of reflections	6721	6865	7053
No. of parameters	346	353	350
No. of restraints	-	-	30
$(\Delta/\sigma)_{max}$	-	-	-
$\Delta ho_{max}, \Delta ho_{min} (e \text{ Å}^{-3})$	0.26, -0.27	0.46, -0.44	0.57, -0.70
Absolute structure	-	-	-
Absolute structure parameter	-	-	-

Complex	$[(^{\text{NON-Dipp}}L)Ca]_2 \cdot C_6 H_{14}$ (2)	$[(^{NON-Dipp}L)Sr]_2 \cdot C_6H_{14}(3)$	$[(^{\text{NON-Dipp}}\text{L})\text{Ba}]_2 (4a)$			
	Crystal data					
Chemical formula	$C_{56}H_{92}Ca_2N_4O_2Si_4{\cdot}C_6H_{14}$	$C_{56}H_{92}N_4O_2Si_4Sr_2{\cdot}C_6H_{14}$	$C_{56}H_{92}Ba_2N_4O_2Si_4$			
$M_{ m r}$	1132.02	1227.10	1240.37			
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c			
Temperature (K)	150	150	150			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	31.405 (3), 10.7081 (9), 19.7961 (13)	31.1544 (2), 10.9816 (1), 19.7810 (1)	18.5088 (2), 17.9946 (2), 19.4082 (3)			
$lpha,eta,\gamma$ (°)	90, 92.787 (8), 90	90, 93.440 (1), 90	90, 109.429 (1), 90			
$V(Å^3)$	6649.3 (10)	6755.38 (8)	6095.96 (14)			
Ζ	4	4	4			
Radiation type	Cu <i>K</i> α	Cu Ka	Cu Ka			
μ (mm ⁻¹)	2.49	3.07	11.04			
Crystal size (mm)	$0.15 \times 0.06 \times 0.04$	$0.15 \times 0.13 \times 0.05$	$0.18 \times 0.16 \times 0.12$			
	Da	ta Collection				
Diffractometer	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas			
Absorption correction	Multi-scan CrysAlis PRO 1.171.43.95a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO 1.171.43.95a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO 1.171.43.95a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.			
T_{\min}, T_{\max}	0.696, 1.000	0.807, 1.000	0.573, 1.000			

No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	40355, 6929, 4365	76112, 7046, 6211	71967, 6380, 6225	
$R_{ m int}$	0.105	0.035	0.045	
		Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.184, 1.02	0.029, 0.079, 1.06	0.019, 0.051, 1.06	
No. of reflections	6929	7046	6380	
No. of parameters	347	319	319	
No. of restraints	-	-	-	
$(\Delta/\sigma)_{max}$	-	-	-	
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.35, -0.40	0.75, -0.65	0.90, -0.81	
Absolute structure	-	-	-	
Absolute structure parameter	-	-	-	

Complex	$[(^{\text{NON-Dipp}}L)Ca(thf)_2](5)$	$[(^{\text{NON-Dipp}}\text{L})\text{Sr}(\text{thf})_3](6)$	$[(^{\text{NON-Dipp}}\text{L})\text{Ba}(\text{thf})_3](7)$
	Crysta	al data	
Chemical formula	$C_{36}H_{62}CaN_2O_3Si_2$	C40 H70N2O4Si2Sr	$C_{40}H_{70}BaN_2O_4Si_2$
$M_{ m r}$	667.13	786.78	836.5
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, P2 ₁	Orthorhombic, <i>Pca2</i> ₁
Temperature (K)	120.01(11)	120.00(10)	119.99(10)
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.30216(17), 20.9676(4), 18.5303(3)	10.86671(12), 18.7432(2), 11.11722(12)	17.2911(2), 14.4444(2), 17.4395(3)
$lpha,eta,\gamma(^{\circ})$	90, 93.4268(16), 90	90, 107.5561(12), 90	90, 90, 90
$V(Å^3)$	3995.62(12)	2158.86(4)	4355.70(11)
Ζ	4	2	4
Radiation type	Cu Ka	Cu Ka	Cu Ka
μ (mm ⁻¹)	2.181	2.561	7.913
Crystal size (mm)	$0.297 \times 0.112 \times 0074$	$0.158\times0.098\times0.079$	$0.213 \times 0.141 \times 0.0.107$
	Data Co	ollection	
Diffractometer	SuperNova, Dual, Cu at home/near, EosS2	SuperNova, Dual, Cu at home/near, EosS2	SuperNova, Dual, Cu at home/near, EosS2
Absorption correction	Gaussian CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). Numerical absorption correction based on gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical	Gaussian CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). Numerical absorption correction based on gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical	Gaussian CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019). Numerical absorption correction based on gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical

	harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	harmonics, implemented in SCALE3 ABSPACK scaling algorithm		
T_{\min}, T_{\max}	0.626, 1.000	0.764, 1.000	0.36, 0.74		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27707, 7859, 6876	12925, 6637 , 6507	17670, 7245, 7043		
$R_{ m int}$	0.0317	0.0374	0.0632		
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.0369, 0.0985, 1.03	0.027, 0.067, 1.022	0.0206, 0.0505, 1.024		
No. of reflections	7859	6637	7245		
No. of parameters	487	455	454		
No. of restraints	27	10	1		
$(\Delta/\sigma)_{max}$	-	-	-		
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.506, -0.381	0.477, -0.307	0.386, -0.417		
Absolute structure	-	-	-		
Absolute structure parameter	-	-	-		

Complex	$[(^{\text{NNO-Dipp}}L)Mg(\mu-N'')K]_n (8)$		
Crystal data			
Chemical formula	$C_{34}H_{64}KMgN_3OSi_4{\cdot}C_7H_8$		
$M_{ m r}$	798.78		
Crystal system, space group	Monoclinic, $P2_1/n$		
Temperature (K)	150		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.55505 (12), 18.14500 (12), 17.16341 (13)		
α, β, γ (°)	112.3390 (9)		
$V(Å^3)$	4768.81 (6)		
Ζ	4		
Radiation type	Cu Ka		
μ (mm ⁻¹)	2.30		
Crystal size (mm)	$0.39 \times 0.18 \times 0.13$		
Data collection			
Diffractometer	SuperNova, Dual, Cu at home/near, EosS2		
Absorption correction	Gaussian CrysAlis PRO 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.		
T_{\min}, T_{\max}	0.356, 1		

No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33934, 9383, 8611
R _{int}	0.025
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.092, 1.03
No. of reflections	9383
No. of parameters	479
No. of restraints	0
$(\Delta/\sigma)_{\rm max}$	-
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.84, -0.34
Absolute structure	-
Absolute structure parameter	-

Complex	$[(^{\text{NON-Dipp}}L)Ca(\mu-N'')K]_n (9)$	$[(^{\text{NON-Dipp}}\text{L})\text{Sr}(\mu\text{-N''})\text{K}]_n(10)$	[(^{NON-Dipp} L)Ba(µ-N")K] _n (11)

	Cryst	al data	
Chemical formula	$C_{68}H_{128}Ca_2K_2N_6O_2Si_8{\cdot}0.5(C_6H_6)$	$C_{34}H_{64}KN_3OSi_4Sr$	$C_{68}H_{128}Ba_2K_2N_6O_2Si_8$
$M_{ m r}$	1483.89	769.96	1639.36
Crystal system, space group	Triclinic, P1	Orthorhombic, <i>Pna2</i> ₁	Monoclinic, P2 ₁
Temperature (K)	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.5062 (3), 19.0448 (6), 20.7624 (6)	24.5555 (2), 20.6930 (2), 16.8114 (2)	20.7134 (1), 16.9120 (1), 24.6169 (1
$lpha,eta,\gamma$ (°)	88.998 (2), 80.120 (2), 75.017 (3)	90, 90, 90	90.29
$V(Å^3)$	4328.1 (2)	8542.33 (15)	8623.31 (7)
Ζ	2	8	4
Radiation type	Cu Ka	Cu Ka	Cu Ka
μ (mm ⁻¹)	3.39	3.91	9.30
Crystal size (mm)	$0.21\times0.16\times0.12$	0.4 imes 0.08 imes 0.07	$0.15 \times 0.12 \times 0.10$
	Data Co	ollection	
Diffractometer	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas	SuperNova, Dual, Cu at home/near, Atlas
Absorption correction	Gaussian CrysAlis PRO 1.171.42.72a (Rigaku Oxford Diffraction, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO 1.171.42.72a (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO 1.171.43.90 (Rigaku Oxford Diffraction, 2023) Empirica absorption correction using spherica harmonics, implemented in SCALE. ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.633, 0.820	0.431, 1.000	0.544, 1.000

No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	49068, 17878, 14246	84481, 16314, 15086	123918, 34960, 33165
$R_{ m int}$	0.050	0.048	0.040
	Refi	nement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.123, 1.04	0.031, 0.075, 1.06	0.050, 0.136, 1.07
No. of reflections	17878	16314	34960
No. of parameters	883	872	1703
No. of restraints	116	29	2
$(\Delta/\sigma)_{\rm max}$	-	-	-
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.49, -0.37	0.38, -0.26	2.70, -2.17
Absolute structure	-	Refined as an inversion twin.	Refined as an inversion twin.
Absolute structure parameter	-	0.326 (12)	0.147 (4)

FigureS47Thermaldisplacementellipsoiddrawing(30%probability)of $[{(^{NON-Dipp}L)Mg}_2(thf)](1\cdotthf)$. All hydrogen atoms omitted for clarity.

Figure S46 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Mg(thf)]_2(1\cdot thf_2)$. All hydrogen atoms omitted for clarity.

Table S3 Experimental metrical parameters (bond lengths in Å and angles in °) for $[{(^{NON-Dipp}L)Mg}_2(thf)]$ (1·thf) and $[(^{NON-Dipp}L)Mg(thf)]_2$ (1·thf₂). Angles denoted * not included in sumtotals.

Parameter	1·thf	$1 \cdot thf_2$
Mg(1)-N(1)	2.035(2)	2.0626(9)
Mg(1)-N(4)	2.019(2)	2.000(1)
Mg(1)-O(1)	2.128(2)	2.133(1)
Mg(1)-O(3)	2.051(2)	2.046(1)
Mg(2)-N(3)	1.950(2)	1.992(1)
Mg(2)-N(2)	1.969(2)	2.003(1)
Mg(2)-O(2)	2.040(2)	3.549(1)
Mg(2)-O(4)	-	2.018(1)
Mg(1)-Mg(2)	4.6000(9)	5.2386(7)
N(1)-Mg(1)-N(4)	140.32(8)	128.61(5)
N(1)-Mg(1)-O(1)	75.04(7)	74.83(4)
N(1)-Mg(1)-O(3)	107.88(7)	115.74(4)
N(4)-Mg(1)-O(1)	118.20(7)	124.09(4)
N(4)-Mg(1)-O(3)	104.82(7)	107.52(4)
O(1)-Mg(1)-O(3)	103.42(7)	99.91(4)
ΣX -Mg(1)-X	649.68(18)	650.70(10)
N(2)-Mg(2)-N(3)	147.95(8)	141.68(5)
N(2)-Mg(2)-O(2)	131.37(7)	47.66(3)*
N(2)-Mg(2)-O(4)	-	108.53(4)
N(3)-Mg(2)-O(2)	77.56(7)	111.91(4)*
N(3)-Mg(2)-O(4)	-	107.05(4)
$\Sigma X-Mg(2)-X$	356.88(13)	357.26(8)

Figure S48 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Ca]_2$ (2) grown from benzene; **a**) asymmetric unit **b**) full dimeric structure generated by a (-X+1, Y, -Z+1/2) symmetry operation. All hydrogen atoms omitted for clarity.

Parameter	[(^{NON-Dipp} L)Ca] ₂ ·C ₆ H ₆	[(^{NON-Dipp} L)Ca] ₂ ·C ₆ H ₁₄
Ca(1)-N(1)	2.340(1)	2.349(3)
Ca(1)-N(2)	2.686(1)	2.700(3)
Ca(1)-N(2)*	2.3787(9)	2.386(3)
Ca(1)-O(1)	2 3494(8)	2 344(2)
$C_{\alpha}(1) C(17)*$	2.5191(0)	2.511(2)
Ca(1)-C(17)	5.000(1)	5.009(5)
Ca(1)-C(18)*	3.269(1)	3.268(3)
N(1)-Si(1)	1.684(1)	1.685(3)
N(2)-Si(2)	1.698(1)	1.701(2)
O(1)-Si(1)	1.6694(9)	1.673(3)
O(1)-Si(2)	1.6542(9)	1.657(3)
Ca(1)-Ca(1)*	3.7151(8)	3.7311(9)
N(1)-Ca(1)-N(2)	126.01(3)	125.5(1)
N(1)-Ca(1)-N(2)*	134.41(4)	135.8(1)
N(2)-Ca(1)-N(2)*	85.31(3)	85.32(9)
N(1)-Ca(1)-O(1)	65.77(3)	65.82(9)
N(2)-Ca(1)-O(1)	61.91(3)	61.95(8)
N(2)-Ca(1)-O(1)*	120.43(3)	119.65(9)
$\Sigma\{\angle Ca(1)\}$	593.84(8)	594.04(23)
Si(1)-O(1)-Ca(1)	97.70(4)	97.8(1)
Si(2)-O(1)-Ca(1)	104.94(4)	105.2(1)
Si(1)-O(1)-Si(2)	151.14(5)	148.9(2)
Σ { $\angle O(1)$ }	353.78(7)	351.90(24)
C(5)-N(1)-Ca(1)	141.05(7)	139.1(2)
C(5)-N(1)-Si(1)	120.61(8)	123.1(3)
Ca(1)-N(1)-Si(1)	97.62(5)	97 3(1)
Σ { Σ (1)}	359 28(12)	359 50(37)
Ca(1)-N(2)-Ca(1)*	94 16(3)	94 18(9)
Ca(1) - N(2) - C(17)	121 44(6)	121 4(2)
Ca(1) - N(2) - Si(2)	91 01(4)	90.6(1)
$C_{a}(1)-N(2)-C(17)*$	101.34(6)	101 3(2)
Ca(1)-N(2)-Si(2)*	121 89(5)	120.6(1)
C(17) - N(2) - Si(2)	124 11(7)	125.5(2)
$\sum \{ 1 \} \{ 1 \} \{ 2 \} \{ 3 \} \{ 2 \} $	653 95(13)	653 58(38)
$\frac{2}{2} \left\{ \sum_{i=1}^{n} \left(\frac{2}{i} \right)^{2} \right\}$ Plane _{N(1)Si(1)O(1)Ca(1)⁻}	14 59(4)	17 20(11)
$Plane_{N(2)Si(2)O(1)Ca(1)} fold angle$	14.38(4)	17.20(11)
$Plane_{Ca_2N_2}\text{-}Plane_{N_2Si_2OCa} \text{ fold angle}$	48.608(12)	48.17(3)
$Plane_{C(17)-C(22)}$ - $Plane_{C(17)-C(22)}$ fold angle	152.95(7)	151.29(19)
N(2)-Ca(1)-Ca(1)*-N(2)*	168.54(5)	168.8(1)
Ca(1)-N(2)-N(2)*-Ca(1)*	169.39(4)	196.6(1)

Table S4 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ca]_2(2)$ crystallised from benzene and *n*-hexane. * refers to symmetry related atoms.

Figure S49 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Sr]_2$ (3) grown from benzene; **a**) asymmetric unit **b**) full dimeric structure generated by a (-X+1, Y, -Z+1/2) symmetry operation. All hydrogen atoms omitted for clarity.

Parameter	[(^{NON-Dipp} L)Sr] ₂ ·C ₆ H ₆	$[(^{\text{NON-Dipp}}\text{L})\text{Sr}]_2 \cdot \text{C}_6\text{H}_{14}$
Sr(1)-N(1)	2.473(1)	2.477(2)
Sr(1)-N(2)	2.798(1)	2.782(2)
Sr(1)-N(2)*	2.541(1)	2.552(1)
Sr(1)-O(1)	2.5086(9)	2.502(1)
$S_{r}(1)-C(17)*$	3 029(1)	3 029(2)
$S_{r}(1) C(12)*$	3.029(1)	3.029(2)
$SI(1)-C(18)^{2}$	5.185(1)	5.108(2)
N(1)-Si(1)	1.6/9(1)	1.679(2)
N(2)-Si(2)	1.695(1)	1.694(2)
O(1)-Si(1)	1.668(1)	1.670(1)
O(1)-Si(2)	1.651(1)	1.651(1)
Sr(1)-Sr(1)*	3.9504(8)	3.9479(9)
N(1)-Sr(1)-N(2)	119.22(3)	119.25(5)
N(1)-Sr(1)-N(2)*	133.79(4)	133.55(5)
N(2)-Sr(1)-N(2)*	84.44(3)	84.36(5)
N(1)-Sr(1)-O(1)	61.81(3)	61.91(5)
N(2)-Sr(1)-O(1)	58.61(3)	58.77(4)
N(2)-Sr(1)-O(1)*	116.03(3)	114.88(5)
Σ { Σ { Σ { Σ { Σ }	574.01(8)	572.720(12)
Si(1)-O(1)-Sr(1)	98.70(4)	98.79(6)
Si(2) - O(1) - Sr(1)	105 55(4)	105 34(6)
Si(1) - O(1) - Si(2)	151.32(6)	149.89(9)
$\sum \{Z(1)\}$	355.59(8)	354.020(12)
C(5)-N(1)-Sr(1)	136.04(8)	134.4(1)
C(5)-N(1)-Si(1)	122.94(8)	124.9(1)
Sr(1)-N(1)-Si(1)	99.74(5)	99.49(8)
$\Sigma{ZN(1)}$	358.72(12)	358.79(16)
Sr(1)-N(2)-Sr(1)*	95.31(3)	95.40(5)
Sr(1)-N(2)-C(17)	121.86(7)	121.9(1)
Sr(1)-N(2)-Si(2)	93.24(4)	93.44(6)
Sr(1)-N(2)-C(17)*	95.75(7)	95.3(1)
Sr(1)-N(2)-Si(2)*	120.84(5)	120.33(8)
C(17)-N(2)-Si(2)	127.21(8)	127.7(1)
$\Sigma\{\angle N(2)\}$	654.21(14)	654.07(18)
Plane _{N(1)Si(1)O(1)Sr(1)} - Plane _{N(2)Si(2)O(1)Sr(1)} hinge angle	13.04(4)	14.44(6)
Plane _{Sr2N2} -Plane _{N2Si2OSr} hinge angle	51.228(12)	51.864(18)
Plane _{C(17)-C(22)} -Plane _{C(17)-C(22)} hinge angle	22.66(8)	23.26(11)
N(2)-Sr(1)-Sr(1)*-N(2)* torsion	172.13(5)	172.30(7)
Sr(1)-N(2)-N(2)*-Sr(1)* torsion	172.84(4)	173.00(6)

Table S5 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Sr]_2$ crystallised from benzene and *n*-hexane. * refers to symmetry related atoms.

Figure S50 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Ba]_2$ grown from benzene (4); **a**) asymmetric unit **b**) full dimeric structure generated by a (-X+1, Y, -Z+1/2) symmetry operation. All hydrogen atoms omitted for clarity.

Figure S51 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Ba]_2$ grown from hexane (**4a**); **a**) asymmetric unit **b**) full dimeric structure generated by a (-X+1, Y, -Z +3/2) symmetry operation. All hydrogen atoms omitted for clarity.

Parameter	$[(^{\text{NON-Dipp}}L)Ba]_2 \cdot C_6H_6 (4)$	$[(^{NON-Dipp}L)Ba]_2 (4b)$
Ba(1)-N(1)	2.582(1)	2.569(2)
Ba(1)-N(2)	2.970(1)	2.799(1)
Ba(1)-N(2)*	2.714(1)	3.702(2)
Ba(1)-O(1)	2.672(1)	2.651(1)
Ba(1)-C(17)*	3 113(1)	3 095(2)
Da(1) C(19)*	2.222(1)	2.099(2)
$Ba(1)-C(18)^*$	5.225(1)	5.088(2)
$Ba(1)-Centroid_{C(17)-C(22)}*$	3.9203(7)	2.8618(7)
Ba(1)-Plane _{C(17)-C(22)} *	2.551(2)	2.8498(7)
N(1)-Si(1)	1.666(1)	1.661(1)
N(2)-Si(2)	1.697(1)	1.701(2)
O(1)-Si(1)	1.662(1)	1.664(1)
O(1)-Si(2)	1.647(1)	1.650(1)
Ba(1)-Ba(1)*	4.1561(8)	4.7644(6)
N(1)-Ba(1)-N(2)	112.61(4)	114.57(5)
N(1)-Ba(1)-N(2)*	122.09(4)	140.79(4)
N(2)-Ba(1)-N(2)*	86.00(4)	80.32(4)
N(1)-Ba(1)-O(1)	58.41(4)	58.43(4)
N(2)-Ba(1)-O(1)	54.62(3)	56.59(4)
N(2)-Ba(1)-O(1) _{inter}	108.33(4)	118.73(4)
N(1)-Ba(1)-Centroid _{C(17)-C(22)} *	137.82(4)	112.49(4)
N(2)-Ba(1)-Centroid _{C(17)-C(22)} *	106.98(3)	128.01(3)
O(1)-Ba(1)-Centroid _{C(17)-C(22)} *	152.99(3)	151.65(3)
Σ { \angle Ba(1)}	542.06(9)	621.74(10)
Si(1)-O(1)-Ba(1)	98.65(5)	99.07(6)
Si(2)-O(1)-Ba(1)	107.18(5)	103.47(6)
Si(1)-O(1)-Si(2)	150.32(7)	157.43(9)
$\Sigma{\mathcal{O}(1)}$	356.15(10)	359.970(12)
C(5)-N(1)-Ba(1)	125.2(1)	110.3(1)
C(5)-N(1)-Si(1)	128.3(1)	143.9(1)
Ba(1)-N(1)-Si(1)	102.02(6)	102.36(7)
$\Sigma\{\angle N(1)\}$	355.52(15)	356.56(16)
Ba(1)-N(2)-Ba(1)*	93.85(4)	93.22(4)
Ba(1)-N(2)-C(17)	124.13(9)	129.6(1)
Ba(1)-N(2)-Si(2)	94.26(5)	96.42(6)
Ba(1)-N(2)-C(17)*	92.58(8)	53.75(8)
Ba(1)-N(2)-Si(2)*	119.45(6)	146.01(7)
C(17)-N(2)-Si(2)	129.0(1)	132.8(1)
$\Sigma{\langle N(2) \rangle}$	653.27(18)	358.82(15)

Table S6 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ba]_2$ crystallised from benzene (4) and *n*-hexane (4a). * refers to symmetry related atoms.

Interatomic distances / Å	$[(^{\text{NON-Dipp}}L)Mg]_2(1)$	$[(^{\text{NON-Dipp}}L)Ca]_2(2)$	$[(^{\text{NON-Dipp}}L)\text{Sr}]_2(3)$	$[(^{\text{NON-Dipp}}L)Ba]_2(4)$
Ae(1)-N(1)	1.987(1)	2.340(1)	2.473(1)	2.582(1)
Ae(1)-N(2)	3.551(1)	2.686(1)	2.798(1)	2.970(1)
Ae(1)-N(2)*	1.999(1)	2.3787(9)	2.541(1)	2.714(1)
Ae(1)-O(1)	2.066(1)	2.3494(8)	2.5086(9)	2.672(1)
Ae(1)-C(17)*	2.877(1)	3.000(1)	3.029(1)	3.113(1)
Ae(1)-C(18)*	3.284(1)	3.269(1)	3.183(1)	3.223(1)
N(1)-Si(1)	1.687(1)	1.684(1)	1.679(1)	1.666(1)
N(2)-Si(2)	1.687(1)	1.698(1)	1.695(1)	1.697(1)
O(1)-Si(1)	1.707(1)	1.6694(9)	1.668(1)	1.662(1)
O(1)-Si(2)	1.692(1)	1.6542(9)	1.651(1)	1.647(1)
Ae(1)-Ae(1)*	4.1130(9)	3.7151(8)	3.9504(8)	4.1561(8)
Bond Angles / °	$[(^{\text{NON-Dipp}}L)Mg]_2(1)$	$[(^{\text{NON-Dipp}}L)Ca]_2(2)$	$[(^{\text{NON-Dipp}}L)\text{Sr}]_2(3)$	$[(^{\text{NON-Dipp}}\text{L})\text{Ba}]_2 (4)$
N(1)-Ae(1)-N(2)	125.62(4)	126.01(3)	119.22(3)	112.61(4)
N(1)-Ae(1)-N(2)*	143.05(5)	134.41(4)	133.79(4)	122.09(4)
N(2)-Ae(1)-N(2)*	86.69(4)	85.31(3)	84.44(3)	86.00(4)
N(1)-Ae(1)-O(1)	76.33(4)	65.77(3)	61.81(3)	58.41(4)
N(2)-Ae(1)-O(1)	50.80(3)	61.91(3)	58.61(3)	54.62(3)
N(2)-Ae(1)-O(1)*	126.25(5)	120.43(3)	116.03(3)	108.33(4)
Σ { \angle Ae(1)}	345.63(8)	593.84(8)	574.01(8)	542.06(9)
Si(1)-O(1)-Ae(1)	92.46(5)	97.70(4)	98.70(4)	98.65(5)
Si(2)-O(1)-Ae(1)	128.70(6)	104.94(4)	105.55(4)	107.18(5)
Si(1)-O(1)-Si(2)	138.51(6)	151.14(5)	151.32(6)	150.32(7)

Table S7 Comparison of experimental metrical parameters for $[(^{NON-Dipp}L)Ae]_2 \cdot C_6H_6$ (Ae = Mg, Ca, Sr and Ba). * refers to symmetry related atoms. Metrics for $[(^{NON-Dipp}L)Mg]_2 \cdot C_6H_6$ (1) reproduced from reference 12.

$\Sigma\{\angle O(1)\}$	369.67(10)	353.78(7)	355.59(8)	356.15(10)
C(5)-N(1)-Ae(1)	137.79(9)	141.05(7)	136.04(8)	125.2(1)
C(5)-N(1)-Si(1)	126.18(9)	120.61(8)	122.94(8)	128.3(1)
Ae(1)-N(1)-Si(1)	95.90(5)	97.62(5)	99.74(5)	102.02(6)
$\Sigma\{\angle N(1)\}$	359.87(14)	359.2(1)	358.72(12)	355.52(15)
Ae(1)-N(2)-Ae(1)*	91.25(4)*	94.16(3)	95.31(3)	93.85(4)
Ae(1)-N(2)-C(17)	116.80(7)*	121.44(6)	121.86(7)	124.13(9)
Ae(1)-N(2)-Si(2)	70.72(4)*	91.01(4)	93.24(4)	94.26(5)
Ae(1)-N(2)-C(17)*	113.44(8)	101.34(6)	95.75(7)	92.58(8)
Ae(1)-N(2)-Si(2)*	118.48(6)	121.89(5)	120.84(5)	119.45(6)
C(17)-N(2)-Si(2)	127.41(9)	124.11(7)	127.21(8)	129.0(1)
$\Sigma\{\angle N(2)\}$	359.33(16)	653.9(1)	654.21(14)	653.27(18)
$\label{eq:plane_N(1)Si(1)O(1)Ae(1)} Plane_{N(2)Si(2)O(1)Ae(1)} hinge angle$	13.03	14.58(4)	13.04(4)	8.56(5)
N(2)-Ae(1)-Ae(1)*-N(2)* torsion	156.11(6)	168.54(5)	172.13(5)	174.02(5)

Interatomic Distances	$[(^{\text{NON-Dipp}}L)Ca]_2(2)$	$[(^{\text{NON-Dipp}}L)Sr]_2 (3)$	$[(^{\text{NON-Dipp}}L)Ba]_2$ (4a)
Ae(1)-N(1)	2.349(3)	2.477(2)	2.569(2)
Ae(1)-N(2)	2.700(3)	2.782(2)	2.799(1)
Ae(1)-N(2)*	2.386(3)	2.552(1)	3.702(2)
Ae(1)-O(1)	2.344(2)	2.502(1)	2.651(1)
Ae(1)-C(17)*	3.009(3)	3.029(2)	3.095(2)
Ae(1)-C(18)*	3.268(3)	3.168(2)	3.088(2)
Ae(1)-Centroid _{C(17)-C(22)}	3.9770(15)	3.900(9)	2.8618(7)
Ae(1)-Plane _{C(17)-C(22)}	2.289(5)	2.380(3)	2.8498(7)
N(1)-Si(1)	1.685(3)	1.679(2)	1.661(1)
N(2)-Si(2)	1.701(2)	1.694(2)	1.701(2)
O(1)-Si(1)	1.673(3)	1.670(1)	1.664(1)
O(1)-Si(2)	1.657(3)	1.651(1)	1.650(1)
Ae(1)-Ae(1)*	3.7311(9)	3.9479(9)	4.7644(6)
Bond Angles / °	$[(^{\text{NON-Dipp}}L)Ca]_2(\mathbf{2b})$	$[(^{\text{NON-Dipp}}\text{L})\text{Sr}]_2 (\mathbf{3b})$	$[(^{\text{NON-Dipp}}L)Ba]_2(4b)$
N(1)-Ae(1)-N(2)	125.5(1)	119.25(5)	114.57(5)
N(1)-Ae(1)-N(2)*	135.8(1)	133.55(5)	140.79(4)
N(2)-Ae(1)-N(2)*	85.32(9)	84.36(5)	80.32(4)
N(1)-Ae(1)-O(1)	65.82(9)	61.91(5)	58.43(4)
N(2)-Ae(1)-O(1)	61.95(8)	58.77(4)	56.59(4)
N(2)-Ae(1)-O(1)*	119.65(9)	114.88(5)	118.73(4)
N(1)-Ae(1)-CentroidC _{(17)-C(22)} *	131.36(8)	136.80(5)	112.49(4)
N(2)-Ae(1)-Centroid _{C(17)-C(22)} *	102.69(6)	103.95(4)	128.01(3)
O(1)-Ae(1)-Centroid _{C(17)-C(22)} *	161.49(7)	158.65(4)	151.65(3)
Σ { \angle Ae(1)}	594.04(23)	572.720(12)	621.74(10)
Si(1)-O(1)-Ae(1)	97.8(1)	98.79(6)	99.07(6)
Si(2)-O(1)-Ae(1)	105.2(1)	105.34(6)	103.47(6)
Si(1)-O(1)-Si(2)	148.9(2)	149.89(9)	157.43(9)
$\Sigma\{\angle O(1)\}$	351.90(24)	354.020(12)	359.970(12)
C(5)-N(1)-Ae(1)	139.1(2)	134.4(1)	110.3(1)
C(5)-N(1)-Si(1)	123.1(3)	124.9(1)	143.9(1)
Ae(1)-N(1)-Si(1)	97.3(1)	99.49(8)	102.36(7)
$\Sigma\{\angle N(1)\}$	359.50(37)	358.79(16)	356.56(16)
Ae(1)-N(2)-Ae(1)*	94.18(9)	95.40(5)	93.22(4)
Ae(1)-N(2)-C(17)	121.4(2)	121.9(1)	129.6(1)
Ae(1)-N(2)-Si(2)	90.6(1)	93.44(6)	96.42(6)
Ae(1)-N(2)-C(17)*	101.3(2)	95.3(1)	53.75(8)
Ae(1)-N(2)-Si(2)*	120.6(1)	120.33(8)	146.01(7)

Table S8 Comparison of experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ae]_2$ (Ae = Ca (2), Sr (3) and Ba (4a)) crystallised from *n*-hexane. * refers to symmetry related atoms.

C(17)-N(2)-Si(2)	125.5(2)	127.7(1)	132.8(1)
$\Sigma{\angle N(2)}$	653.58(38)	654.07(18)	358.82(15)
$\begin{array}{c} Plane_{N(1)Si(1)O(1)Ae(1)}\text{-}\\ Plane_{N(2)Si(2)O(1)Ae(1)} \text{ fold angle} \end{array}$	17.20(11)	14.44(6)	6.89(6)
N(2)-Ae(1)-Ae(1)*-N(2)* torsion	168.8(1)	172.30(7)	138.93(5)

Figure S52 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Ca(thf)_2]$ (5) All hydrogen atoms omitted for clarity.

Ca(1)-N(1)	2.313(1)
Ca(1)-N(2)	2.285(1)
Ca(1)-O(1)	2.490(1)
Ca(1)-O(2)	2.337(1)
Ca(1)-O(3)	2.323(1)
N(1)-Ca(1)-N(2)	119.59(5)
N(1)-Ca(1)-O(1)	65.01(5)
N(1)-Ca(1)-O(2)	110.01(5)
N(1)-Ca(1)-O(3)	107.46(5)
N(2)-Ca(1)-O(1)	65.84(4)
N(2)-Ca(1)-O(2)	108.32(5)
N(2)-Ca(1)-O(3)	114.23(5)
O(1)-Ca(1)-O(2)	96.51(4)
O(1)-Ca(1)-O(3)	168.52(5)
O(2)-Ca(1)-O(3)	94.28(5)
$\Sigma\{\angle Ca(1)\}$	1049.77(15)
C(1)-N(1)-Ca(1)	124.5(1)
C(1)-N(1)-Si(1)	135.7(1)
Ca(1)-N(1)-Si(1)	99.46(7)
$\Sigma{ZN(1)}$	359.66(16)
C(17)-N(2)-Ca(1)	136.2(1)
C(17)-N(2)-Si(2)	123.6(1)
Ca(1)-N(2)-Si(2)	99.70(6)
$\Sigma{Z(ZN(2))}$	359.5(15)
Si(1)-O(1)-Ca(1)	93.05(5)
Si(2)-O(1)-Ca(1)	92.75(5)
Si(1)-O(1)-Si(2)	147.42(8)
$\Sigma\{\angle O(1)\}$	333.22(11)
$Plane_{N(1)Si(1)O(1)Ca(1)}\text{-}$ $Plane_{N(2)Si(2)O(1)Ca(1)}\text{ fold angle}$	144.8629(4)

Table S9 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ca(thf)_2]$ (5).

Figure S53 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Sr(thf)_3]$ (6) All hydrogen atoms omitted for clarity.

Sr(1)-N(1)	2.564(2)
Sr(1)-N(2)	2.507(3)
Sr(1)-O(1)	2.627(2)
Sr(1)-O(2)	2.557(4)
Sr(1)-O(3)	2.510(3)
Sr(1)-O(4)	2.591(2)
N(1)-Sr(1)-N(2)	114 48(8)
N(1) - Sr(1) - O(1)	60 40(8)
N(1) = S(1) = O(1)	97.1(1)
N(1)-Sr(1)-O(2)	87.1(1)
N(1)-Sr(1)-O(3)	90.95(8)
N(1)-Sr(1)-O(4)	157.73(9)
N(2)-Sr(1)-O(1)	60.62(7)
N(2)-Sr(1)-O(2)	147.1(1)
N(2)-Sr(1)-O(3)	107.96(8)
N(2)-Sr(1)-O(4)	87.71(8)
O(1)-Sr(1)-O(2)	147.4(1)
O(1)-Sr(1)-O(3)	83.31(7)
O(1)-Sr(1)-O(4)	137.03(8)
O(2)-Sr(1)-O(3)	95.5(1)
O(2)-Sr(1)-O(4)	73.8(1)
O(3)-Sr(1)-O(4)	73.80(8)
$\Sigma\{\angle Sr(1)\}$	1524.89(34)
C(1)-N(1)-Sr(1)	132.2(2)
C(1)-N(1)-Si(1)	127.7(2)
Sr(1)-N(1)-Si(1)	98.3(1)
$\Sigma\{\angle N(1)\}$	358.2(3)
C(17)-N(2)-Sr(1)	131.4(2)
C(17)-N(2)-Si(2)	128.8(2)
Sr(1)-N(2)-Si(2)	99.7(1)
$\Sigma\{\angle N(2)\}$	359.9(3)
Si(1)-O(1)-Sr(1)	96.2(1)
Si(2)-O(1)-Sr(1)	95.8(1)
Si(1)-O(1)-Si(2)	148.2(2)
$\Sigma\{\angle O(1)\}$	340.2(2)
$\frac{Plane_{N(1)Si(1)O(1)Sr(1)}}{Plane_{N(2)Si(2)O(1)Sr(1)}} fold angle$	150.09(11)

Table S10 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Sr(thf)_3]$ (6).

Figure S54 Thermal displacement ellipsoid drawing (30% probability) of $[(^{NON-Dipp}L)Ba(thf)_3]$ (7) All hydrogen atoms omitted for clarity.

Ba(1)-N(1)	2.619(2)
Ba(1)-N(2)	2.676(3)
Ba(1)-O(1)	2.889(3)
Ba(1)-O(2)	2.838(3)
Ba(1)-O(3)	2.689(2)
Ba(1)-O(4)	2.772(3)
N(1)-Ba(1)-N(2)	109.33(8)
N(1)-Ba(1)-O(1)	55.74(7)
N(1)-Ba(1)-O(2)	85.59(8)
N(1)-Ba(1)-O(3)	105.62(8)
N(1)-Ba(1)-Q(4)	146 94(8)
$N(2) B_2(1) O(1)$	55.88(7)
$N(2) P_0(1) O(2)$	161 11(9)
N(2) - Da(1) - O(2)	101.11(8) 89.44(8)
N(2) - Da(1) - O(3)	00.44(0) 07.81(8)
N(2)-Ba(1)-O(4)	97.81(8)
O(1)-Ba(1)- $O(2)$	132.92(7)
O(1)-Ba(1)-O(3)	88.65(7)
O(1)-Ba(1)- $O(4)$	153.58(8)
O(2)-Ba(1)- $O(3)$	76.08(8)
O(2)-Ba(1)-O(4)	72.77(8)
O(3)-Ba(1)-O(4)	93.33(8)
$\Sigma\{\angle Ba(1)\}$	1523.79(30)
C(1)-N(1)-Ba(1)	123.1(2)
C(1)-N(1)-Si(1)	130.9(2)
Ba(1)-N(1)-Si(1)	104.0(1)
$\Sigma\{\angle N(1)\}$	358.0(3)
C(17)-N(2)-Ba(1)	117.7(2)
C(17)-N(2)-Si(2)	134.8(2)
Ba(1)-N(2)-Si(2)	103.7(1)
$\Sigma \{ Z N(2) \}$ S:(1) O(1) Po(1)	530.2(5) 04.2(1)
$S_1(1)-O(1)-Da(1)$ $S_1(2)-O(1)-B_2(1)$	96 0(1)
Si(2)-O(1)-Ba(1) Si(1)-O(1)-Si(2)	151 0(2)
$\sum \{ \angle O(1) \}$	341.3(2)
$Plane_{N(1)Si(1)O(1)Ba(1)}$ -	150 22(12)
$Plane_{N(2)Si(2)O(1)Ba(1)}$ fold angle	159.23(12)

Table S11 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ba(thf)_3]$ (7).

Metric	[(^{NON-Dipp} L)Mg(thf) ₂]	$[(^{\text{NON-Dipp}}L)Ca(thf)_2] (5)$	$[(^{\text{NON-Dipp}}L)\text{Sr}(\text{thf})_3] (6)$	$[(^{\text{NON-Dipp}}\text{L})\text{Ba}(\text{thf})_3](7)$
Ae(1)-N(1)	2.040(2)	2.313(1)	2.564(2)	2.619(2)
Ae(1)-N(2)	2.041(2)	2.285(1)	2.507(3)	2.676(3)
Ae(1)-O(1)	2.308(2)	2.490(1)	2.627(2)	2.889(3)
Ae(1)-O(2)	2.065(2)	2.337(1)	2.557(4)	2.838(3)
Ae(1)-O(3)	2.047(2)	2.323(1)	2.510(3)	2.689(2)
Ae(1)-O(4)	-	-	2.591(2)	2.772(3)
N(1)-Ae(1)-N(2)	129.1(1)	119.59(5)	114.48(8)	109.33(8)
N(1)-Ae(1)-O(1)	71.75(8)	65.01(5)	60.40(8)	55.74(7)
N(1)-Ae(1)-O(2)	109.86(9)	110.01(5)	87.1(1)	85.59(8)
N(1)-Ae(1)-O(3)	104.51(9)	107.46(5)	90.95(8)	105.62(8)
N(1)-Ae(1)-O(4)	-	-	157.73(9)	146.94(8)
N(2)-Ae(1)-O(1)	71.77(8)	65.84(4)	60.62(7)	55.88(7)
N(2)-Ae(1)-O(2)	108.44(9)	108.32(5)	147.1(1)	161.11(8)
N(2)-Ae(1)-O(3)	106.22(9)	114.23(5)	107.96(8)	88.44(8)
N(2)-Ae(1)-O(4)	-	-	87.71(8)	97.81(8)
O(1)-Ae(1)-O(2)	96.57(8)	96.51(4)	147.4(1)	132.92(7)
O(1)-Ae(1)-O(3)	171.26(9)	168.52(5)	83.31(7)	88.65(7)
O(1)-Ae(1)-O(4)	-	-	137.03(8)	153.58(8)
O(2)-Ae(1)-O(3)	92.13(9)	94.28(5)	95.5(1)	76.08(8)
O(2)-Ae(1)-O(4)	-	-	73.8(1)	72.77(8)

TableS12Comparison of experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ae(thf)_n]$ (Ae = Mg and Ca, n = 2; Ae = Sr and Ba, n = 3). $[(^{NON-Dipp}L)Mg(thf)_2]$ metrics reproduced from reference 16.

O(3)-Ae(1)-O(4)	-	-	73.80(8)	93.33(8)
Σ { $\angle Ae(1)$ }	1061.61(28)	1049.77(15)	1524.89(34)	1523.79(30)
C(1)-N(1)-Ae(1)	132.5(2)	124.5(1)	132.2(2)	123.1(2)
C(1)-N(1)-Si(1)	128.8(2)	135.7(1)	127.7(2)	130.9(2)
Ae(1)-N(1)-Si(1)	98.7(1)	99.46(7)	98.3(1)	104.0(1)
$\Sigma\{\angle N(1)\}$	360.0(3)	359.66(16)	358.2(3)	358.0(3)
C(17)-N(2)-Ae(1)	132.5(2)	136.2(1)	131.4(2)	117.7(2)
C(17)-N(2)-Si(2)	128.4(2)	123.6(1)	128.8(2)	134.8(2)
Ae(1)-N(2)-Si(2)	98.8(1)	99.70(6)	99.7(1)	103.7(1)
$\Sigma\{\angle N(2)\}$	359.7(3)	359.5(15)	359.9(3)	356.2(3)
Si(1)-O(1)-Ae(1)	89.90(9)	93.05(5)	96.2(1)	94.3(1)
Si(2)-O(1)-Ae(1)	89.82(9)	92.75(5)	95.8(1)	96.0(1)
Si(1)-O(1)-Si(2)	143.6(1)	147.42(8)	148.2(2)	151.0(2)
$\Sigma\{\angle O(1)\}$	323.22(16)	333.22(11)	340.2(2)	341.3(2)
$\label{eq:plane_N(1)Si(1)O(1)Ae(1)-Plane_{N(2)Si(2)O(1)Ae(1)} fold \ angle$	143.92(9)	144.8629(4)	150.09(11)	159.23(12)

a)

Figure S55 Thermal displacement ellipsoid drawings (30% probability) of **a)** The asymmetric unit and **b)** extended polymeric structure of $[(^{NNO-Dipp}L)Mg(\mu-N'')K]_n$ (8). All hydrogen atoms omitted for clarity.

Mg(1)-N(1)	2.002(1)
Mg(1)-N(2)	3.333(1)
Mg(1)-N(3)	2.021(1)
Mg(1)-O(1)	1.899(1)
K(1)-N(3)	3.205(1)
K(1)-O(1)	2.588(1)
K(1)-Centroid _{C(1)-C(6)}	3.033(1)
K(1)-H(14A)	2.7726(3)
K(1)-H(34A)	2.9150(4)
K(1)-H(34C)	3.0104(4)
Mg(1)-K(1)	3.4417(5)
N(1)-Mg(1)-N(3)	138.09(6)
N(1)-Mg(1)-O(1)	107.64(5)
N(3)-Mg(1)-O(1)	112.38(5)
$\Sigma\{\angle Mg(1)\}$	358.11(9)
N(3)-K(1)-O(1)	67.47(4)
N(3)- $K(1)$ -Centroid _{C(1)-C(6)}	142.94(3)
O(1)-K(1)-Centroid _{C(1)-C(6)}	144.76(3)
$\Sigma{ZK(1)}$	355.17(6)
-((-))	

Table S13 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NNO-Dipp}L)Mg(\mu-N'')K]_n(8).$

Figure S56 Thermal displacement ellipsoid drawings (30% probability) of **a**) one monomeric $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ unit **b**) full dimeric $[(^{NON-Dipp}L)Ca(\mu-N'')K]_2$ asymmetric unit and **c**) extended polymeric structure $[(^{NON-Dipp}L)Ca(\mu-N'')K]_n$ (**9**). All hydrogen atoms (excluding selected atoms in a)) omitted for clarity.

Ca(1)-N(1)	2.342(2)
Ca(1)-N(2)	2.365(2)
Ca(1)-N(3)	2.365(2)
Ca(1)-O(1)	2.443(1)
K(1)-N(3)	2.924(2)
K(1)-Centroid _{C(17)-C(22)}	2.9507(10)
K(1)-Centroid _{C(41)-C(43)}	2.9668(16)
K(1)-H(31A)	2.9964(6)
K(1)-H(31C)	2.9156(6)
K(1)-H(34A)	2.8283(5)
K(1)-H(34B)	2.7428(5)
Ca(1)-K(1)	4.1338(8)
N(1)-Ca(1)-N(2)	121.24(6)
N(1)-Ca(1)-N(3)	135.71(7)
N(2)-Ca(1)-N(3)	102.97(6)
N(1)-Ca(1)-O(1)	65.01(6)
N(2)-Ca(1)-O(1)	65.17(6)
N(3)-Ca(1)-O(1)	147.95(6)
$\Sigma{\angle Ca(1)}$	638.05(15)
N(3)-K(1)-Centroid _{C(17)-C(22)}	114.00(4)
N(3)-K(1)-Centroid _{C(41)-C(43)}	136.18(6)
Centroid _{C(17)-C(22)} -K(1)-Centroid _{C(41)-C(43)}	107.11(4)
$\Sigma{ZK(1)}$	357.29(8)
Ca(1)-N(1)-C(5)	124.9(1)
Ca(1)-N(1)-Si(1)	98.79(8)
C(5)-N(1)-Si(1)	135.9(2)
$\Sigma{ZN(1)}$	359.59(24)
Ca(1)-N(2)-C(17)	128.5(1)
Ca(1)-N(2)-Si(2)	97.53(8)
C(17)-N(1)-Si(2)	133.3(2)
$\Sigma{ZN(2)}$	359.33(24)
Ca(1)-O(1)-Si(1)	95.43(7)
Ca(1)-O(1)-Si(2)	95.19(7)

Table S14 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ca(\mu-N'')K]_n$ (9). Representative metrics from one $[(^{NON-Dipp}L)Ca(\mu-N'')K]$ molecule are presented.
Si(1)-O(1)-Si(2)	155.0(1)
$\Sigma{\angle O(1)}$	345.62(14)
Ca(1)-N(3)-K(1)	102.17(7)
Ca(1)-N(3)-Si(3)	102.68(9)
Ca(1)-N(3)-Si(4)	109.99(9)
K(1)-N(3)-Si(3)	102.94(8)
K(1)-N(3)-Si(4)	98.97(8)
Si(3)-N(3)-Si(4)	135.4(1)
$\Sigma{\langle \Delta N(3) \rangle}$	652.15(21)
$Plane_{N(1)Si(1)O(1)Ca(1)}$ $Plane_{N(2)Si(2)O(1)Ca(1)} fold angle$	29.82(8)

a)

Figure S57 Thermal displacement ellipsoid drawings (30% probability) of **a**) one monomeric $[(^{\text{NON-Dipp}}L)\text{Sr}(\mu-N'')\text{K}]$ unit **b**) full dimeric $[(^{\text{NON-Dipp}}L)\text{Sr}(\mu-N'')\text{K}]_2$ asymmetric unit sn **c**) extended polymeric structure of $[(^{\text{NON-Dipp}}L)\text{Sr}(\mu-N'')\text{K}]_n$ (10). All hydrogen atoms excluded for clarity.

Sr(1)-N(1)	2.524(3)
Sr(1)-N(2)	2.533(3)
Sr(1)-N(3)	2.525(3)
Sr(1)-O(1)	2.539(2)
K(1)-N(3)	2.892(3)
K(1)-Centroid _{C(17)-C(22)}	2.982(2)
K(1)-Centroid _{C(40)-C(43)}	2.9655(2)
K(1)-H(29A)	2.9156(9)
K(1)-H(29B)	2.8594(10)
K(1)-H(32A)	2.9907(7)
K(1)-H(32B)	2.8396(8)
Sr(1)-K(1)	4.2341(9)
N(1)-Sr(1)-N(2)	119.8(1)
N(1)-Sr(1)-N(3)	135.2(1)
N(2)-Sr(1)-N(3)	100.4(1)
N(1)-Sr(1)-O(1)	60.85(9)
N(2)-Sr(1)-O(1)	61.29(9)
N(3)-Sr(1)-O(1)	139.94(9)
$\Sigma\{\angle Sr(1)\}$	617.48(23)
N(3)-K(1)-Centroid _{C(17)-C(22)}	112.36(8)
N(3)-K(1)-Centroid _{C(41)-C(43)}	1346.41(9)
$Centroid_{C(17)-C(22)}\text{-}K(1)\text{-}Centroid_{C(40)-C(43)}$	109.73(7)
$\Sigma\{\angle K(1)\}$	354.68(14)
Sr(1)-N(1)-C(5)	116.1(2)
Sr(1)-N(1)-Si(1)	99.1(1)
C(5)-N(1)-Si(1)	144.7(3)
$\Sigma\{\angle N(1)\}$	359.90(37)
Sr(1)-N(2)-C(17)	121.8(2)
Sr(1)-N(2)-Si(2)	98.4(1)
C(17)-N(1)-Si(2)	138.0(3)
$\Sigma\{\angle N(2)\}$	358.20(37)
Sr(1)-O(1)-Si(1)	98.9(1)
Sr(1)-O(1)-Si(2)	98.9(1)

Table S15 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{\text{NON-Dipp}}L)\text{Sr}(\mu-N'')K]_n$ (10). Representative metrics from one $[(^{\text{NON-Dipp}}L)\text{Sr}(\mu-N'')K]$ molecule are presented.

Si(1)-O(1)-Si(2)	158.7(2)
$\Sigma\{\angle O(1)\}$	356.50(24)
Sr(1)-N(3)-K(1)	102.6(1)
Sr(1)-N(3)-Si(3)	103.7(1)
Sr(1)-N(3)-Si(4)	108.6(1)
K(1)-N(3)-Si(3)	102.5(1)
K(1)-N(3)-Si(4)	102.1(1)
Si(3)-N(3)-Si(4)	133.4(2)
$\Sigma\{\angle N(3)\}$	652.9(3)
$Plane_{N(1)Si(1)O(1)Sr(1)}$ $Plane_{N(2)Si(2)O(1)Sr(1)}$ hinge angle	16.33(15)

Figure S58 Thermal displacement ellipsoid drawings (30% probability) of **7 a**) one monomeric $[(^{NON-Dipp}L)Ba(\mu-N'')K]$ unit **b**) full dimeric $[(^{NON-Dipp}L)Ba(\mu-N'')K]_2$ asymmetric unit and **c**) extended polymeric structure $[(^{NON-Dipp}L)Ba(\mu-N'')K]_n$ (11). All hydrogen atoms excluded for clarity.

Ba(1)-N(1)	2.698(8)
Ba(1)-N(2)	2.741(8)
Ba(1)-N(3)	2.707(7)
Ba(1)-O(1)	2.673(5)
K(1)-N(3)	2.876(7)
K(1)-Centroid _{C(17)-C(22)}	2.972(5)
K(1)-Centroid _{C(40)-C(43)}	2.996(6)
K(1)-H(29A)	2.887(2)
K(1)-H(29B)	2.884(2)
K(1)-H(32A)	2.779(2)
K(1)-H(32B)	2.914(2)
Ba(1)-K(1)	4.444(2)
N(1)-Ba(1)-N(2)	114.4(2)
N(1)-Ba(1)-N(3)	97.6(2)
N(2)- Ba(1)-N(3)	134.5(2)
N(1)-Ba(1)-O(1)	57.4(2)
N(2)-Ba(1)-O(1)	57.4(2)
N(3)-Ba(1)-O(1)	135.6(2)
$\Sigma\{\angle Ba(1)\}$	596.9(5)
N(3)- $K(1)$ -Centroid _{C(17)-C(22)}	110.12(18)
N(3)- $K(1)$ -Centroid _{C(41)-C(43)}	136.2(2)
$Centroid_{C(17)-C(22)}-K(1)-Centroid_{C(40)-C(43)}$	112.32(16)
$\Sigma{\angle K(1)}$	358.6(3)
Ba(1)-N(1)-C(5)	117.2(6)
Ba(1)-N(1)-Si(1)	99.3(4)
C(5)-N(1)-Si(1)	141.8(7)
$\Sigma{ \Delta N(1) }$	358.3(10)
Ba(1)-N(2)-C(17)	97.5(6)
Ba(1)-N(2)-Si(2)	98.4(4)
C(17)-N(1)-Si(2)	158.5(7)
$\Sigma{ \Delta N(2) }$	354.4(10)
Ba(1)-O(1)-Si(1)	101.3(3)

Table S16 Experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{\text{NON-Dipp}}L)Ba(\mu-N'')K]_n$ (11). Representative metrics from one $[(^{\text{NON-Dipp}}L)Ba(\mu-N'')K]$ molecule are presented.

Figure S59 Core crystallographic units of a) complex 1 and b) complex 2.

Figure S60 Core crystallographic units of a) complex 1.thf and b) complex 1.thf₂.

	$\frac{[(^{\text{NON-Dipp}}L)Ca(\mu-N'')K]_n}{(9)}$	$\frac{[(^{\text{NON-Dipp}}L)Sr(\mu-N'')K]_n}{(10)}$	[(^{NON-Dipp} L)Ba(µ-N")K] _n (11)
Ae(1)-N(1)	2.342(2)	2.524(3)	2.698(8)
Ae(1)-N(2)	2.365(2)	2.533(3)	2.741(8)
Ae(1)-N(3)	2.365(2)	2.525(3)	2.707(7)
Ae(1)-O(1)	2.443(1)	2.539(2)	2.673(5)
K(1)-N(3)	2.924(2)	2.892(3)	2.876(7)
K(1)-Centroid _{C(17)-C(22)}	2.9507(10)	2.982(2)	2.972(5)
K(1)-Centroid _{C(41)-C(43)}	2.9668(16)	2.9655(2)	2.996(6)
K(1)-H(31A)	2.9964(6)	2.9156(9)	2.887(2)
K(1)-H(31C)	2.9156(6)	2.8594(10)	2.884(2)
K(1)-H(34A)	2.8283(5)	2.9907(7)	2.779(2)
K(1)-H(34B)	2.7428(5)	2.8396(8)	2.914(2)
Ae(1)-K(1)	4.1338(8)	4.2341(9)	4.444(2)
N(1)-Ae(1)-N(2)	121.24(6)	119.8(1)	114.4(2)
N(1)-Ae(1)-N(3)	135.71(7)	135.2(1)	97.6(2)
N(2)-Ae(1)-N(3)	102.97(6)	100.4(1)	134.5(2)
N(1)-Ae(1)-O(1)	65.01(6)	60.85(9)	57.4(2)
N(2)-Ae(1)-O(1)	65.17(6)	61.29(9)	57.4(2)
N(3)-Ae(1)-O(1)	147.95(6)	139.94(9)	135.6(2)
ΣX -Ae(1)-X	638.05(15)	617.48(23)	596.9(5)
N(3)- $K(1)$ -Centroid _{C(17)} - C(22)	114.00(4)	112.36(8)	110.12(18)
N(3)-K(1)- Centroid _{C(40)/C(41)-C(43)}	136.18(6)	1346.41(9)	136.2(2)
Centroid _{C(17)-C(22)} -K(1)- Centroid _{C(40)/C(41)-C(43)}	107.11(4)	109.73(7)	112.32(16)
ΣX -K(1)-X	357.29(8)	354.68(14)	358.6(3)
Ae(1)-N(1)-C(5)	124.9(1)	116.1(2)	117.2(6)
Ae(1)-N(1)-Si(1)	98.79(8)	99.1(1)	99.3(4)
C(5)-N(1)-Si(1)	135.9(2)	144.7(3)	141.8(7)
$\Sigma X-N(1)-X$	359.6(2)	359.9(4)	358.3(10)
Ae(1)-N(2)-C(17)	128.5(1)	121.8(2)	97.5(6)
Ae(1)-N(2)-Si(2)	97.53(8)	98.4(1)	98.4(4)
C(17)-N(1)-Si(2)	133.3(2)	138.0(3)	158.5(7)
$\Sigma X-N(2)-X$	359.3(2)	358.2(4)	354.4(10)
Ae(1)-O(1)-Si(1)	95.43(7)	98.9(1)	101.3(3)

Table S17 Comparison of average experimental metrical parameters (bond lengths in Å and angles in °) for $[(^{NON-Dipp}L)Ae(\mu-N'')K]_n$ (Ae = Ca, Sr and Ba). Representative metrics from one $[(^{NON-Dipp}L)Ae(\mu-N'')K]$ molecule in the asymmetric unit of each compound is presented.

Ae(1)-O(1)-Si(2)	95.19(7)	98.9(1)	100.8(3)
Si(1)-O(1)-Si(2)	155.0(1)	158.7(2)	157.6(5)
ΣX-O(1)-X	345.62(14)	356.50(24)	359.7(7)
Ae(1)-N(3)-K(1)	102.17(7)	102.6(1)	105.4(2)
Ae(1)-N(3)-Si(3)	102.68(9)	103.7(1)	105.2(2)
Ae(1)-N(3)-Si(4)	109.99(9)	108.6(1)	106.4(3)
K(1)-N(3)-Si(3)	102.94(8)	102.5(1)	101.9(3)
K(1)-N(3)-Si(4)	98.97(8)	102.1(1)	100.3(3)
Si(3)-N(3)-Si(4)	135.4(1)	133.4(2)	134.4(4)
ΣX-N(3)-X	652.15(21)	652.9(3)	653.6(7)
$\begin{array}{c} Plane_{N(1)Si(1)O(1)Ae(1)}\text{-}\\ Plane_{N(2)Si(2)O(1)Ae(1)} \text{ fold}\\ angle \end{array}$	29.82(8)	16.33(15)	6.5(4)

IV References

- 1 B. J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105–107.
- 2 CrysAlisPRO, Journal, Oxford Diffraction / Agilent Technologies UK Ltd.
- A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1993, **26**, 343–350.
- 4 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786–790.
- 5 G. M. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3–8.
- 6 L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849–854.
- 7 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Crystallogr.*, 2003, **36**, 1487–1487.
- 8 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 9 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 10 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565–565.
- 11 D. B. Leznoff, G. Mund, K. C. Jantunen, P. H. Bhatia, A. J. Gabert and R. J. Batchelor, J. Nucl. Sci. Technol., 2002, **39**, 406–409.
- 12 A. O'Reilly, M. D. Haynes, Z. R. Turner, C. L. McMullin, S. Harder, D. O'Hare, J. R. Fulton and M. P. Coles, *Chem. Commun.*, 2024, **60**, 7204–7207.
- 13 P. P. Power, *Inorg. Synth.*, 2018, **37**, 24–26.
- 14 B. A. Vaartstra, J. C. Huffman, W. E. Streib and K. G. Caulton, *Inorg. Chem.*, 1991, **30**, 121–125.
- 15 A. Bowles, Y. Liu, M. Stevens, I. Vitorica-Yrezabal, C. McMullin and F. Ortu, *Chem. Eur. J.*, 2023, **29**, e202301850.
- 16 R. J. Schwamm, J. R. Harmer, M. Lein, C. M. Fitchett, S. Granville and M. P. Coles, *Angew. Chemie Int. Ed.*, 2015, **54**, 10630–10633.