NaCaGa₃S₆: A Mixed Alkali Metal and Alkaline Earth Metal Sulfide

with a Distinctive $[Ga_5S_{10}]_{\infty}$ Layered Framework

Jiale Chen^a, Haipeng Zhou^{a,b}, Huimin Sha^{a,b}, Jinfeng Liu^a, Xiu Zhu^a, Guisheng Xu^{a,*}, Jiankang Wang^{a,*}

^aArtificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China. ^bUniversity of Shanghai for Science and Technology, Shanghai 200093, China. *E-mail:* wangjiankang@mail.sic.ac.cn; gshxu@mail.sic.ac.cn

CONTENTS

Figure S1 (The crystals of NCGS)

Figure S2 (1D $[Na_2S_8]_{\infty}$ and $[Ca_2S_{10}]_{\infty}$ chains)

Figure S3 (The bond-angle difference of GaS₄ groups)

Figure S4 (The interference color, thickness and calculated birefringence for NCGS)

Table S1 (Crystallographic data and refinement details)

Table S2 (Atomic coordinates, displacement parameters and BVS)

Table S3 (Selected bond distances and angles)

Figure S1. The crystals of NCGS.

Figure S2. (a) one-dimensional (1D) $[Na_2S_8]_{\infty}$ chains and (b) 1D $[Ca_2S_{10}]_{\infty}$ chains.

Figure S3. The bond-angle difference of GaS₄ groups in NCGS.

Figure S4. (a) The interference color of NCGS observed in the cross-polarized light, (b) The thickness of NCGS crystal, (c) The calculated birefringence curve for NCGS.

Empirical formula	NaCaGa ₃ S ₆
Formula weight	206.48
Temperature (K)	297(2)
Crystal system	Orthorhombic
Space group	Pbca
Z	18
<i>a</i> (Å)	6.9613(5)
b (Å)	14.6439(9)
<i>c</i> (Å)	20.1221(15)
$V(Å^3)$	2051.3(2)
$D_c (\text{g cm}^{-3})$	3.009
$\mu (\text{mm}^{-1})$	9.515
F(000)	1760
Radiation	Mo-K _{α} ($\lambda = 0.71073$)
2θ range(°)	2.024 to 27.502
Reflections collected	17376
Indep. Reflns/ Rint	2350/0.0398
GOOF on F^2	1.142
R_1 , wR_2 (I >2 σ (I)) ^a	0.0212, 0.0387
R_1 , wR_2 (all data)	0.0278, 0.0468
largest diff. peak and hole $(e \cdot Å^{-3})$	0.511, -0.699
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , {}^{b}wR_{2} = \Sigma w (F_{o}^{2} - $	$F_c^{2})^2 / \Sigma w (F_o^{2})^2]^{1/2}.$

Table S1. Crystal data and structure refinement for NCGS

Atom	BVS ^a	Х	У	Z	$U_{eq}(Å)$
Na(1)	1.146	4895(2)	4966(1)	1845(1)	33(1)
Ca(1)	1.911	10847(1)	8076(1)	4170(1)	18(1)
Ga(1)	2.904	8286(1)	7375(1)	2670(1)	12(1)
Ga(2)	2.972	5204(1)	6130(1)	3810(1)	12(1)
Ga(3)	2.909	8097(1)	4503(1)	4856(1)	13(1)
S(1)	1.830	8813(1)	5694(1)	5532(1)	15(1)
S(2)	1.897	6289(1)	4684(1)	3933(1)	16(1)
S(3)	1.813	5941(1)	8294(1)	2275(1)	16(1)
S(4)	1.858	6590(1)	3279(1)	5333(1)	14(1)
S(5)	1.938	3376(1)	6035(1)	2894(1)	16(1)
S(6)	2.030	7842(2)	7004(1)	3748(1)	31(1)
^a Bond valence	e state was cal	culated using the	empirical formula	$V_i = \Sigma S_{ij} = \Sigma exp[(r_0$	$-r_{ij})/0.37],$
where S _{ij} is th	e bond valence	e associated with	bond lengths r _{ij} aı	nd r_0 .	

Table S2. Atomic coordinates (× 10^4), equivalent isotropic displacement parameters (Å² × 10^3) and bond valence sums (BVS) for NCGS. Useq is defined as one-third of the trace of the orthogonalized U*ij* tensor.

Na(1)-S(5)	2.8326(18)	Ga(2)-S(5)	2.2452(9)
Na(1)-S(5)#1	2.9327(18)	Ga(2)-S(2)	2.2626(9)
Na(1)-S(1)#2	2.9540(18)	Ga(2)-S(4)#8	2.2971(9)
Na(1)-S(2)#3	2.9871(19)	Ga(3)-S(2)	2.2593(9)
Na(1)-S(3)#4	3.078(2)	Ga(3)-S(1)	2.2663(9)
Ca(1)-S(6)	2.7498(12)	Ga(3)-S(4)	2.2869(9)
Ca(1)-S(1)#5	2.8050(11)	Ga(3)-S(1)#7	2.3069(9)
Ca(1)-S(2)#6	2.8253(11)	Ga(2)-S(5)	2.2452(9)
Ca(1)-S(4)#7	2.8498(11)	Ga(2)-S(2)	2.2626(9)
Ca(1)-S(4)#6	2.9051(12)	Ga(2)-S(4)#8	2.2971(9)
Ca(1)-S(3)#1	2.9267(12)	Ga(3)-S(2)	2.2593(9)
Ca(1)-Ga(1)	3.6530(8)	Ga(3)-S(1)	2.2663(9)
Ca(1)-Ga(3)#6	3.7161(8)	Ga(3)-S(4)	2.2869(9)
Ga(1)-S(6)	2.2578(10)	Ga(3)-S(1)#7	2.3069(9)
Ga(1)-S(3)	2.2596(9)	Ga(2)-S(5)	2.2452(9)
Ga(1)-S(5)#1	2.2673(9)	Ga(2)-S(2)	2.2626(9)
Ga(1)-S(3)#1	2.2889(9)	Ga(2)-S(4)#8	2.2971(9)
Ga(2)-S(6)	2.2417(10)	Ga(3)-S(2)	2.2593(9)
Ga(2)-S(5)	2.2452(9)	S(5)-Na(1)-S(5)#1	83.09(5)
Ga(2)-S(2)	2.2626(9)	S(5)-Na(1)-S(1)#2	163.94(8)
Ga(2)-S(4)#8	2.2971(9)	S(5)#1-Na(1)-S(1)#2	94.77(5)
Ga(3)-S(2)	2.2593(9)	S(5)-Na(1)-S(2)#3	98.83(6)
Ga(3)-S(1)	2.2663(9)	S(5)#1-Na(1)-S(2)#3	149.56(7)
Ga(3)-S(4)	2.2869(9)	S(1)#2-Na(1)-S(2)#3	75.03(4)
Ga(3)-S(1)#7	2.3069(9)	S(5)-Na(1)-S(3)#4	86.60(5)
Na(1)-S(5)	2.8326(18)	S(5)#1-Na(1)-S(3)#4	118.56(6)
Na(1)-S(5)#1	2.9327(18)	S(1)#2-Na(1)-S(3)#4	108.18(6)
Na(1)-S(1)#2	2.9540(18)	S(2)#3-Na(1)-S(3)#4	91.86(5)
Na(1)-S(2)#3	2.9871(19)	S(6)-Ca(1)-S(1)#5	173.03(4)
Na(1)-S(3)#4	3.078(2)	S(6)-Ca(1)-S(2)#6	91.32(4)
Ca(1)-S(6)	2.7498(12)	S(1)#5-Ca(1)-S(2)#6	83.58(3)
Ca(1)-S(1)#5	2.8050(11)	S(6)-Ca(1)-S(4)#7	100.79(4)
Ca(1)-S(2)#6	2.8253(11)	S(1)#5-Ca(1)-S(4)#7	84.93(3)
Ca(1)-S(4)#7	2.8498(11)	S(2)#6-Ca(1)-S(4)#7	165.73(4)
Ca(1)-S(4)#6	2.9051(12)	S(6)-Ca(1)-S(4)#6	82.12(3)
Ca(1)-S(3)#1	2.9267(12)	S(1)#5-Ca(1)-S(4)#6	101.05(3)
Ca(1)-Ga(1)	3.6530(8)	S(2)#6-Ca(1)-S(4)#6	75.12(3)
Ca(1)-Ga(3)#6	3.7161(8)	S(4)#7-Ca(1)-S(4)#6	98.90(3)
Ga(1)-S(6)	2.2578(10)	S(6)-Ca(1)-S(3)#1	76.84(3)
Ga(1)-S(3)	2.2596(9)	S(1)#5-Ca(1)-S(3)#1	97.23(3)
Ga(1)-S(3)#1	2.2889(9)	S(4)#7-Ca(1)-S(3)#1	114.22(3)
Ga(2)-S(6)	2.2417(10)	S(4)#6-Ca(1)-S(3)#1	143.34(4)
S(6)-Ca(1)-Ga(1)	38.11(2)	S(2)-Ga(3)-Ca(1)#9	49.38(2)

Table S3. Selected bond distances (Å) and angles (°).

S(1)#5-Ca(1)-Ga(1)	135.75(3)	S(1)-Ga(3)-Ca(1)#9 144.87(3)	
S(2)#6-Ca(1)-Ga(1)	80.65(3)	S(4)-Ga(3)-Ca(1)#9 51.42(3)	
S(4)#7-Ca(1)-Ga(1)	113.56(3)	S(1)#7-Ga(3)-Ca(1)#9 119.55(3)	
S(4)#6-Ca(1)-Ga(1)	114.16(3)	Ga(3)-S(1)-Ga(3)#7	84.62(3)
S(3)#1-Ca(1)-Ga(1)	38.77(2)	Ga(3)-S(1)-Ca(1)#10	117.43(4)
S(6)-Ca(1)-Ga(3)#6	82.73(3)	Ga(3)#7-S(1)-Ca(1)#10	147.01(4)
S(1)#5-Ca(1)-Ga(3)#6	95.92(3)	Ga(3)-S(1)-Na(1)#11	110.60(5)
S(2)#6-Ca(1)-Ga(3)#6	37.37(2)	Ga(3)#7-S(1)-Na(1)#11	88.74(4)
S(4)#7-Ca(1)-Ga(3)#6	136.38(3)	Ca(1)#10-S(1)-Na(1)#11	104.07(5)
S(4)#6-Ca(1)-Ga(3)#6	37.980(19)	Ga(3)-S(2)-Ga(2)	112.66(4)
S(3)#1-Ca(1)-Ga(3)#6	108.93(3)	Ga(3)-S(2)-Ca(1)#9	93.24(3)
Ga(1)-Ca(1)-Ga(3)#6	95.989(19)	Ga(2)-S(2)-Ca(1)#9	128.53(4)
S(6)-Ga(1)-S(3)	112.49(4)	Ga(3)-S(2)-Na(1)#1	88.82(4)
S(6)-Ga(1)-S(5)#1	106.06(4)	Ga(2)-S(2)-Na(1)#1	95.38(4)
S(3)-Ga(1)-S(5)#1	111.03(4)	Ca(1)#9-S(2)-Na(1)#1	130.26(5)
S(6)-Ga(1)-S(3)#1	101.88(4)	Ga(1)-S(3)-Ga(1)#3	102.51(3)
S(3)-Ga(1)-S(3)#1	104.50(4)	Ga(1)-S(3)-Ca(1)#3	107.52(4)
S(5)#1-Ga(1)-S(3)#1	120.68(4)	Ga(1)#3-S(3)-Ca(1)#3	88.03(3)
S(6)-Ga(1)-Ca(1)	48.73(3)	Ga(1)-S(3)-Na(1)#12	114.07(5)
S(3)-Ga(1)-Ca(1)	118.43(3)	Ga(1)#3-S(3)-Na(1)#12	106.70(5)
S(5)#1-Ga(1)-Ca(1)	130.04(3)	Ca(1)#3-S(3)-Na(1)#12	130.85(4)
S(3)#1-Ga(1)-Ca(1)	53.20(3)	Ga(3)-S(4)-Ga(2)#8	105.62(3)
S(6)-Ga(2)-S(5)	116.99(4)	Ga(3)-S(4)-Ca(1)#7	113.92(4)
S(6)-Ga(2)-S(2)	105.49(4)	Ga(2)#8-S(4)-Ca(1)#7	109.83(4)
S(5)-Ga(2)-S(2)	102.76(3)	Ga(3)-S(4)-Ca(1)#9	90.60(3)
S(6)-Ga(2)-S(4)#8	105.79(4)	Ga(2)#8-S(4)-Ca(1)#9	108.99(4)
S(5)-Ga(2)-S(4)#8	109.36(4)	Ca(1)#7-S(4)-Ca(1)#9	125.21(3)
S(2)-Ga(2)-S(4)#8	116.87(3)	Ga(2)-S(5)-Ga(1)#3	111.93(4)
S(2)-Ga(3)-S(1)	121.70(3)	Ga(2)-S(5)-Na(1)	115.76(5)
S(2)-Ga(3)-S(4)	100.44(3)	Ga(1)#3-S(5)-Na(1)	96.64(5)
S(1)-Ga(3)-S(4)	116.88(3)	Ga(2)-S(5)-Na(1)#3	110.75(5)
S(2)-Ga(3)-S(1)#7	104.81(4)	Ga(1)#3-S(5)-Na(1)#3	121.93(5)
S(1)-Ga(3)-S(1)#7	95.38(3)	Na(1)-S(5)-Na(1)#3	98.44(6)
S(4)-Ga(3)-S(1)#7	118.18(3)	Ga(2)-S(6)-Ga(1)	107.64(4)
Ga(1)-S(6)-Ca(1)	93.16(4)	Ga(2)-S(6)-Ca(1)	158.73(5)
Symmetry transformation	s used to generate e	quivalent atoms:	
#1 x+1/2,y,-z+1/2 #	2 -x+3/2,-y+1,z-1/2	#3 x-1/2,y,-z+1/2	
#4 -x+1,y-1/2,-z+1/2	#5 x+1/2,-y+3/2,-z-	+1 #6 -x+3/2,y+1/2,z	
#7 -x+2,-y+1,-z+1 #8	s-x+1,-y+1,-z+1	#9 -x+3/2,y-1/2,z	
#10 x-1/2,-v+3/2,-z+1	#11 -x+3/2,-v+1.z	+1/2	

#12 -x+1,y+1/2,-z+1/2