Electronic Supplementary Information for

A defective carbonized wood membrane as a free-standing three-dimensional anode host for high-performance Zn-ion batteries

Jinyu Ma,^{a,b} Fang Wang,^{a,b} Zhengguo Zhang*^{a,b} and Shixiong Min*^{a,b,c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

^b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P. R. China.

^c Analysis and Testing Center of Ningxia Hui Autonomous Region, North Minzu University, Yinchuan, 750021, P. R. China.

*Corresponding author: <u>sxmin@nun.edu.cn</u>; <u>zhangzhengguo1119@126.com</u>

Fig. S1 Optical images of (a) NW, (b) CW, and (c) HDCW.

Flomont	Atomic	Atomic	
Element	Fraction (%)	Error (%)	
С	97.67	9.23	
Ν	0.00	0.10	
Ο	2.33	0.50	

Table S1 EDX elemental quantitative analysis of CW.

Table S2 EDX elemental quantitative analysis of HDCW.

Element	Atomic Fraction (%)	Atomic Error (%)	
С	97.22	9.74	
N	0.00	0.04	
0	2.78	0.61	
	2.1 8	0.01	

Table S3 Textural properties of CW and HDCW.

Electrode	$S_{\rm BET} ({ m m}^2 { m g}^{-1})^a$	Pore volume $(cm^3 g^{-1})^b$	Pore size (nm) ^c
CW	297.85	0.08	2.58
HDCW	581.40	0.18	2.60

^{*a*} BET surface area (S_{BET}) is calculated from the linear part of the BET plot.

^{*b*} Single point total pore volume of the pores at $P/P_0=0.99$.

^{*c*} Adsorption average pore width (4 V A⁻¹ by BET).

Fig. S2 Stress-strain curves of (a) CW and HDCW and (b) Zn/CW and Zn/HDCW.

Fig. S3 (a) Dependence of Zn loading amount on HDCW with deposition charge passed (10-50 C). The insets showing the optical images of the obtained Zn/HDCW anodes. (b) XRD patterns of the Zn/HDCW anodes prepared with 10, 20, 30, 40, and 50 C of charge passed.

Fig. S4 Zn LMM XPS spectra of Zn/HDCW, Zn/CW, and Zn/CC anodes.

Fig. S5 CV curves of (a) Zn/HDCW-, (b) Zn/CW-, and (c) Zn/CC-based full ZIBs at different scan rates. (d) The Zn stripping potential of the full ZIBs at different scan rates.

Fig. S6 GCD curves of (a) Zn/HDCW-10-, (b) Zn/HDCW-20-, (c) Zn/HDCW-30-, (d) Zn/HDCW-40-, and (e) Zn/HDCW-50-based full ZIBs at different current densities. (f) The specific capacitances of the full ZIBs assembled with different Zn/HDCW anodes

at 0.1 A g⁻¹.

Fig. S7 GCD curves of (a) Zn/HDCW-, (b) Zn/CW-, (c) Zn/CC-based full ZIBs at different current densities. (d) The specific capacitances of Zn/HDCW-, Zn/CW- and

Zn/CC-based full ZIBs at different current densities.

Anode	Cathode	Electrolyte	Current density (A g ⁻¹)	Initial capacity (mAh g ⁻¹)	Retentio n (%)	Ref.
Zn@CC- CNF	MnO ₂	2.0 M ZnSO ₄	1.0	201.2	49.7 after 300 cycles	1
FZn@Cu	MnO ₂	2.0 M ZnSO ₄	1.0	207.3	64.6 after 1000 cvcles	2
Zn/rGO@C C	MnO ₂	2.0 M ZnSO ₄ and 0.1M MnSO ₄	1.5	217.8	136.3 after 1000 cycles	3
ZnP/CF	MnO ₂	2.0 M ZnSO ₄ and 0.1M MnSO ₄	1.6	75.0	93.2 after 7000 cvcles	4
CNF- Zn@Zn	NaV ₃ O ₈ · 1.5H ₂ O	2.0 M ZnSO ₄ and 1.0 M Na ₂ SO ₄	2.0	103.0	125.9 after 300 cvcles	5
Zn@Cu nanosheets @ACC	MnO ₂	1.0 M ZnSO ₄	1.0	287.8	94.8 after 1000 cycles	6
Zn@C-5	MnO ₂	2.0 M ZnSO ₄ and 0.1M MnSO ₄	0.5	187.5	75.0 after 800 cvcles	7
Zn@CFs	MnO ₂	2.0 M ZnSO ₄ and 0.1M MnSO ₄	0.3	275.8	86.8 after 140 cycles	8
c-PLA@Zn	V ₂ O ₅	1.0 M ZnSO ₄	1.0	263.2	76.0 after 1000 cycles	9
Zn@CNS	MnO ₂	2.0 M ZnSO ₄	1.0	142.6	74.0 after 1200	10
Zn/HDCW	MnO ₂	2.0 M ZnSO ₄ and 0.1M MnSO ₄	1.0	170.8	100 after 300 cycles	This work

Table S4 Comparison of electrochemical performance of Zn/HDCW-based full ZIB

with previously reported full cells using other Zn anodes.

Supplementary references

1. Z. Jiang, S. Zhai, L. Shui, Y. Shi, X. Chen, G. Wang and F. Chen, J. Colloid

Interface Sci., 2022, 623, 1181-1189.

- X. Wu, Z. Yang, Q. Song, X. Sun, Y. Xu, M. Zhao, X. Li, Y. Yan and M. Chen, Chem. Eng. J., 2024, 497, 154395.
- Q. Wang, J. Zhao, J. Zhang, X. Xue, M. Li, Z. Sui, X. Zhang, W. Zhang and C. Lu, *Adv. Funct. Mater.*, 2023, **33**, 2306346.
- 4. Y. Du, X. Chi, J. Huang, Q. Qiu and Y. Liu, J. Power Sources, 2020, 479, 228808.
- J.-H. Wang, L.-F. Chen, W.-X. Dong, K. Zhang, Y.-F. Qu, J.-W. Qian and S.-H. Yu, ACS Nano, 2023, 17, 19087-19097.
- 6. Y. Qian, C. Meng, J. He and X. Dong, J. Power Sources, 2020, 480, 228871.
- J. Wang, H. Zhang, L. Yang, S. Zhang, X. Han and W. Hu, *Angew. Chem. Int. Ed.*, 2024, 63, e202318149.
- W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang and Y.-G. Guo, *RSC Adv.*, 2018, 8, 19157-19163.
- M. Abouali, S. Adhami, S. A. Haris and R. Yuksel, *Angew. Chem. Int. Ed.*, 2024, 63, e202405048.
- H. Jin, H. Xiao, Y. Liu, L. Zhu, L. Xie, Q. Han, X. Qiu and X. Cao, *Mater. Today Energy*, 2024, 46, 101733.