Supporting information

Novel high-efficiency and superior thermal stability red-emitting phosphor for WLED

Liang Zhang ^{a*}, Yuwen Huang ^a, Baiqi Shao^{b*}

^a School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou

221018, China

b Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000,

P.R. China

Fig. S1 The XRD patterns of (a) LMSAB:xMn²⁺ (x=0.1, 0.2, 0.3, 0.4, 0.5) and (b) LMSAB:xMn²⁺

(x=0.6, 0.7, 0.8, 0.9) samples

Table ST Kleiveld refinement data and statistics for LWSAD.0./Win- and LWSAD.0./Win-,0.1Eu	Table	S1 Rietveld	l refinement	data and	statistics	for	LMSAB:0.7Mn ²⁺	and LMSAB:0.7Mn ²	²⁺ ,0.1Eu ²
--	-------	-------------	--------------	----------	------------	-----	---------------------------	------------------------------	-----------------------------------

Sample	LMSAB:0.7Mn ²⁺	LMSAB:0.7Mn ²⁺ ,0.1Eu ²⁺
Space group		R
a=b, Å	14.5812(4)	14.5828(3)
c, Å	6.50040(12)	6.50302(11)
$\alpha = \beta$	90	90
γ	120	120

V, Å ³	1196.90(5)	1197.65(4)
Rwp, %	7.53%	8.18%
Rp, %	4.96%	5.67%
χ ²	1.642	1.733

1 whe be remine womme positions, merman parameters, and becapanetes of Employ 1, 111
--

Atom	Х	У	Z	occ
Sr	0.33330	0.66670	0.66670	1
Al	0.33330	0.66670	0.16670	1
Mg	0.0973(4)	0.5062(4)	0.9190(9)	0.0525
Li	0.0973(4)	0.5062(4)	0.9190(9)	0.836
B1	0.1332(6)	0.5251(6)	0.3549(14)	1
B2	0.0581(7)	0.3635(8)	0.5889(15)	1
01	0.04893(28)	0.47712(28)	0.2205(6)	1
O2	0.21321(21)	0.62968(29)	0.3360(5)	1
03	0.14704(26)	0.46855(29)	0.5142(5)	1
O4	0.0414(3)	0.3718(3)	0.8035(8)	1
Mn	0.0973(4)	0.5062(4)	0.9190(9)	0.1115

Table S3 Refined atomic positions, thermal parameters, and occupancies of LMSAB:0.7Mn^{2+}, 0.1Eu^{2+}

)-			
Atom	Х	У	Z	occ
Sr	0.33330	0.66670	0.66670	0.9
Al	0.33330	0.66670	0.16670	1
Mg	0.0975(4)	0.5064(4)	0.9206(9)	0.0525
Li	0.0975(4)	0.5064(4)	0.9206(9)	0.836
B1	0.1334(5)	0.5259(5)	0.3543(13)	1
B2	0.0579(6)	0.3640(7)	0.5891(16)	1
01	0.04883(27)	0.47702(23)	0.2206(5)	1

O2	0.21307(20)	0.62973(28)	0.3365(5)	1
O3	0.14692(23)	0.46857(25)	0.5136(5)	1
O4	0.04154(28)	0.37152(30)	0.8040(7)	1
Mn	0.0975(4)	0.5064(4)	0.9206(9)	0.1115
Eu	0.33330	0.66670	0.66670	0.1

Table S4	Selected	bond	lengths	of LN	ASAB:	$0.7 Mn^{2+}$
	Derected	oona .	reingund		10110.0	J. / 1 / 111

	Bond Lengths		Bond Lengths		Bond Lengths		
	(Å)		(Å)		(Å)		
Sr-O2	2.65290(4)	Al-O2	1.91502(0)	Mg-O1	2.04883(4)		
Sr-O2	2.65290(4)	Al-O2	1.91502(0)	Mg-O2	2.04514(5)		
Sr-O2	2.65290(4)	Al-O2	1.91502(3)	Mg-O3	2.06058(5)		
Sr-O2	2.65290(4)	Al-O2	1.91502(3)	Mg-O4	1.87527(3)		
Sr-O2	2.65290(4)	Al-O2	1.91502(3)				
Sr-O2	2.65290(4)	Al-O2	1.91502(4)				
Sr-O3	2.97277(4)						
Sr-O3	2.97277(4)						
Sr-O3	2.97277(8)						
Sr-O3	2.97277(8)						
Sr-O3	2.97277(5)						
Sr-O3	2.97277(5)						
Table S5 Selected bond lengths of LMSAB:0.7Mn ²⁺ ,0.1Eu ²⁺							
	Bond Lengths		Bond Lengths		Bond Lengths		
	(Å)		(Å)		(Å)		

Sr-O2	2.65370(4)	Al-O2	1.91542(3)	Mg-O1	2.04960(4)
Sr-O2	2.65370(4)	Al-O2	1.91542(3)	Mg-O2	2.04540(4)
Sr-O2	2.65369(4)	Al-O2	1.91542(3)	Mg-O3	2.006087(4)
Sr-O2	2.65369(4)	Al-O2	1.91542(3)	Mg-O4	1.87551(3)
Sr-O2	2.65369(4)	Al-O2	1.91542(3)		
Sr-O2	2.65369(4)	Al-O2	1.91542(3)		
Sr-O3	2.97320(6)				
Sr-O3	2.97320(6)				
Sr-O3	2.97320(6)				
Sr-O3	2.97320(6)				
Sr-O3	2.97320(4)				
Sr-O3	2.97320(4)				

