
Supporting Information

Excitation Wavelength-Dependent Room Temperature Phosphorescence Based on Dual Confinements of Organic-Inorganic Matrix for Dynamic Information Encryption

Xianglong Zhao,^{‡a} Shaoyue Shuai,^{‡a} Runze Wang,^a Feifei Peng,^a Xianggui Kong,^{a,b} Wenying Shi*^{a,c}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing (P. R. China). ^bQuzhou Institute for Innovation in Resource Chemical Engineering, Zhejiang 324000, China. ^cQingyuan Innovation Laboratory, Quanzhou 362801, China. *E-mail: <u>shiwy@mail.buct.edu.cn</u> ‡ These authors contributed equally to this work.

† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Fig. S1. Different dissolution temperatures were used to dissolve TA: (A) 30 °C; (B) 40 °C; (C) 50 °C; and (D) 60 °C.

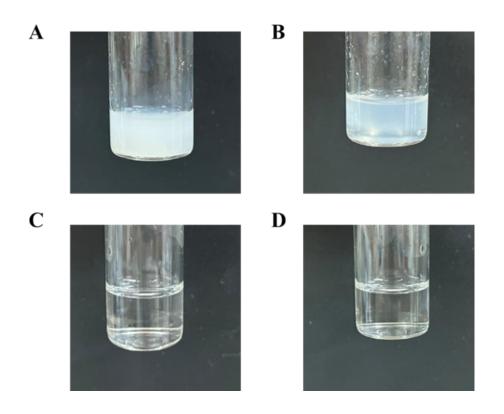


Fig. S2. CDs-LDHs were etched using different mass fractions of HCl, respectively (A) nonetching. (B) 5% HCl. (C) 10% HCl. (D) 15% HCl.

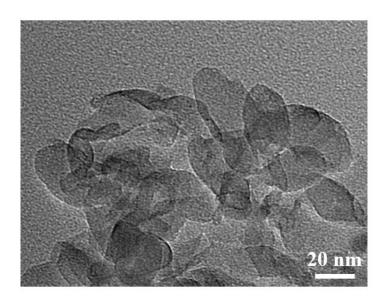


Fig. S3. TEM images of TA-LDHs.

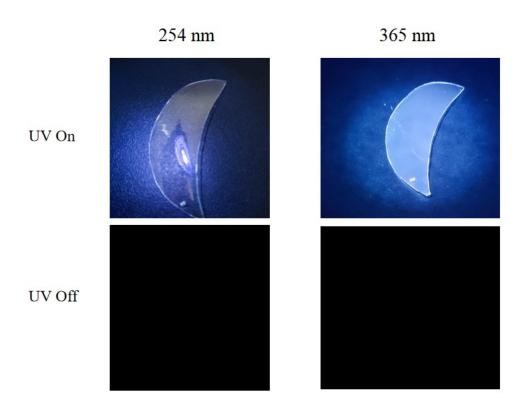


Fig. S4. Photographs of PVA before and after turning off the 254 nm and 365 nm UV lamp.

Sample	QY (%)	$ au_{\mathrm{ave}}(\mathrm{ms})$
CDs-LDHs	4.15	127.11
CDs-LDHs@PVA	5.04	205.24

Table S1. The RTP decay and RTP quantum yield of CDs-LDHs and CDs-LDHs@PVA.