**Supplementary Information** 

## AdcA lipoprotein involved in Zn(II) transport in *Streptococcus mutans* – is it as metal-specific as expected?

Kinga Garstka,<sup>a</sup> Aleksandra Hecel,\*<sup>a</sup> Henryk Kozłowski,<sup>a,b</sup> Alicia Dominguez-Martin,<sup>c</sup> Krzysztof Szewczyk<sup>d</sup> and Magdalena Rowińska-Żyrek \*<sup>a</sup>

<sup>&</sup>lt;sup>a.</sup> Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland. E-mail: magdalena.rowinska-zyrek@uwr.edu.pl, aleksandra.hecel2@uwr.edu.pl

<sup>&</sup>lt;sup>b.</sup> Institute of Health Sciences, University of Opole, Katowicka 68 St, 45-060 Opole, Poland

<sup>&</sup>lt;sup>c.</sup> Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain

<sup>&</sup>lt;sup>d.</sup> Department of Oncology, Wrocław Medical University, pl. L. Hirszfelda 12, 53-413 Wrocław

*<sup>†</sup>Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x* 

| 10                 | 20                 | 30         | 4 0        | 50         |
|--------------------|--------------------|------------|------------|------------|
| MRKKPFIIVS         | LLLVILAVVI         | AFLLAKDGEK | RSNGKLNVVT | TFYPMYEFTK |
| 60                 | 70                 | 80         | 90         | 100        |
| NVVGDQGKVS         | LLIKAGTEVH         | DFEPSTKDVT | RIQEADTFVY | DSDSMETWVK |
| 110                | 120                | 130        | 140        | 150        |
| SVKKSVDTQK         | VPFVKATGNM         | ILAPGVTEEE | GHGHKGHHHA | YDPHVWLSPK |
| 160                | 170                | 180        | 190        | 200        |
| RAIKLVENIR         | DALSKKFPHR         | AKIFKKNAAN | YIDKLQTLDK | EYAEGLANAK |
| 210                | 220                | 230        | 240        | 250        |
| QKSFVTQHAA         | FGYLALDYGL         | TQIPITGLTA | ESEPSAKRLA | ELSKYVKEYG |
| 260                | 270                | 280        | 290        | 300        |
| INYIYFEENA         | SSAVSKTLAD         | ETGVKTAVLS | PLESLTQKQM | DAGENYFSVM |
| 310                | 320                | 330        | 340        | 350        |
| RANLKALKKT         | TDSAGKEIKP         | EMDSDKTVAN | GYFKDKSVKN | RKLSDWSGKW |
| 360                | 370                | 380        | 390        | 400        |
| QSIYPYLENG         | TLDSVWDYKA         | KSKKDMTAQE | YKEYYTKGYK | TDVEKITIDG |
| 410                | 420                | 430        | 440        | 450        |
| KKNTITFVQK         | GKEHKYTYKY         | VGYKILTYKK | GNRGVRYLFE | TKDKGAGEFK |
| 460                | 470                | 480        | 490        | 500        |
| YVQFSD <b>hgik</b> | <b>SQKAEHFH</b> LF | WGSESQDKLL | EEMGNWPTYY | PANLTGRQIA |
| 510                |                    |            |            |            |
| QEIVAH             |                    |            |            |            |

Figure 1. Amino acid sequence of AdcA protein from *Streptococcus mutans*, probable Zn(II) binding sites are highlighted in red



Figure 2. Species distribution diagrams for the formation of A) Zn(II) complexes with the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) Zn(II) complexes with the Ac-HGIKSQKAEHFH-NH<sub>2</sub>; T = 298 K; I = 0.1 M; [L] = 0.0005 M; M(II)/L molar ratio = 0.8 : 1

A)





B)



Figure 3. Species distribution diagrams for the formation of A) Cu(II) complexes with the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) Cu(II) complexes with the Ac-HGIKSQKAEHFH-NH<sub>2</sub>; T = 298 K; I = 0.1 M; [L] = 0.0005 M; M(II)/L molar ratio = 0.8 : 1

A)



Figure 4. UV-Vis spectra of Cu(II) complexes with A) the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) the Ac-HGIKSQKAEHFH-NH<sub>2</sub> in the range 200-800 nm and pH range 2.0-11.0; T = 298 K; optical path = 1 cm; [L] = 0.0005 M; M(II)/L = 0.8 : 1



Figure 5. CD spectra of Cu(II) complexes with A) the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) the Ac-HGIKSQKAEHFH-NH<sub>2</sub> in the range 200-800 nm and pH range 2.0-11.0; T = 298 K; optical path = 1 cm; [L] = 0.0005 M; M(II)/L = 0.8 : 1



Figure 6. EPR spectra of Cu(II) complexes with A) the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) the Ac-HGIKSQKAEHFH-NH<sub>2</sub>



Figure 7. Species distribution diagrams for the formation of A) Ni(II) complexes with the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) Ni(II) complexes with the Ac-HGIKSQKAEHFH-NH<sub>2</sub>; T = 298 K; I = 0.1 M; [L] = 0.0005 M; M(II)/L molar ratio = 0.8 : 1

A)



Figure 8. CD spectra of Ni(II) complexes with A) the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) the Ac-HGIKSQKAEHFH-NH<sub>2</sub> in the range 250-800 nm and pH range 2.5-10.5; T = 298 K; optical path = 1 cm; [L] = 0.0005 M; M(II)/L = 0.8 : 1



λ [nm]

Figure 9. UV-Vis spectra of Ni(II) complexes with A) the Ac-EGHGHKGHHHA-NH<sub>2</sub>; B) the Ac-HGIKSQKAEHFH-NH<sub>2</sub> in the range 200-800 nm and pH range 2.5-10.5; T = 298 K; optical path = 1 cm; [L] = 0.0005 M; M(II)/L = 0.8 : 1

| Ac-EGHGHKGHHHA-NH <sub>2</sub> |           |      |            |                                      |      |                                      |             |            |                      |
|--------------------------------|-----------|------|------------|--------------------------------------|------|--------------------------------------|-------------|------------|----------------------|
|                                |           |      | UV-Vis     |                                      | CD   |                                      | EPR         |            |                      |
|                                | Log β     | LogK | λ ε        |                                      | λ Δε |                                      | <b>A</b> ,, |            |                      |
|                                |           |      | [nm]       | [M <sup>-1</sup> ·cm <sup>-1</sup> ] | [nm] | [M <sup>-1</sup> ·cm <sup>-1</sup> ] | [G]         | <b>g</b> # |                      |
| CuH₄L                          | 36.62 (1) |      |            |                                      | 256  | 0.64                                 | •           |            |                      |
|                                | . ,       |      | 328        | 154.16                               | 314  | 0.10                                 | 150         | 2.31       | $1N_{im}/2N_{im}$    |
|                                |           |      | 640        | 54.81                                | 540  | -0.11                                |             |            |                      |
|                                | 32.28 (1) | 4.34 | 220        | 100.17                               | 254  | 1.08                                 |             |            |                      |
| CuH₃L                          |           |      | 328        | 188.17                               | 311  | 0.19                                 | 171         | 2.28       | 2N <sub>im</sub>     |
|                                |           |      | 627        | 69.96                                | 554  | -0.18                                |             |            |                      |
|                                | 26.91 (2) | 5.37 | 224        | 271.20                               | 253  | 1.65                                 |             |            |                      |
| CuH₂L                          |           |      | 534<br>606 | 271.39                               | 308  | 0.29                                 | 188         | 2.25       | 3N <sub>im</sub>     |
|                                |           |      | 000        | 76.29                                | 546  | -0.30                                |             |            |                      |
|                                | 20.35 (2) | 6.56 |            |                                      | 256  | 1.53                                 |             |            |                      |
| CULI                           |           |      | 331        | 433.12                               | 385  | 0.04                                 | 100         | 2.25       | 3NI 1NI-             |
| CUHL                           |           |      | 604        | 98.51                                | 545  | -0.22                                | 100         | 2.25       |                      |
|                                |           |      |            |                                      | 643  | 0.11                                 |             |            |                      |
|                                | 12.69 (3) | 7.66 |            |                                      | 264  | 2.40                                 |             |            |                      |
|                                |           |      |            |                                      | 334  | -0.55                                |             |            |                      |
| Cul                            |           |      | 333        | 637.11                               | 392  | 0.07                                 | 105         | 2 22       | 1N. 2N-              |
| CUL                            |           |      | 593        | 108.24                               | 488  | 0.14                                 | 195 2.25    |            |                      |
|                                |           |      |            |                                      | 546  | -0.14                                |             |            |                      |
|                                |           |      |            |                                      | 634  | 0.27                                 |             |            |                      |
| CuH.1L                         | 5.23 (3)  | 7.46 |            |                                      | 265  | 2.60                                 |             |            |                      |
|                                |           |      | 331        | 699 61                               | 335  | -0.76                                |             |            |                      |
|                                |           |      | 571        | 109.82                               | 488  | 0.20                                 | 205         | 2.21       | 1N <sub>im</sub> 3N⁻ |
|                                |           |      |            |                                      | 547  | -0.14                                |             |            |                      |
|                                |           |      |            |                                      | 634  | 0.26                                 |             |            |                      |
| CuH₋₂L                         | -4.40 (5) | 9.63 |            |                                      | 263  | 1.92                                 |             |            |                      |
|                                |           |      | 337 6      | 37 611.55<br>62 113 24               | 329  | -0.47                                |             | 2.21       |                      |
|                                |           |      | 562        |                                      | 490  | 0.19                                 | 205         |            | 1N <sub>im</sub> 3N⁻ |
|                                |           |      | 502        | 110.2 1                              | 556  | -0.06                                |             |            |                      |
|                                |           |      |            |                                      | 633  | 0.25                                 |             |            |                      |

Table 1 Equilibrium constants for Ac-EGHGHKGHHHA- $NH_2$  ligand, spectroscopic parameters and proposed coordination modes for Cu(II) complexes at T = 298 K and I = 0.1 M ( $NaClO_4$ ); M(II)/L = 0.8 : 1

| Table 2 Equilibrium constants for Ac-HGIKSQKAEHFH-NH <sub>2</sub> ligand, spectroscopic parameters and proposed |
|-----------------------------------------------------------------------------------------------------------------|
| coordination modes for Cu(II) complexes at T = 298 K and I = 0.1 M (NaClO <sub>4</sub> ); $M(II)/L = 0.8 : 1$   |

| Ac-HGIKSQKAEHFH-NH <sub>2</sub> |            |      |            |                  |                                 |                                        |                       |                        |                                    |
|---------------------------------|------------|------|------------|------------------|---------------------------------|----------------------------------------|-----------------------|------------------------|------------------------------------|
|                                 | Logß       | LogK | UV-Vis     |                  | CD                              |                                        | EPR                   |                        | Pinding mode                       |
|                                 | LOGO       |      | λ<br>[nm]  | €<br>[M⁻¹ cm⁻¹]  | λ<br>[nm]                       | Δε<br>[M⁻¹·cm⁻¹]                       | A <sub>"</sub><br>[G] | <b>g</b> <sub>11</sub> | Sinding mode                       |
| CuH₃L                           | 33.73 (3)  |      | 352<br>672 | 104.99<br>32.28  | 238                             | -2.19                                  | 152                   | 2.31                   | 1N <sub>im</sub> /2N <sub>im</sub> |
| CuH₂L                           | 28.18 (5)  | 5.55 | 346<br>619 | 156.69<br>47.99  | 233<br>269<br>341               | -0.47<br>0.48<br>-0.32                 | 170                   | 2.26                   | 3N <sub>im</sub>                   |
| CuHL                            | 22.49 (4)  | 5.69 | 336<br>534 | 398.07<br>78.32  | 259<br>342<br>480<br>544<br>635 | 3.24<br>-1.54<br>0.32<br>-0.51<br>0.33 | 193                   | 2.20                   | 3N <sub>im</sub> 1N <sup>-</sup>   |
| CuL                             | 15.68 (5)  | 6.81 | 335<br>526 | 430.07<br>85.17  | 259<br>342<br>481<br>544<br>630 | 3.57<br>-1.71<br>0.29<br>-0.54<br>0.33 | 195                   | 2.20                   | 2N <sub>im</sub> 2N <sup>-</sup>   |
| CuH.1L                          | 8.24 (4)   | 7.44 | 331<br>528 | 452.75<br>87.72  | 259<br>342<br>479<br>545<br>633 | 3.71<br>-1.80<br>0.32<br>-0.55<br>0.35 | 206                   | 2.20                   | 1N <sub>im</sub> 3N <sup>-</sup>   |
| CuH.2L                          | -1.00 (7)  | 9.24 | 327<br>528 | 476.53<br>91.57  | 259<br>342<br>479<br>544<br>635 | 3.79<br>-1.77<br>0.29<br>-0.56<br>0.35 | 206                   | 2.20                   | 1N <sub>im</sub> 3N <sup>-</sup>   |
| CuH₋₃L                          | -10.60 (5) | 9.60 | 337<br>528 | 552.11<br>103.49 | 262<br>342<br>531<br>644        | 4.11<br>-0.73<br>-0.88<br>0.55         | 206                   | 2.20                   | 1N <sub>im</sub> 3N <sup>-</sup>   |