Supplementary material for

Selective and sensitive detection of CO₂ using phosphorescent iridium(III) complexes containing 1,10-phenanthroline derivatives as neutral ligands

Xiaoxue Liu, Xi Chu, Chenghao Li, Hongyi Liu, Yihao Zheng, Hongyan Li*

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401,

China

^{*} Corresponding authors.

E-mail address: hyli@hebut.edu.cn

Figures and Tables captions

Experimental Section

Fig. S1. The ¹H NMR spectrum of the complex 1.
Fig. S2. The ¹³C NMR spectrum of the complex 1.
Fig. S3. The ¹H NMR spectrum of the complex 2.
Fig. S4. The ¹³C NMR spectrum of the complex 2.
Fig. S5. The ¹H NMR spectrum of the complex 3.
Fig. S6. The ¹³C NMR spectrum of the complex 3.
Fig. S7. The ¹H NMR spectrum of the complex 4.
Fig. S8. The ¹³C NMR spectrum of the complex 4.
Fig. S9. The ¹H NMR spectrum of the complex 5.
Fig. S10. The ¹³C NMR spectrum of the complex 5.
Fig. S11. The ¹H NMR spectrum of the complex 6.

Fig. S13. The ¹H NMR spectrum of the complex 7.

Fig. S14. The ¹³C NMR spectrum of the complex 7.

Fig. S15. The ¹H NMR spectrum of the complex **8**.

Fig. S16. The ¹³C NMR spectrum of the complex 8.

Fig. S17. Photoluminescence spectra of **1** upon addition of various anions (3.0 equiv.) in acetonitrile solution.

Fig. S18. Photoluminescence spectra of **5** upon addition of various anions (3.0 equiv.) in acetonitrile solution.

Fig. S19. The phosphorescence responses of complexes **5** in the presence of CH₃COO⁻ and then bubbling excess O₂, N₂, Ar, and CO gas.

Fig. S20. The anti-interference experiment results of complex 5 in the presence of CH_3COO^- for sensing CO₂.

Fig. S21. Phosphorescence intensity change of 1-CH₃COO⁻ (left) and complex

5–CH₃COO⁻ symstem (5 μ M) upon bubbling with various quantities of CO₂.

Table S1 The frontier orbital energy and electron density distribution for complexes 1–8.

Table S2 Main experimental and calculated optical transitions for complexes 1-8.

 Table S3 The coordination geometry used to detect CO2 and its corresponding detection

 limits

1. Experimental

1.1 General procedures

All reagents and chemicals were obtained from commercial sources and used as received without further purification. In order to avoid the interference from the difference of cations, the corresponding tetrabutylammonium salts of CH₃COO⁻, F⁻, Br⁻, I⁻, SO₄^{2–}, HSO₄⁻, NO₃⁻, Cl⁻ were chosen to prepare the anionic solution used in the experiments. The ¹H and ¹³C NMR spectra were acquired at 298 K on the Bruker AM 400 MHz instrument. Elemental analyses were performed by FLASHEA 112 Series. Electrospray ionization mass spectrometric (ESI-MS) measurements were made on Agilent 6520 Q-TOF LC/MS. Absorption and photoluminescence spectra were recorded by a UV-2700 spectrophotometer and Hitachi F-2700 photoluminescence spectrophotometer. Edinburgh Instruments FLS920P fluorescence spectrometer was used to measure the phosphorescence lifetimes of the complexes. The photoluminescent quantum yield were calculated according to the equation by comparing the emission intensity (integral areas) of the standard sample (Ir(ppy)₃) with that of the unknown sample. The equation is as follows.

$$\boldsymbol{\Phi}_{unk} = \boldsymbol{\Phi}_{std} (\frac{I_{unk}}{I_{std}}) (\frac{A_{std}}{A_{unk}}) \left(\frac{\eta_{unk}}{\eta_{std}}\right)^2$$

Where the subscripts for unk and std represent the unknown sample and $Ir(ppy)_3$, respectively. The physical quantity I represents the integrated emission intensity of their solution, The physical quantity A represents the absorbance of their solution at their excitation wavelength, and the letter η represents the refractive indices of the corresponding solvents (pure solvents were assumed). The Φ_{std} of Ir(ppy)₃ measured in oxygen-free dichloromethane solution at 298 K has been revalued to be 0.97 (error: ±10%).

1.2 Computational details

The Gaussian 09 software package was used to do all of the calculations. The density functional theory (DFT) and time-dependent DFT (TD-DFT) were carried out with no symmetry constraints to investigate optimized geometries and electron configurations with the Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid density functional theory. Ir atoms were based on the LANL2DZ basis throughout all calculations, while all non-metallic atoms were based on the 6-31G (d, p) basis. Considering the influence of solvent effect, the polarized continuum model approach was used to simulate the interaction with solvent in the calculation process.

1.3 Synthesis of complexes 1–8

A mixture of the Ir(III) chloro-bridged dimers (1.0 equiv.) and the neutral ligand (1.1 equiv.) were refluxed 12 h at 70 °C in a mixed solvent (30 mL) of CH_2Cl_2 and CH_3OH (1:1, v:v) under nitrogen atmosphere. After cooling to room temperature, KPF₆ was added to the reaction solution and the mixture was continued to stir for 2 h. The solvent was evaporated under reduced pressure to obtain the crude product. The combined organic phase was concentrated and purified by column

chromatography using dichloromethane and methanol as the eluent (v / v = 20:1) to provide complexes 1-8.

 $[(F_{4}ppy)_{2}Ir(pip)](PF_{6})$ (1): 0.31 g (0.27 mmol) of $(F_{4}ppy)_{2}Ir(\mu$ -Cl)]₂ and 0.18 g (0.62 mmol) of pip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g yellow powder. Yield: 77%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.37 (s, 1H), 9.22 (s, 2H), 8.30 (s, 4H), 8.21 (s, 2H), 8.14–8.05 (m, 4H), 7.97–7.87 (m, 2H), 7.66(s, 2H), 7.61 (s, 1H), 7.50 (s, 2H), 7.02 (s, 2H), 6.93 (s, 2H), 5.88 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.18, 163.50 (d, *J* = 253.5 Hz), 153.92, 153.86, 153.28, 149.72, 149.24, 144.54, 141.10, 139.62, 133.02, 131.01, 129.82, 129.78, 127.98 (d, *J* = 10.1 Hz), 127.72, 127.10, 124.41, 120.71, 117.46 (d, *J* = 17.2 Hz), 110.20 (d, *J* = 23.2 Hz). MS (ESI) m/z: calcd for $[C_{42}H_{26}F_{2}IrN_{6}]^{+}$, 833.1816; found, 833.1811 [M-PF₆]⁺.

[(F₄piq)₂Ir(pip)](PF₆) (**2**): 0.31 g (0.27 mmol) of [(F₄piq)₂Ir(μ-Cl)]₂ and 0.18 g (0.62 mmol) of pip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g orange powder. Yield: 75%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.38 (s, 1H), 9.21 (d, *J* = 7.8 Hz, 2H), 9.00 (d, *J* = 6.6 Hz, 2H), 8.57–8.50 (m, 2H), 8.31 (d, *J* = 7.4 Hz, 2H), 8.15–8.04 (m, 6H), 7.90 (d, *J* = 7.6 Hz, 4H), 7.67 (t, *J* = 7.0 Hz, 2H), 7.61 (d, *J* = 7.1 Hz, 1H), 7.47 (d, *J* = 6.3 Hz, 2H), 7.39 (t, *J* = 5.9 Hz, 2H), 7.04 (t, *J* = 8.2 Hz, 2H), 5.90 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.11, 163.28 (d, *J* = 256.5 Hz), 157.47, 153.40, 149.17, 144.35, 142.31, 141.15, 137.08, 133.50 (d, *J* = 9.1 Hz), 133.08, 132.75, 130.96, 130.86, 130.09, 129.97, 129.77, 128.26, 127.81, 127.12, 126.79, 125.88, 122.83, 117.90 (d, *J* = 16.2 Hz), 110.12 (d, *J* = 22.2 Hz). MS (ESI) m/z: calcd for [C₄₉H₃₀F₂IrN₆]⁺, 933.2129; found, 933.2175 [M-PF₆]⁺.

[(F₄ppy)₂Ir(tfpip)](PF₆) (**3**): 0.31 g (0.27 mmol) of [(F₄ppy)₂Ir(μ-Cl)]₂ and 0.18 g (0.62 mmol) of tfpip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g yellow powder. Yield: 71%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.65 (s, 1H), 9.23 (d, *J* = 7.0 Hz, 2H), 8.54 (d, *J* = 7.1 Hz, 2H), 8.28 (d, *J* = 7.1 Hz, 2H), 8.24 – 8.20 (m, 2H)., 8.08 (d, *J* = 8.3 Hz, 6H), 7.95–7.90 (m, 2H), 7.52–7.47 (m, 2H), 7.02 (s, 2H), 6.93 (s, 2H), 5.87 (d, *J* = 7.3 Hz, 2H):¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.18, 163.50 (d, *J* = 253.5 Hz), 153.82, 151.58, 149.73, 149.50, 144.81, 141.09, 139.64, 133.59, 133.11, 130.81, 130.49, 128.00 (d, *J* = 9.1 Hz), 127.71, 126.83, 124.41, 123.22, 120.73, 117.46 (d, *J* = 17.2 Hz), 110.21 (d, *J* = 22.2 Hz). MS (ESI) m/z: calcd for $[C_{42}H_{25}F_5IrN_6]^+$, 901.1690; found, 901.1701 [M–PF₆]⁺.

[(F₄piq)₂Ir(tfpip)](PF₆) (**4**): 0.31 g (0.27 mmol) of [(F₄piq)₂Ir(μ -Cl)]₂ and 0.18 g (0.62 mmol) of tfpip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g orange powder. Yield: 76%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.61 (s, 1H), 9.19 (d, *J* = 7.1 Hz, 2H), 9.05–8.98 (m, 2H), 8.52 (s, 4H), 8.15 (s, 2H), 8.07 (d, *J* = 15.0 Hz, 6H), 7.92–7.86 (m, 4H), 7.47 (s, 2H), 7.41 (s, 2H), 7.04 (s, 2H), 5.93 (d, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.10, 163.28 (d, *J* = 253.5 Hz), 157.43, 157.39, 151.62, 149.47, 144.64, 142.32, 141.18, 137.09, 133.64, 133.52 (d, *J* = 7.2 Hz), 133.18, 132.78, 130.79, 130.46, 130.11, 128.27, 127.71, 126.80, 125.87, 123.24, 122.84, 117.90 (d, *J* = 17.2 Hz), 110.16 (d, *J* = 23.2 Hz). MS (ESI) m/z: calcd for [C₅₀H₂₉F₅IrN₆]⁺, 1001.2003; found, 1001.2070 [M-PF₆]⁺.

 $[(F_{3,5}ppy)_2Ir(pip)](PF_6)$ (5): 0.31 g (0.27 mmol) of $[(F_{3,5}ppy)_2Ir(\mu-Cl)]_2$ and 0.18 g (0.62 mmol) of pip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g yellow powder. Yield: 76%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.22 (d, *J* = 8.2 Hz, 2H), 8.35–8.28 (m, 4H), 8.26 (d, *J* = 4.2 Hz, 2H), 8.13–8.05 (m, 2H), 7.92 (d, *J* = 8.9 Hz, 2H), 7.85 (t, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 6.9 Hz, 2H), 7.58 (d, *J* = 6.9 Hz, 1H), 7.43 (d, *J* = 5.3 Hz, 2H), 6.91 (t, *J* = 6.2 Hz, 2H), 6.76 (t, *J* = 9.0 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.50, 169.39, 167.13, 167.01, 166.37, 160.32 (dd, *J* = 238.4 Hz, *J* = 12.1 Hz), 150.32, 148.87, 144.36, 139.24, 133.34, 130.64 (d, *J* = 10.8 Hz), 129.69, 127.85, 127.12, 124.66, 123.85, 123.51, 121.16, 108.88 (d, *J* = 22.7 Hz), 105.52 (dd, *J* = 33.3 Hz, *J* = 25.3 Hz). Anal. Calcd. for C₄₁H₂₄F₄IrN₆: C, 48.57; H, 2.39; N, 8.29. Found: C, 48.63; H, 2.37; N, 8.25. MS (ESI) m/z: calcd for [C₄₁H₂₄F₄IrN₆]⁺, 869.1628; found, 869.1655 [M-PF₆]⁺.

[(F_{3,5}piq)₂Ir(pip)](PF₆) (**6**): 0.31 g (0.27 mmol) of [(F_{3,5}piq)₂Ir(μ-Cl)]₂ and 0.18 g (0.62 mmol) of pip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g orange powder. Yield: 73%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.11 (d, J = 8.1 Hz, 2H), 8.28 (d, J = 8.1 Hz, 2H), 8.16 (d, J = 4.9 Hz, 2H), 8.12–8.06 (m, 3H), 8.05–7.97 (m, 4H), 7.91 (t, J = 7.8 Hz, 3H), 7.78 (d, J = 4.3 Hz, 1H), 7.49 (d, J = 5.6 Hz, 2H), 7.35–7.25 (m, 2H), 7.02 (t, J = 6.6 Hz, 2H), 6.96–6.90 (m, 2H), 5.90–5.84 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.95, 166.83, 162.82, 159.78 (dd, J = 238.4 Hz, J = 12.1 Hz),153.48, 149.53, 149.45, 149.37, 149.27, 149.17, 144.36, 141.81, 136.90, 133.50, 132.56, 131.02, 130.16, 129.82 (d, J = 8.1 Hz), 128.09, 127.15, 126.56, 126.17, 126.03, 122.80, 114.05 (d, J = 23.2 Hz), 106.12 (d, J = 24.2 Hz). Anal. Calcd. for C₄₉H₂₈F₄IrN₆: C, 52.83; H, 2.53; N, 7.54. Found: C, 53.04; H, 2.64; N, 7.41. MS (ESI) m/z: calcd for [C₄₉H₂₈F₄IrN₆]⁺, 969.1941; found, 969.1990 [M-PF₆]⁺.

[(F_{3,5}ppy)₂Ir(tfpip)](PF₆) (7): 0.31 g (0.27 mmol) of [(F_{3,5}ppy)₂Ir(μ-Cl)]₂ and 0.18 g (0.62 mmol) of tfpip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g yellow powder. Yield: 67%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.22 (d, *J* = 8.1 Hz, 2H), 8.53 (d, *J* = 7.8 Hz, 2H), 8.29 (dd, *J* = 8.0, *J* = 4.0 Hz, 4H), 8.14–8.07 (m, 2H), 8.04 (d, *J* = 8.1 Hz, 2H), 7.92 (d, *J* = 9.7 Hz, 2H), 7.85 (t, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 5.4 Hz, 2H), 6.91 (t, *J* = 6.6 Hz, 2H), 6.76 (t, *J* = 9.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.38, 167.12, 166.37, 166.33, 159.20, 159.08, 152.28, 150.31, 148.95, 148.67, 144.56, 139.85, 139.25, 133.37, 127.78 (d, *J* = 31.3 Hz), 126.67, 124.66, 121.17, 108.88 (d, *J* = 20.2 Hz), 105.53 (dd, *J* = 33.2 Hz, *J* = 24.4 Hz). Anal. Calcd. for $C_{42}H_{23}F_7IrN_6$: C, 46.63; H, 2.14; N, 7.77. Found: C, 46.74; H, 2.13; N, 7.50. MS (ESI) m/z: calcd for $[C_{42}H_{23}F_7IrN_6]^+$, 937.1502; found, 937.1535 [M-PF₆]⁺.

[(F₃,spiq)₂Ir(tfpip)](PF₆) (**8**): 0.31 g (0.27 mmol) of [(F₃,spiq)₂Ir(μ-Cl)]₂ and 0.18 g (0.62 mmol) of tfpip, and 0.53 g (2.88 mmol) of KPF₆ gave 0.41 g orange powder. Yield: 67%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.42 (s, 1H), 9.23 (d, J = 8.2 Hz, 2H), 9.03 (d, J = 8.3 Hz, 2H), 8.31 (d, J = 5.1 Hz, 4H), 8.21 (d, J = 10.5 Hz, 2H), 8.10 (s, 2H), 8.00 (d, J = 7.6 Hz, 2H), 7.90 (t, J = 8.3 Hz, 4H), 7.67 (d, J = 6.7 Hz, 2H), 7.62 (d, J = 6.5 Hz, 1H), 7.39 (s, 3H), 6.86 (d, J = 9.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.32, 166.96, 166.84, 158.53, 149.53, 149.45, 149.37, 149.28, 149.08, 144.45, 141.80, 136.90, 133.48, 132.56, 130.16, 128.09, 127.63, 126.64 (d, J = 14.1 Hz), 126.24,

126.03, 122.80, 114.05 (d, J = 22.2 Hz), 105.96 (dd, J = 32.3 Hz, J = 24.2 Hz).. Anal. Calcd. for C₅₀H₂₇F₇IrN₆: C, 50.81; H, 2.30; N, 7.11. Found: C, 51.09; H, 2.58; N, 6.87. MS (ESI) m/z: calcd for [C₅₀H₂₇F₇IrN₆]⁺, 1037.1815; found, 1037.1879 [M-PF₆]⁺.

Fig. S2. The 13 C NMR spectrum of the complex 1.

Fig. S4. The 13 C NMR spectrum of the complex **2**.

Fig. S6. The 13 C NMR spectrum of the complex 3.

Fig. S8. The ¹³C NMR spectrum of the complex 4.

Fig. S10. The ¹³C NMR spectrum of the complex 5.

Fig. S11. The 1 H NMR spectrum of the complex **6**.

Fig. S12. The 13 C NMR spectrum of the complex 6.

Fig. S14. The 13 C NMR spectrum of the complex 7.

Fig. S16. The 13 C NMR spectrum of the complex 8.

Fig. S17. Photoluminescence spectra of **1** upon addition of various anions (3.0 equiv.) in acetonitrile solution.

Fig. S18. Photoluminescence spectra of **5** upon addition of various anions (3.0 equiv.) in acetonitrile solution.

Fig. S19. The phosphorescence responses of complexes **5** in the presence of CH₃COO⁻ and then bubbling excess O₂, N₂, Ar, and CO gas.

Fig. S20. The anti-interference experiment results of complex **5** in the presence of CH₃COO⁻ for sensing CO₂.

Fig. S21. Phosphorescence intensity change of $1-CH_3COO^-$ (left) and complex $5-CH_3COO^-$ symstem (5 µM) upon bubbling with various quantities of CO₂. I_{min} represent the Phosphorescence intensity (at 534/536 nm) of $1/5-CH_3COO^ I_{max}$ represent the fluorescence intensity (at 534/536 nm) of $1/5-CH_3COO^-$ upon bubbling with 10/17 mL CO₂.

The detection limit was calculated to be about 2.30×10^{-5} M and 2.28×10^{-5} M.^{1, 2}

Complex	orbital	Energy	E_{g}	Composition%		
		(eV)	(eV)	cyclometalated	Ir	ancillary
				ligand		ligand
1	HOMO-1	-6.109		1.93	4.91	93.16
	НОМО	-5.791	3.63	53.15	43.57	3.29
	LUMO	-2.428		2.38	3.84	93.78
	LUMO+1	-2.051		1.54	0.66	97.79
	LUMO+2	-1.765		92.02	4.99	3.00
2	HOMO-1	-6.055		74.91	11.90	13.18
	НОМО	-5.755	3.32	57.77	39.67	2.56
	LUMO	-2.434		9.21	3.36	87.44
	LUMO+1	-2.260		86.20	4.59	9.21
	LUMO+2	-1.799		5.27	1.21	93.53
3	HOMO-1	-6.237		21.48	11.54	66.99
			3.42			
	НОМО	-5.797		53.26	43.45	3.29
	LUMO	-2.458		2.29	3.72	93.99
	LUMO+1	-2.130		1.27	0.68	98.06
	LUMO+2	-1.799		5.27	1.21	93.53
4	HOMO-1	-6.065		86.79	10.50	2.71
	НОМО	-5.762	3.30	57.92	39.52	2.55
	LUMO	-2.462		7.56	3.33	89.11
	LUMO+1	-2.266		87.90	4.49	7.60
	LUMO+2	-2.139		67.43	4.55	28.02
5	HOMO-1	-6.139		0.96	3.18	95.86
	НОМО	-5.782	3.30	53.11	43.84	3.05
	LUMO	-2.483		2.41	3.69	93.90
	LUMO+1	-2.097		4.23	0.93	94.84
	LUMO+2	-1.889		91.88	4.68	3.44
6	HOMO-1	-6.137		0.98	3.47	95.55
	НОМО	-5.772	3.28	55.45	41.97	2.58

Table S1. The frontier orbital energy and electron density distribution of complexes1-8.

	LUMO	-2.493		10.86	3.11	86.03
	LUMO+1	-2.355		83.83	4.44	11.73
	LUMO+2	-2.262		91.10	5.26	3.64
7	HOMO-1	-6.282		2.03	5.83	92.14
	НОМО	-5.789	3.28	53.18	43.76	3.06
	LUMO	-2.513		2.34	3.59	94.07
	LUMO+1	-2.169		2.56	0.81	96.62
	LUMO+2	-1.895		91.00	4.72	4.28
8	HOMO-1	-6.065		86.79	10.50	2.71
	НОМО	-5.762	3.26	57.92	39.52	2.55
	LUMO	-2.462		7.56	3.33	89.11
	LUMO+1	-2.266		87.90	4.49	7.60
	LUMO+2	-2.139		67.43	4.55	28.02

Table S1 (continuation)

Table S2. Main experimental and calculated optical transitions of complexes 1-8

Complex	Orbital Excitation	Transition	Nature of transition	Oscillation	Calcd	Exptl
		S	Nature of transition	strength	(nm)	(nm)
1	HOMO−1→LUMO	MLCT	$Ir(d\pi)/L_{fppy}(\pi) \rightarrow L_{fppy}(\pi^*)$	0.1310	400	396
		/LLCT				
2	HOMO→LUMO+1	MLCT	$Ir(d\pi)/L_{fpiq}(\pi) \rightarrow L_{fpiq}(\pi^*)$	0.1033	439	411
		/LLCT				
3	HOMO−1→LUMO	MLCT	$Ir(d\pi)/L_{fppy}(\pi) \rightarrow L_{fppy}(\pi^*)$	0.1817	389	398
		/LLCT				
4	HOMO→LUMO+1	MLCT	$Ir(d\pi)/L_{fpiq}(\pi) \rightarrow L_{fpiq}(\pi^*)$	0.1049	404	439
		/LLCT				
5	HOMO−1→LUMO	MLCT	$Ir(d\pi)/L_{dfppy}(\pi) \rightarrow L_{dfppy}(\pi^*)$	0.1167	403	399
		/LLCT)			
6	HOMO→LUMO+1	MLCT	$Ir(d\pi)/L_{dfpiq}(\pi) \rightarrow L_{dfpiq}(\pi^*)$	0.0815	454	424
		/LLCT				
7	HOMO−1→LUMO	MLCT	$Ir(d\pi)/L_{dfppy}(\pi) \rightarrow L_{dfppy}(\pi^*)$	0.1621	391	308
		/LLCT)			590
8	HOMO→LUMO+1	MLCT	$Ir(d\pi)/L_{dfpiq}(\pi) \rightarrow L_{dfpiq}(\pi^*)$	0.0833	454	421
		/LLCT				421

Complex	Detection limits	Response	
	2 ppm	Turn on ³	
	$1.06 imes 10^{-6} \text{ mol/L}$	Turn on ⁴	
	$2.04 \times 10^{-7} \text{ mol/L}$	Turn on ⁵	
HZ C C C C C C C C C C C C C C C C C C C	$1.07 imes 10^{-6} ext{ mol/L}$	Turn on ⁶	
	$4.1 \times 10^{-7} \mathrm{M}$	Turn on ⁷	
	0.031%	Turn off ⁸	
		Color change ⁹	
		Turn on ¹⁰	

Table S3. The coordination geometry used to detect CO₂ and its corresponding detection limits

References

1 M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem., 1996, 68, 1414-1418.

2 Z. Guo, N. R. Song, J. H. Moon, M. Kim, E. J. Jun, J. Choi, J. Y. Lee, C. W. Bielawski, J. L. Sessler and J. Yoon, *J. Am. Chem. Soc.*, 2012, **134**, 17846-17849.

3 S. Kang, J. Kim, J. H. Park, C. K. Ahn, C. H. Rhee and M. S. Han, *Dyes Pigm.*, 2015, **123**, 125-131.

4. R. Ali, S. S. Razi, M. Shahid, P. Srivastava and A. Misra, *Spectrochim. Acta, Part A*, 2016, **168**, 21-28.

5. M. Lee, S. Jo, D. Lee, Z. C. Xu and J. Yoon, Dyes Pigm., 2015, 120, 288-292.

6. S. Y. Chen, H. Yu, C. Zhao, R. Hu, J. Zhu and L. Li, Sens. Actuators, B, 2017, 250, 591-600.

7. M. Ishida, P. Kim, J. Choi, J. Yoon, D. Kim and J. L. Sessler, *Chem. Commun.*, 2013, **49**, 6950-6952.

8. H. Wang, D. D. Chen, Y. H. Zhang, P. Liu, J. B. Shi, X. Feng, B. Tong and Y. P. Dong, *J. Mater. Chem. C*, 2015, **3**, 7621-7626.

T. A. Darwish, R. A. Evans, M. James and T. L. Hanley, *Chem. Eur. J.*, 2011, **17**, 11399-11404.
 J. Q. Sun, B. F. Ye, G. M. Xia, X. H. Zhao and H. M. Wang, *Sens. Actuators, B*, 2016, **233**, 76-82.

11. M. Hamer, J. M. Lázaro-Martínez and I. N. Rezzano, Sens. Actuators, B, 2016, 237, 905-911.

Y. Liu, Y. H. Tang, N. N. Barashkov, I. S. Irgibaeva, J. W. Y. Lam, R. R. Hu, D. Birimzhanova,
 Y. Yu and B. Z. Tang, *J. Am. Chem. Soc.*, 2010, **132**, 13951-13953.

13. Y. Ma, M. Cametti, Z. Dzolic and S. M. Jiang, J. Mater. Chem. C, 2018, 6, 9232-9237.

14. K. R. Schwartz and K. R. Mann, Inorg. Chem., 2011, 50, 12477-12485.

15. V. D. Singh, R. P. Paitandi, B. K. Dwivedi, R. S. Singh and D. S. Pandey, *Organometallics*, 2018, **37**, 3827-3838.

16. C. Climent, P. Alam, S. S. Pasha, G. Kaur, A. R. Choudhury, I. R. Laskar, P. Alemany and D. Casanova, *J. Mater. Chem. C*, 2017, **5**, 7784-7798.