Supporting Information

The role of LMCT state on luminescence quenching in dimeric lanthanide dipivaloylmethanate compounds

Paulo R. S. Santos.^a Ashely A. S. S. Jesus.^a William B. Lima.^a. Iran F. Silva.^a Joaldo G. Arruda.^a Wagner M. Faustino.^a Maria Claudia F. C. Felinto.^b Hermi F. Brito.^c Israel F. Costa.^c Renata Diniz^d. Ercules E.S. Teotonio.^{a.*}

^aDepartamento de Química-Universidade Federal da Paraíba. 58051-970.

João Pessoa -PB.Brazil.

^bNuclear and Energy Research Institute–IPEN/CNEN. 05508-900. São Paulo–SP.

Brazil

^cDepartamento de Química Fundamental - Instituto de Química da Universidade de São Paulo. 05508-900. São Paulo - SP.Brazil.

^dDepartment of Chemistry. ICEx. University of Minas Gerais. Belo Horizonte. MG.

31270-901. Brazil

Contents

Figure S1.	 2
Figure S2.	 2
Figure S3.	 3
Figure S4.	 4
Figure S5.	 5
Figure S6.	 5
Figure S7.	 6
Figure S8.	 7
Figure S9.	 8
Figure S10.	 9
Figure S11.	 10
Figure S12.	 11
Figure S13.	 12
Figure S14.	 13
Figure S15.	 14
Figure S16.	 15
Table S1	 16
Table S2	 17
Table S3	 17
Table S4	 17
Table S5	 18
Table S6	 18
Table S7	 19
Table S8	 19
Table S9	 20
Table S10	 21
Table S11	 22
Table S12	 23
Table S13	 24

1. Figures

Figure S1. Thermogravimetric analysis curves of the $[Ln_2(dpm)_6(dppeO_2)]$ complexes. where Ln: Sm(1). Eu(2). Gd(3) and Tb(4). recorded in the 30 - 900 °C interval. under dynamic N₂ atmosphere.

Figure S2. Absorption spectra in the infrared region of the SmPO₄ recorded in the range of 400 - 4000 cm⁻¹ in KBr.

Figure S3. Absorption spectra in the infrared region of the complexes $[Ln_2(dpm)_6(dppeO_2)]$ (where Ln: Sm³⁺. Eu³⁺. Gd³⁺ and Tb³⁺) recorded in the range of 400 - 4000 cm⁻¹ in KBr.

Figure S4. Reflectance spectra of the complexes a) $[Sm_2(dpm)_6(dppeO_2)]$ and b) $[Tb_2(dpm)_6(dppeO_2)]$ in the solid state. recorded in the range of 200 to 600 nm.

Figure S5. Jacobian transform spectral data of the deconvoluted LMCT band of the $[Eu_2(dpm)_6(dppeO_2)]$ compound.

Figure S6. Jacobian transform spectral data of the phosphoresecence band of the $[Gd_2(dpm)_6(dppeO_2)]$ compound.

Figure S7. Emission spectra of the complexes $[Ln_2(dpm)_6(dppeO_2)]$ (where Ln: Sm³⁺. Eu³⁺ and Tb³⁺) recorded at a) 298 K.

Figure S8. Luminescence decay curves of the complexes $[Ln_2(dpm)_6(dppeO_2)]$ (where Ln: Sm³⁺. Eu³⁺ and Tb³⁺) recorded at a) 298 K and b) 77 K monitoring the emission of Ln³⁺ with excitation at 350 nm.

Figure S9: a) Absorption spectrum in the ultraviolet region obtained via DT-DFT/CAM-B3LYP/def2-SVP level using the relativistic Hamiltonian DKH2 for the coordination compound $[Sm_2(dpm)_6(dppeO_2)]$ and b) Analysis of excited states using TheoDORE.

Figure S10. Absorption spectra in the ultraviolet region obtained via TD-DFT ECP

Figure S11: a) Absorption spectrum in the ultraviolet region obtained via DT-DFT/CAM-B3LYP/def2-SVP level using the relativistic Hamiltonian DKH2 for the coordination compound $[Gd_2(dpm)_6(dppeO_2)]$ and b) Analysis of excited states using TheoDORE.

Figure S12: a) Absorption spectrum in the ultraviolet region obtained via DT-DFT/CAM-B3LYP/def2-SVP level using the relativistic Hamiltonian DKH2 for the coordination compound $[Tb_2(dpm)_6(dppeO_2)]$ and b) Analysis of excited states using TheoDORE.

Figure S13. CAM-B3LYP/DKH2 Khon-Sham orbitals for the coordination compound $[Sm_2(dpm)_6(dppeO_2)]$ (a for alpha and b for beta) for the above monoelectronic transitions, isovalue=0.04.

Figure S14 CAM-B3LYP/DKH2 Khon-Sham orbitals for the coordination compound $[Eu_2(dpm)_6(dppeO_2)]$ (a for alpha and b for beta) for the above monoelectronic transitions, isovalue=0.04.

Figure S15. CAM-B3LYP/DKH2 Khon-Sham orbitals for the coordination compound $[Gd_2(dpm)_6(dppeO_2)]$ (a for alpha and b for beta) for the above monoelectronic transitions, isovalue=0.04.

Figure S16. CAM-B3LYP/DKH2 Khon-Sham orbitals for the coordination compound $[Tb_2(dpm)_6(dppeO_2)]$ (a for alpha and b for beta) for the above monoelectronic transitions, isovalue=0.04.

2. Tables

Bond distance / Å					
	Eu	Gd	Tb		
Ln-O1	2.312(3)	2.332(4)	2.264(2)		
Ln-O2	2.402(2)	2.346(4)	2.310(3)		
Ln-O3	2.351(2)	2.321(4)	2.323(3)		
Ln-O4	2.340(4)	2.304(5)	2.345(3)		
Ln-O5	2.294(3)	2.279(4)	2.300(2)		
Ln-O6	2.350(2)	2.330(4)	2.325(3)		
Ln-O7	2.342(3)	2.305(4)	2.290(3)		
	Bond a	ngle / °			
	Eu	Gd	Tb		
O1-Ln-O2	125.43(9)	130.57(16)	81.24(10)		
O1-Ln-O3	77.31(9)	80.67(15)	130.15(11)		
O1-Ln-O4	91.86(9)	78.31(16)	84.87(11)		
01-Ln-05	153.1(1)	130.32(17)	151.02(10)		
01-Ln-06	91.5(1)	134.31(17)	74.59(10)		
O1-Ln-O7	72.6(1)	70.94(17)	81.99(12)		
O2-Ln-O3	75.56(8)	71.27(16)	79.91(10)		
O2-Ln-O4	71.27(8)	77.55(16)	72.11(10)		
O2-Ln-O5	81.29(9)	81.95(19)	145.37(11)		
O2-Ln-O6	124.74(9)	114.40(16)	130.75(11)		
O2-Ln-O7	144.69(9)	145.02(17)	134.72(11)		
O3-Ln-O4	129.27(8)	85.16(18)	114.20(10)		
O3-Ln-O5	117.06(9)	81.37(16)	78.18(10)		
O3-Ln-O6	74.88(9)	150.58(17)	177.61(10)		
O3-Ln-O7	139.50(9)	74.17(16)	80.02(10)		
O4-Ln-O5	94.67(9)	79.92(16)	81.26(12)		
O4-Ln-O6	155.69(9)	157.8(2)	124.22(13)		
O4-Ln-O7	78.70(9)	123.9(2)	71.75(11)		
O5-Ln-O6	72.4(1)	105.9(2)	156.73(13)		
O5-Ln-O7	83.1(1)	81.92(19)	105.72(13)		
O6-Ln-O7	79.4(1)	77.2(2)	76.78(13)		

 Table S1. Main geometric parameters of Eu, Gd and Tb crystals.

Table S2. Shape analysis of $[Ln_2(dpm)_6(dppeO_2)]$ using SHAPE 2.1. The values in the table are the continuous measurements (CShM. dimensionless) for each idealized geometry.

Ideal Geometry	Code	point group	Gd ³⁺	Eu ³⁺	Tb ³⁺
Heptagonal	HP-7	D _{7d}	34.34	33.58	34.31
Hexagonal Pyramid	HPY-7	C_{6v}	19.95	20.36	20.07
Pentagonal Pyramid	PBPY-7	D_{5h}	6.850	6.077	6.686
Capped Octahedron	COC-7	C_{3v}	0.537	2.165	0.499
Trigonal Capped Prism	CTPT-7	C_{2v}	1.127	0.724	1.069

Table S3. Temperature ranges and melting points of the coordination compounds of bis(phosphinoxides) compounds in an N_2 atmosphere.

Compound	ΔT-1	Δm	ΔΤ-2	Δm	T _f (DSC)	Res	sidue
	(°C)	(%)	(°C)	(%)	(°C)	Cal. (%)	Found (%)
[Sm ₂ (dpm) ₆ (dppeO ₂)]	237-390	45	508-630	19	242	30	32
$[Eu_2(dpm)_6(dppeO_2)]$	222-367	78	497-593	11	237	19	13
$[Gd_2(dpm)_6(dppeO_2)]$	231-386	85	456-601	8	237	20	5
$[Tb_2(dpm)_6(dppeO_2)]$	224-378	83	504-609	8	274	20	3

Table S4. Parameters for the first coordination sphere of the Eu³⁺ ion in the $[Eu_2(dpm)_6(dppeO_2)]$ dimeric complex. where $d(Eu^{3+}-O)$ corresponds to the Eu³⁺-O bonding lengths (in Å). g is the charge factor and. α' (in Å³) and α_{OP} (in 10⁻² Å³) are the effective and overlap polarizabilities. Respectively.

Atom	d(Eu ³⁺ -O)	g	α'	αορ
	(Å)	(Å ³)	(Å ³)	(10 ⁻² Å ³)
O(1)-dpm	2.312043	0.724	0.634	4.349
O(2)-dpm	2.401675	0.555	0.404	3.705
O(3)-dpm	2.340417	0.724	0.634	4.137
O(4)-dpm	2.350379	0.555	0.404	4.065
O(5)-dpm	2.294030	0.724	0.634	4.487
O(6)-dpm	2.341735	0.555	0.404	4.128
O(7)-dppeO ₂	2.351447	0.929	1.539	4.057

Table S5. Parameters for the first coordination sphere of the Eu³⁺ ion in the $[Tb_2(dpm)_6(dppeO_2)]$ dimeric complex. where $d(Tb^{3+}-O)$ corresponds to the Eu³⁺-O bonding lengths (in Å). g is the charge factor and. α' (in Å³) and α_{OP} (in 10⁻² Å³) are the effective and overlap polarizabilities, respectively.

Atom	d(Tb ³⁺ -O)	g	α'	αορ
	(Å)	(Å ³)	(Å ³)	(10 ⁻² Å ³)
O(1)-dpm	2.264232	0.581	0.815	5.375
O(2)-dpm	2.310346	0.599	0.412	4.970
O(3)-dpm	2.323405	0.581	0.815	4.860
O(4)-dpm	2.345238	0.599	0.412	4.695
O(5)-dpm	2.300024	0.581	0.815	5.061
O(6)-dpm	2.324718	0.599	0.412	4.853
O(7)-dppeO ₂	2.290246	1.017	1.731	5.145

Table S6. Parameters for the first coordination sphere of the Eu³⁺ ion in the $[Sm_2(dpm)_6(dppeO_2)]$ dimeric complex. where $d(Sm^{3+}-O)$ corresponds to the Eu³⁺-O bonding lengths (in Å). g is the charge factor and. α' (in Å³) and α_{OP} (in x10⁻² Å³) are the effective and overlap polarizabilities, respectively.

Atom	d(Sm ³⁺ -O)	g	α'	αορ
	(Å)	(Å ³)	(Å ³)	(10 ⁻² Å ³)
O(1)-dpm	2.303884	0.103	0.083	4.455
O(2)-dpm	2.331192	0.125	0.187	4.267
O(3)-dpm	2.345445	0.103	0.083	4.171
O(4)-dpm	2.320672	0.125	0.187	4.339
O(5)-dpm	2.279259	0.103	0.083	4.630
O(6)-dpm	2.330140	0.125	0.187	4.274
O(7)-dppeO ₂	2.304205	0.982	1.755	4.453

Supporting Information

Table S7. Experimental and theoretical intensity parameters (Ω_{λ} , $\lambda = 2,4$ and 6) and their contributions FED and DC (in 10⁻²⁰ cm²) and the general relative error f_{error} (dimensionless).

[Tb ₂ (dpm) ₆ (dppeO ₂)]					
Ω_{λ}	Experimental	Theoretical	FED	DC	f error
(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(dimensionless)
Ω_2	26.8	26.8	0.133	24.1	0
Ω_4	7.3	7.2	0.152	5.53	0.01
Ω_6	1	0.9	0.219	0.4	0.1
		[Sm ₂ (dpm)	6(dppeO ₂)]		
Ω_{λ}	Experimental	Theoretical	FED	DC	f error
(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(10^{-20} cm^2)	(dimensionless)
Ω_2	26.8	26.7	0.43	23.2	0.003
Ω_4	7.3	7.3	0.12	6.1	0
Ω_6	1	1.3	0.24	0.7	0.3

Table S8. Direct IET rates (W^S and W^T) and backtransfer (W^S_B and W^T_B) in units of (s⁻¹) for complexes [Tb₂(dpm)₆(dppeO₂)].

[Tb ₂ (dpm) ₆ (dppeO ₂)]				
Energy Transfer from S ₁ state	$W(S^{-1})$			
$\overline{S_1 \rightarrow (^7F_5 \rightarrow ^5H_4)}$	$1,60 \cdot 10^{10}$			
$S_1 \rightarrow (^7F_6 \rightarrow ^5F_4)$	9,76 ·10 ⁹			
Back energy Transfer from S ₁ state				
$\overline{S_1 \leftarrow (^7F_6 \rightarrow ^5F_5)}$	8,75 ·10 ⁹			
$S_1 \leftarrow (^7F_5 \rightarrow ^5F_4)$	1,38 ·10 ¹⁰			
Energy Transfer from T ₁ state				
$T_1 \rightarrow (^7F_0 \rightarrow ^5D_4)$	9,20 ·10 ⁸			
Back energy Transfer from T ₁ state				
$\overline{T_1 \leftarrow (^7F_5 \rightarrow ^5G_5)}$	9,44 ·10 ⁸			
$T_1 \leftarrow (^7F_6 \rightarrow ^5G_6)$	1,23 ·10 ⁹			

[Sm ₂ (dpm) ₆ (dppeO ₂)]				
Energy Transfer from S ₁ state	$W(S^{-1})$			
$S_1 \rightarrow ({}^6H_{3/2} \rightarrow {}^6P_{3/2})$	$5.43 \cdot 10^{6}$			
$S_1 \rightarrow ({}^6H_{3/2} \rightarrow {}^4F_{3/2})$	9,.78 $\cdot 10^{6}$			
Back energy Transfer from S ₁ state				
$S_1 \leftarrow ({}^6H_{3/2} \rightarrow {}^6P_{7/2})$	2.32 ·10 ⁻⁹			
Energy Transfer from T ₁ state				
$T_1 \rightarrow ({}^6\text{H}_{5/2} \rightarrow {}^4\text{G}_{5/2})$	$1.29 \cdot 10^{9}$			
Back energy Transfer from T ₁ state				
$T_1 \leftarrow ({}^{6}\mathrm{H}_{5/2} \rightarrow {}^{4}\mathrm{F}_{5/2})$	$2.52 \cdot 10^{8}$			
$T_1 \leftarrow ({}^{6}H_{5/2} \rightarrow {}^{4}G_{7/2})$	$7.82 \cdot 10^{8}$			

Table S9. Direct IET rates (W^S and W^T) and backtransfer (W^S_B and W^T_B) in units of (s⁻¹) for complexes [Sm₂(dpm)₆(dppeO₂)].

State	Energy /cm ⁻¹	λ /nm	fosc	Transitions
24	21882.8	457.0	0.0109	$\begin{array}{c} 297a \rightarrow 301a \ (18.3\%) \\ 297a \rightarrow 302a \ (41.4\%) \\ 297a \rightarrow 303a \ (6.9\%) \\ 297a \rightarrow 309a \ (9.0\%) \\ 280b \rightarrow 293b \ (7.7\%) \end{array}$
27	23367.7	427.9	0.0405	280b→293b (55.6%) 286b→293b (9.6%)
30	23936.1	417.8	0.0055	297a→298a (89.6%)
40	26914.1	371.6	0.0269	297a→308a (14.3%) 256b→293b (7.7%) 259b→293b (10.9%)
64	32690.1	305.9	0.0055	294a→299a (94.4%)
93	39088.5	255.8	0.2165	$295a \rightarrow 301a (12.7\%) 295a \rightarrow 303a (5.6\%) 295a \rightarrow 305a (5.5\%) 291b \rightarrow 295b (8.0\%) 292b \rightarrow 300b (9.8\%)$
94	39217.7	255.0	0.2936	296a→301a (14.3%) 291b→300b (5.6%) 292b→295b (9.0%)
97	39633.4	252.3	0.2138	$294a \rightarrow 301a (7.6\%)$ $294a \rightarrow 303a (6.8\%)$ $294a \rightarrow 305a (8.5\%)$ $290b \rightarrow 295b (10.9\%)$ $290b \rightarrow 299b (5.6\%)$
98	39651.8	252.2	0.0802	281a→305a (5.2%) 275b→295b (7.5%) 275b→297b (5.0%) 275b→299b (12.3%)

Table S10 Selected CAMB3LYP/DKH2 excited states, oscillator strength and monoelectronic transitions for $[Sm_2(dpm)_6(dppeO_2)]$ fragment.

State	Energy /cm ⁻¹	λ/nm	fosc	Transitions
8	22264.1	449.2	0.0037	297a→ 299a (94.3%)
9	22762.7	439.3	0.0032	296a→ 299a (94.4%)
13	25884.7	386.3	0.0051	294a→ 299a (33.6%)
				295a→ 299a (55.3%)
14	25928.2	385.7	0.0083	294a→ 299a (57.7%)
				295a→ 299a (32.5%)
15	26392.7	378.9	0.0074	293a→ 299a (87.7%)
37	39810.6	251.2	0.1996	297a→ 302a (7.1%)
				291b→ 295b (5.3%)
38	39828.2	251.1	0.0941	275b→ 295b (6.5%)
				275b→ 298b (10.7%)
				291b→ 295b (7.8%)
39	39900.2	250.6	0.0465	283a→ 302a (5.1%)
				283a→ 307a (5.7%)
				277b→ 295b (6.2%)
				277b→ 300b (7.3%)
40	39932.2	250.4	0.3593	297a→ 307a (8.5%)
				298a→ 302a (12.2%)
				$291b \rightarrow 300b \ (6.7\%)$
				$292b \rightarrow 295b (16.8\%)$
				$292b \rightarrow 298b (5.8\%)$
41	39976.5	250.1	0.2791	296a→ 302a (8.6%)
				296a→ 303a (5.7%)
				297a→ 302a (7.2%)
				$290b \rightarrow 295b \ (11.0\%)$
				$290b \rightarrow 298b (5.1\%)$
				$291b \rightarrow 295b (7.1\%)$
				$292b \rightarrow 300b (5.2\%)$

Table S11 Selected CAMB3LYP/DKH2 excited states, oscillator strength and monoelectronic transitions for $[Eu_2(dpm)_6(dppeO_2)]$ fragment.

State	Energy /cm ⁻¹	λ /nm	fosc	Transitions
25	40056.4	249.6	0.2689	297a→303a (10.1%)
				298a→303a (9.4%)
				298a→306a (6.7%)
				290b→296b (9.3%)
				291b→296b (10.2%)
27	41024.9	243.8	0.6371	298a→303a (13.8%)
				299a→305a (11.4%)
				291b→296b (13.5%)
				292b→298b (8.9%)
60	47192.2	211.9	0.0344	292a→301a (6.0%)
				293a→301a (21.4%)
				285b→294b (6.1%)
				286b→294b (21.4%)
65	48301.6	207.0	0.1092	288a→300a (9.7%)
				281b→293b (9.2%)
				292b→295b (22.8%)
66	48323.4	206.9	0.0556	288a→300a (7.0%)
				296a→300a (19.5%)
				299a→302a (11.8%)
				281b→293b (6.7%)
				292b→295b (7.7%)
73	48656.3	205.5	0.1422	291a→301a (7.0%)
				292a→301a (14.3%)
				284b→294b (7.0%)
				285b→294b (14.4%)

Table S12 Selected CAMB3LYP/DKH2 excited states, oscillator strength and monoelectronic transitions for $[Gd_2(dpm)_6(dppeO_2)]$ fragment.

State	Energy /cm ⁻¹	λ/nm	fosc	Transitions
22	21498.5	465.1	0.0193	299a→ 301a (9.4%)
				299a→ 302a (16.4%)
				299a→ 303a (33.7%)
				299a→ 304a (14.0%)
				299a→ 306a (7.4%)
				299a→ 309a (9.9%)
24	23021.1	434.4	0.0106	299a→ 301a (6.4%)
				282b→ 294b (6.2%)
				283b→ 294b (34.6%)
				286b→ 294b (36.3%)
25	23605.5	423.6	0.0107	299a→ 301a (80.4%)
				299a→ 303a (6.5%)
36	26858.9	372.3	0.0141	299a→ 309a (8.0%)
				299a→ 310a (31.1%)
				288b→ 294b (13.8%)
79	38647.6	258.7	0.0345	284a→ 300a (8.7%)
				296a→ 306a (6.9%)
				298a→ 304a (11.2%)
				293b→ 298b (13.4%)
83	39363.0	254.0	0.0421	284a→ 300a (26.5%)
				285a→ 300a (6.5%)
				266b→ 294b (9.1%)
98	42171.1	237.1	0.0238	299a→ 311a (36.7%)
				299a→ 314a (13.1%)
				299a→ 315a (14.0%)
103	42417.8	235.8	0.0508	299a→ 311a (11.0%)
				299a→ 314a (9.6%)
				299a→ 315a (16.0%)
				299a→ 316a (10.0%)
113	43931.9	227.6	0.0285	299a→ 313a (19.2%)
				272b→ 294b (22.7%)
124	45052.1	222.0	0.0200	$299a \rightarrow 317a \ (8.8\%)$
		•		$268b \rightarrow 294b (7.4\%)$
				269b→ 294b (6.3%)
				270b→ 294b (8.6%)

Table S13 Selected CAMB3LYP/DKH2 excited states, oscillator strength and monoelectronic transitions for $[Tb_2(dpm)_6(dppeO_2)]$ fragment.