Supporting Information

Li₄P₂Se₆ - Structure and Properties

Sven Neuberger^[a], Neeshma Mathew^[a], Sheyi Clement Adediwura^[a], Hector Javier Cortes Sanchez^[a], Jörn Schmedt auf der Günne^{*[a]}

 [a] University of Siegen, Faculty IV: School of Science and Technology, Department for Chemistry and Biology, Inorganic Materials Chemistry and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein Straße 2, 57076 Siegen, Germany.

* corresponding authors: E-mail: gunnej@chemie.uni-siegen.de

General NMR Simulation Parameters

All NMR simulations were performed using the SIMPSON software (version 4), employing the simplex algorithm for fitting. The simulations were performed at a magnetic flux density of $B_0 = 14.1$ T using the ZCW232 powder averaging scheme with 232 crystal orientations.

³¹P NMR Simulations:

The simulations were carried out at $v_{MAS} = 5$ kHz. The spin system was defined as a two-spin ${}^{31}P{}^{-31}P$ system including both direct dipolar coupling (*D*) and scalar or *J*-coupling. The fitted parameters included the full chemical shift tensors defined in the principal axis system for both spins, as well as the direct coupling constant *D* and the *J*-coupling constant. The dipolar vector was assumed to be collinear with the principal axis of the chemical shift tensor constant DD. A third isolated spin was also included in the model to account for the minor Li₃PO₄ impurity observed in the experimental spectrum.

⁷⁷Se NMR Simulations:

The simulations were carried out at $v_{MAS} = 20$ kHz. The spin system was defined as of four independent two-spin systems, each representing a ⁷⁷Se-³¹P pair, including direct dipolar and scalar *J*-coupling. The fitted parameters included the ⁷⁷Se chemical shift tensors and the corresponding *J*-coupling constants for each Se-P pair. The direct coupling constant was set to -881 Hz corresponding to a P-Se distance of 2.195 Å. In addition an isolated spin was also considered to account for unidentified impurity at approximately 800 ppm.

Figure S1: Comparison of experimental (solid black line) and simulated ³¹P MAS NMR spectra with positive (dash-dot magenta line), and negative (dotted blue line) signs for the *J*-coupling. Isotropic peaks are marked with asterisks (*) and the minor impurity phase Li₃PO₄ is indicated with a cross (×). Input for files for simpson for these spectra are provided as supporting information ("simpson-NMR-inputfiles-bestfit.zip").

Figure S2: Plot of the product of electrical conductivity σ and temperature *T* versus inverse temperature for Li₄P₂Se₆. The results were obtained from impedance spectra in temperature range from 333 K to 393 K. Linear fits are indicated by dashed lines. The bulk conductivities are indicated by grey circle and square markers for first and second measurements cycles, respectively.

Table S1: The macroscopic conductivity at room temperature $\sigma_{298 \text{ K}}$, pre-exponential factor a_0 , and activation energy E_A of Li₄P₂Se₆ obtained using $\sigma \cdot T = a_0 \exp(-E_A/k_B T)$

	1 st cycle	2 nd cycle
<i>σ</i> _{298 к} / (S · cm ⁻¹)	1.83(33) ·10 ⁻¹²	1.85(44) ·10 ⁻¹²
$a_0/(S \cdot K \cdot cm^{-1})$	1.18(1)· 10 ⁴	6.98(1)· 10 ³
E _A / eV	0.79(1)	0.78(1)