Evaluation of relaxation dynamics from excited states of Ho³⁺ ions in sol-gel nano-glass-ceramic materials

Natalia Pawlik^{1,*}, Joanna Śmiarowska¹, Bartosz Handke², Maciej Zubko^{3,4}, Maciej Sitarz², Wojciech A. Pisarski¹

¹University of Silesia, Institute of Chemistry, 9 Szkolna Str., 40-007 Katowice, Poland

² AGH University of Krakow, Faculty of Materials Science and Ceramics, 30 Mickiewicza Av., 30-059 Kraków, Poland

³ University of Silesia, Institute of Materials Engineering, 75. Pułku Piechoty 1A Str., 41-500 Chorzów, Poland

⁴ University of Hradec Králové, Department of Physics, Rokitanského 62, 50003 Hradec Králové, Czech Republic

SUPPLEMENTAL INFORMATION

1. Supporting information on structural analysis	1
2. Supporting information on excitation spectra	5
3. Supporting information on emission spectra (VIS range)	6
4. Supporting information on emission spectra (NIR region)	11
5. Supporting information on decay analysis	14
6. References	18

1. Supporting information on structural analysis

Table S1. Parameters determined for LaF₃ nanocrystals with trigonal symmetry (crystallized in $P\overline{3}c1$ space group) fabricated Ho³⁺-doped sol-gel materials.

		Average	Lat	Lattice parameters			
Series	Sample	crystallite size [nm]	α, β, γ	a = b [Å]	<i>c</i> [Å]	volume [Å ³]	R [%]
	GC1700	6.48		7.186(4)	7.345(5)	328.44	9.56
SiO	GC2700	-	. 0 -	-	-	-	-
310_2 -	GC3700	9.96	$\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	7.192(2)	7.353(3)	329.36	9.64
(700°C)	GC4700	8.11		7.187(4)	7.350(5)	328.77	10.21
	GC5700	-		-	-	-	-
	GC6700	11.81		7.164(1)	7.327(2)	325.67	10.19
	GC1900	13.99	0	7.207(1)	7.364(1)	331.22	10.33
SiO	GC2900	19.16		7.192(1)	7.352(2)	329.31	11.03
LaF ₃ :Ho ³⁺ (900°C)	GC3 ₉₀₀	23.09	$\alpha = \beta =$	7.204(1)	7.360(2)	330.76	10.45
	GC4900	25.06	90° – 1200	7.202(4)	7.356(9)	330.51	9.89
	GC5900	22.61	y = 120	7.189(1)	7.341(3)	328.59	9.35
	GC6900	18.28		7.172(1)	7.324(1)	326.28	10.70

*R [%] – weighted profile

The performed structural characterization of prepared series of Ho³⁺-doped sol-gel materials involved the calculations of lattice parameters and unit cell volume of crystallized LaF₃ phase. According to the lanthanides contraction phenomenon, since the ionic radius of Ho³⁺ ion ($r_{Ho(III)}$) is quite smaller than that of $La^{3+}(r_{La(III)})$ [1], we could expect that entering of Ho³⁺ ions into LaF₃ nanocrystals should result in a progressive decrease in the lattice parameters and the cell volume compared to the reference values for pure LaF₃ phase ($a_0 = b_0 = 7.184$ Å, $c_0 = 7.351$ Å; $V_0 = 328.56 \text{ Å}^3$). Interestingly, as was presented in Table S1, the considered parameters (for both of the prepared series) are increased, except for the samples with the highest concentration of Ho^{3+} ions (GC6_x, with nominal La³⁺:Ho³⁺ molar ratio set on 0.88:0.12). Indeed, for nano-glassceramics fabricated at 700°C, the lattice parameters reached even a = 7.192(2) Å and c = 7.353(3) Å with unit cell volume equaled to 329.36 Å³ (GC3₇₀₀), which were finally reduced to a = 7.164(1) Å and c = 7.327(2) Å (V = 325.67 Å³) (GC6₇₀₀); meanwhile for samples annealed at 900°C, the largest lattice parameters were found for GC1₉₀₀ one (a = 7.207(1) Å and c = 7.364(1) Å, V = 331.22 Å³), but the smallest parameters – for GC6₉₀₀ sample $(a = 7.172(1) \text{ Å and } c = 7.324(1) \text{ Å}, V = 326.28 \text{ Å}^3)$. It is also interesting that for both of the fabricated series, GC_{700} and GC_{900} , the (111) reflex was initially shifted towards lower 2 θ angles for samples with the lowest concentration of Ho^{3+} (GC1_x-GC3_x), meanwhile for samples with increased concentration of Ho^{3+} (GC4_x-GC6_x), the reverse trend was observed. All of the observed dependencies may point to entering of Ho³⁺ ions into fluoride crystal lattice, but also to the thermal expansion, since the annealing of the as-prepared xerogels was carried out at relatively high temperatures, i.e., 700 and 900°C [2]. Hence, to attempt a deeper interpretation of the obtained results and assess the impact of such high temperatures on lattice parameters, we compared those data with our previous studies. For analogous SiO₂-LaF₃ sol-gel systems doped with Dy^{3+} ions ($r_{Dy(III)} > r_{Ho(III)}$), a gradual and well-observable decrease in the lattice parameters was denoted from a = 7.181(8) Å and c = 7.359(4) Å (for sample with La³⁺:Dy³⁺ molar ratio equals 0.988:0.012) to a = 7.077(2) Å and c = 7.242(9) Å (for sample with high Dy^{3+} concentration; La³⁺:Dy³⁺ molar ratio set on 0.7:0.3) [3]. Even greater modifications in lattice parameters were noted for SiO₂-LaF₃ nano-glass-ceramics co-doped with Gd³⁺/Eu³⁺ ions $(r_{Eu(III)} > r_{Gd(III)} > r_{Ho(III)})$ [4]. For the latter series of sol-gel materials, the decrease in lattice parameters was particularly noticeable with the continuously growing Gd³⁺ concentration from a = 7.133(6) Å and c = 7.360(9) Å (for sample with La³⁺:Gd³⁺:Eu³⁺ =0.9:0.05:0.05 molar ratio) to a = 6.914(1) Å and c = 7.102(8) Å (for La³⁺:Gd³⁺:Eu³⁺ = 0.05:0.90:0.05). Thus, our previous results clearly indicate that the efficiency of RE³⁺ ions' incorporation (i.e., Dy³⁺, Eu³⁺, and Gd³⁺) into the LaF₃ nanophase increased progressively with growth in their concentration, which was manifested by a substantial decrease in the crystal lattice parameters. However, it should be additionally noted that the above-mentioned sol-gel nano-glass-ceramics were obtained by controlled heat-treatment carried out at a significantly lower temperature (350°C) compared with

the conditions applied in this work; thus, the impact of thermal expansion on crystal lattice parameters is significantly limited. Moreover, it should be clarified that in this experiment, the concentrations of the optically active ions (Ho³⁺) are considerably lower than those of Dy^{3+} , Eu^{3+} , and Gd^{3+} in our earlier papers [3,4], which may also affect the correspondingly smaller differences in the modifications of the crystal lattice parameters.

On the other hand, the impact of the thermal expansion on crystal lattice parameters – as a consequence of heat-treatment performed at higher temperature levels, especially at 700 and 900°C – is well-visible and described in our earlier paper concentrated on analogous SiO₂-LaF₃:Pr³⁺ nano-glass-ceramics with equivalent La³⁺:Pr³⁺ molar ratios to La³⁺:Ho³⁺ [5]. Due to the fact that Pr³⁺ ions are characterized by a quite comparable ionic radius as La³⁺ ($r_{Pr(III)} \approx r_{La(III)}$), it could be assumed that the impact of Pr³⁺ incorporation inside LaF₃ nanophase on the crystal lattice parameters is negligible, and – indeed – their changes were influenced mainly by the thermal expansion. Hence, we could tentatively expect that if Ho³⁺ ions (with a much smaller ionic radius than Pr³⁺, $r_{Pr(III)} > r_{Ho(III)}$) were partially incorporated inside the fluoride nanocrystals, the parameters of the crystal lattice (and also the unit cell volumes adequately) should be decreased for series of Ho³⁺-doped nano-glass-ceramics compared to parameters estimated for samples doped with Pr³⁺ ions. In fact, for the series of Ho³⁺-doped solgel samples, the unit cell parameters are mostly reduced compared to those doped with Pr³⁺ ions, which allows us to tentatively speculate that Ho³⁺ ions were partially incorporated into the LaF₃ nanocrystals both during heat-treatment performed at 700 and 900°C.

Fig. S1 TEM observations of $GC6_{700}$ (a-c) and $GC6_{900}$ (d-f) nano-glass-ceramic samples: enlargement of the edge region showing the nanocrystals and the amorphous host regions with red circles (a, d), which indicate the area used in the EDS analysis (b, e). FFT with the theoretical lattice distances marked by the red rings (c, f) were also presented.

The results from energy-dispersive X-ray spectroscopy (EDS), presented in Fig. S1(b, e) of the edge regions for GC6₇₀₀ (Fig. S1a) and GC6₉₀₀ (Fig. S1d) confirmed that the nanocrystals consist primarily of lanthanum and fluorine, with holmium admixtures. Simultaneously, EDS analysis revealed that the amorphous part of the host matrix predominantly comprises silicon oxide. The crystallization of the LaF₃ phase inside the silicate sol-gel host was also confirmed by fast Fourier transform analysis (FFT, Figs. S1(c, f)) conducted on the acquired images, and the observed interplane distances correlate well with the theoretical values for the reference material.

2. Supporting information on excitation spectra

Fig. S2 The photoluminescence excitation spectra (PLE) for GCs doped with Ho³⁺ ions, recorded by monitoring $\lambda_{em} = 547$ nm luminescence: for representative GC1₉₀₀ sample with marked electronic transitions (a), presented as a function of increasing Ho³⁺ concentration in samples fabricated at 700°C (b) and 900°C (c).

The concentration-dependent photoluminescence excitation spectra (PLE) recorded for both series of Ho³⁺-doped GC₇₀₀ and GC₉₀₀ samples were presented in Fig. S2. The spectra were registered by collecting the green luminescence of Ho³⁺ at $\lambda_{em} = 547$ nm wavelength, corresponding to the $({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{8}$ transition. In Fig. S2a, the exhibited PLE spectrum was recorded for representative GC1₉₀₀ sample; the observed bands correspond to the 4f¹⁰-4f¹⁰ transitions from the ${}^{5}I_{8}$ ground level to the upper-lying states: $({}^{3}H_{5}, {}^{3}H_{6})$ (359 nm), ${}^{5}G_{4}$ (384 nm), ${}^{5}G_{5}$ (415 nm), (${}^{5}G_{6}$, ${}^{5}F_{1}$) (450 nm), ${}^{5}F_{2}$ (468 nm), and ${}^{5}F_{3}$ (483 nm). Figs. S2b and S2c shows the collected PLE spectra as a function of modified La³⁺:Ho³⁺ molar ratio of samples annealed at 700 and 900°C, respectively. For the GC_{700} series, the intensity of individual excitation bands undergoes augmentation with a gradual increase of Ho^{3+} concentration from $GC1_{700}$ (with La³⁺:Ho³⁺ molar ratio equals to 0.997:0.003) to GC3700 (La³⁺:Ho³⁺ molar ratio equals to 0.988:0.012); however further increasing in Ho³⁺ content results in progressively diminishing in bands' intensities. In the case of glass-ceramics from the GC₉₀₀ series, the well-visible decrease in excitation bands' intensities is observed from GC1900 sample with the lowest concentration of Ho³⁺ ions (La³⁺:Ho³⁺ molar ratio = 0.997:0.003), and it is progressively continued up to GC6₉₀₀ sample with the highest concentration of optically active Ho³⁺ ions (La³⁺:Ho³⁺ = 0.88:0.12). The observed spectroscopic behavior evidently points to the activation of concentration quenching channels (CQ_{Ho}) in studied sol-gel materials. It is worth to mentioning that independently from heat-treatment conditions of as-prepared xerogels, the PLE excitation bands profile was kept.

3. Supporting information on emission spectra (VIS range)

			4f ¹⁰ -4f ¹⁰ transit	ion of Ho ³⁺	
Series	Sample	${}^5\mathrm{F}_{2,3} \to {}^5\mathrm{I}_8$	$({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{8}$	${}^5\mathrm{F}_5 \to {}^5\mathrm{I}_8$	$({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{7}$
		(β_{blue})	(β_{green})	(β_{red})	$(\beta_{red/NIR})$
	GC1700	4.6%	31.9%	62.0%	1.5%
SiO	GC2700	4.2%	44.7%	48.8%	2.3%
$LaF_3:Ho^{3+}$ - (700°C) -	GC3700	3.0%	61.7%	31.7%	3.6%
	GC4700	5.0%	46.6%	45.5%	2.9%
	GC5 ₇₀₀	5.0%	14.0%	80.0%	1.0%
-	GC6 ₇₀₀	5.1%	12.5%	81.6%	0.8%
	GC1900	0.7%	91.5%	2.6%	5.2%
SiO ₂ LaF ₃ :Ho ³⁺ - (900°C) -	GC2900	1.5%	90.5%	2.9%	5.1%
	GC3900	1.4%	88.4%	4.7%	5.5%
	GC4900	2.5%	78.6%	12.6%	6.3%
	GC5 ₉₀₀	4.9%	57.1%	33.1%	4.9%
	GC6 ₉₀₀	4.5%	40.1%	52.9%	2.5%

Table S2. Percentage contribution (β) of individual PL bands in VIS light scope.

Fig. S3 CIE chromaticity diagrams for samples fabricated at 700°C (a) and 900°C (b).

Series	Sample	Excitation wavelength	CIE (x y)	Color of emitted light	Ref.
	GC1700		(0.422 0.510)	yellow	
	GC2 ₇₀₀		(0.376 0.572)	green	
SiO ₂ -LaF ₃ :Ho ³⁺	GC3 ₇₀₀	2 - 450 nm	(0.309 0.642)	green	[this
(700°C)	GC4700	$\lambda_{ex} = 430 \text{ IIII}$	(0.362 0.581)	green	work]
	GC5 ₇₀₀		(0.521 0.396)	orange	
	GC6700		(0.544 0.393)	orange	
	GC1900		$(0.234 \ 0.739)$	green	
	GC2900		(0.230 0.742)	green	
SiO ₂ -LaF ₃ :Ho ³⁺	GC3 ₉₀₀	2 - 450 mm	(0.232 0.736)	green	[this
(900°C)	GC4 ₉₀₀	$\lambda_{\rm ex} = 430 \ {\rm nm}$	(0.257 0.708)	green	work]
	GC5 ₉₀₀		(0.316 0.630)	green	
	GC6 ₉₀₀		(0.384 0.551)	green	
	0.1 mol% Ho ³⁺		(0.39 0.57)		
zinc	0.3 mol% Ho ³⁺		(0.38 0.57)	yellow	[6]
fluorophosphate	0.5 mol% Ho ³⁺	$\lambda_{ex} = 450 \text{ nm}$	(0.32 0.58)	_	
(ZFP) glasses	1.0 mol% Ho ³⁺		(0.29 0.58)	green yellow	
	1.5 mol% Ho ³⁺		(0.34 0.58)		
	0.1 mol% Ho ³⁺		(0.3082 0.6819)		[7]
	0.5 mol% Ho ³⁺		(0.2879 0.7031)	_	
lead tungsten	1.0 mol% Ho ³⁺	$\lambda_{ex} = 452 \text{ nm}$	(0.2858 0.7069)	-	
tellurite glasses	1.5 mol% Ho ³⁺		$(0.2844 \ 0.7070)$	- green	
	2.0 mol% Ho ³⁺		(0.2780 0.7126)		
	2.5 mol% Ho ³⁺		(0.3022 0.6911)	_	
	0.1 mol% Ho ³⁺		(0.59 0.35)		
	0.5 mol% Ho ³⁺		(0.60 0.34)	_	
Zinc alumino	1.0 mol% Ho ³⁺	-596	(0.62 0.33)	-	501
	1.5 mol% Ho ³⁺	$\lambda_{\rm ex} = 380 \ {\rm nm}$	(0.60 0.30)	- red	[8]
glasses	2.0 mol% Ho ³⁺		(0.60 0.29)	-	
	2.5 mol% Ho ³⁺		(0.59 0.28)	_	
	without				
	addition of Ag		(0.350 0.640)		
boro phosphate glass-ceramics	NPs				
	0.6 mol% Ag	$\lambda_{ex} = 450 \text{ nm}$	(0.350 0.630)	green	[9]
(0.5 mol%)	NPs		(0.550 0.050)		
-	0.8 mol% Ag		(0.360 0.630)		
	NPs		(0.000 0.000)		

Table S3. CIE chromaticity coordinates calculated for prepared Ho^{3+} -doped sol-gel nano-glass-ceramics, compared with the data from the literature.

As was presented in Fig. S3 and Table S3, for samples heat-treated at 700°C with the lowest concentration of Ho³⁺ ions, i.e., GC1₇₀₀-GC3₇₀₀, the coordinates are lying between (0.422|0.510) and (0.309|0.642) points; thus, the resultant colors of the obtained emissions shift from yellowtoned light region (GC1₇₀₀ with dominant wavelength $\lambda_d = 570$ nm) to green (GC2₇₀₀ with $\lambda_d = 561$ nm, GC3₇₀₀ with $\lambda_d = 550$ nm). For the last samples from the series with the highest concentration of Ho³⁺ ions (GC4₇₀₀-GC6₇₀₀), the coordinates shift from (0.362|0.581) to (0.544|0.393). Resultantly, the color of emitted light modifies from green (GC4₇₀₀ with $\lambda_d = 558$ nm) to orange (GC5₇₀₀ with $\lambda_d = 590$ nm, GC6₇₀₀ with $\lambda_d = 593$ nm). In the case of a series fabricated by heat-treatment carried out at 900°C, all samples emit green light described by coordinates ranging from (0.234|0.739) to (0.384|0.551). It should be noted that the tonality of emitted green luminescence was continuously changed with increasing Ho³⁺ concentration, and the dominant wavelength modified from $\lambda_d = 540$ nm (GC1₉₀₀-GC3₉₀₀), through $\lambda_d = 544$ nm (GC4₉₀₀), $\lambda_d = 551$ nm (GC5₉₀₀), up to $\lambda_d = 563$ nm (GC6₉₀₀). Such observed shifting in green light tonality corresponds to the increasing involvement of the red luminescence component assigned to the ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ transition. Moreover, it should also be emphasized that the generated green light by fabricated Ho³⁺-doped sol-gel glass-ceramics – especially for GC3700 and GC5900 samples – is lying nearby the standard point of the green illuminant (0.290|0.600) governed by the European Broadcasting Union (EBU) [10]. The similar CIE chromaticity coordinates – as for prepared sol-gel green emitters – were found in the literature for Ho³⁺-doped boro-phosphate glass-ceramics and Ho³⁺-doped lead tungsten tellurite glasses [7, 9]. To further characterize the quality of the generated emission, McCamy's formula was used for calculations of correlated color temperature (CCT) [11]:

$$CCT = -449n^3 + 3525n^2 - 6823n + 5520.33,$$
 (1)

in which $n = (x - x_e)/(y - y_e)$ ($x_e = 0.332$, $y_e = 0.186$; the epicenter of the isotemperature lines). The color purity (CP) was additionally calculated based on the below formula [12]:

$$CP = \frac{\sqrt{(x - x_i)^2 + (y - y_i)^2}}{\sqrt{(x_d - x_i)^2 + (y_d - y_i)^2}} \cdot 100\%,$$
(2)

in which (x, y) are the chromaticity coordinates, (x_i, y_i) are the coordinates of standard white light (0.333|0.333), and (x_d, y_d) are the chromaticity coordinates of the dominant wavelength (λ_d). For the GC₇₀₀ series, the CCT values for the subsequent samples were estimated at: 3887, 4788, 5874, 5022, 1907, and 1747 K; meanwhile, for the GC₉₀₀ series, the values of CCT parameter equal to: 6845, 6894, 6880, 6575, 6575, 5771, as well as 4618 K. Thus, it could be observed that growing involvement of the ⁵F₅ \rightarrow ⁵I₈ red luminescence (expressed as β_{red} coefficient) in recorded PL spectra (Fig. 3 in manuscript), contributes to the tunability of generated emission from cool-toned to warm-toned shades. Moreover, the CP values were estimated at 80.7%, 85.9%, and 88.0% for resultant green luminescence emitted by $GC1_{700}$ - $GC3_{700}$ samples; the CP for yellow light (emitted by $GC4_{700}$ sample) was assessed on 84.4%, while the CP values for orange luminescence (produced by $GC5_{700}$ and $GC6_{700}$ glass-ceramics) were established on 76.4% and 82.4%, respectively. In the case of green photoluminescence generated by all samples from the GC_{900} series, the CP values range from 81.6% ($GC6_{900}$) even to 98.0% ($GC2_{900}$). Thus, the collected experimental results clearly proved that the quality of emitted light is satisfactory.

Fig. S4 The impact of elevated temperature on PL spectra in VIS range for representative $GC1_{700}$ (a) and $GC1_{900}$ (b) samples with equivalent nominal concentration of Ho³⁺ ions, as well as the comparison of their luminescence intensities (c).

4. Supporting information on emission spectra (NIR region)

			4f ¹⁰ -4f ¹⁰ tran	sition of Ho ³⁺		
Series	Sample	$^5\mathrm{F}_5 \rightarrow {}^5\mathrm{I}_7$	$({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{6}$	${}^5\mathrm{I}_6 \to {}^5\mathrm{I}_8$	$({}^{5}S_{2}, {}^{5}F_{4}) \rightarrow {}^{5}I_{5}$	${}^5\mathrm{F}_5 \to {}^5\mathrm{I}_6$
		(β _{NIR/0.97µm})	(β _{NIR/1.02µm})	(β NIR/1.19µm)	(β _{NIR/1.35µm})	(β _{NIR/1.45µm})
	GC1700	16.0%	6.5%	9.5%	24.3%	43.7%
SiO	GC2700	9.5%	8.5%	14.1%	25.4%	42.5%
LaF ₃ :Ho ³⁺ - (700°C) -	GC3700	5.0%	11.8%	29.8%	29.5%	23.9%
	GC4700	7.7%	6.8%	40.5%	18.5%	26.5%
	GC5700	23.7%	1.5%	11.7%	11.4%	51.7%
	GC6700	20.3%	-	12.8%	3.8%	63.1%
	GC1900	-	6.3%	79.1%	14.6%	-
SiO	GC2900	-	3.8%	87.0%	9.0%	0.2%
102^{-1} LaF ₃ :Ho ³⁺ - (900°C) -	GC3 ₉₀₀	-	7.4%	72.4%	19.3%	0.9%
	GC4900	0.5%	0.1%	86.3%	11.0%	2.1%
	GC5900	0.4%	0.5%	95.3%	1.7%	2.1%
	GC6 ₉₀₀	0.1%	0.3%	97.3%	1.1%	1.2%

Table S4. Percentage contribution (β) of individual PL bands in NIR spectral region.

Fig. S5 The impact of elevated temperature on PL spectra in NIR range for representative $GC4_{700}$ (a) and $GC4_{900}$ (b) GCs with the same nominal concentration of Ho^{3+} ions, as well as the comparison of their luminescence intensities (c).

Fig. S6 The impact of elevated temperature on PL spectra in MIR scope for representative $GC4_{700}$ (a) and $GC4_{900}$ (b) samples with equivalent nominal concentration of Ho^{3+} ions, as well as the comparison of their luminescence intensities (c).

5. Supporting information on decay analysis

Fig. S7 Correlations in luminescence decay times and concentration quenching efficiencies for GC_{700} samples with increasing Ho³⁺ concentration.

Fig. S8 Correlations in luminescence decay times and concentration quenching efficiencies for GC_{900} samples with increasing Ho³⁺ concentration.

The calculated efficiencies of CQ_{Ho} processes for all analyzed excited levels, i.e., (${}^{5}S_{2}, {}^{5}F_{4}$), ${}^{5}F_{5}$, ${}^{5}I_{6}$, and ${}^{5}I_{7}$, progress faster for samples obtained by annealing performed at 700°C. Factually, the PL spectra and assessed percentage contribution of the individual emission bands could suggest that the incorporation of Ho³⁺ ions into the LaF₃ crystalline phase is more efficient for samples from the GC₉₀₀ series, than for glass-ceramics from the GC₇₀₀ series. On the other hand, based on the average sizes of precipitated LaF₃ crystals inside the amorphous silicate sol-gel network and relative amounts of crystal fraction (which could be assumed from intensities of individual XRD reflexes), it is reasonable to expect that the average Ho³⁺-Ho³⁺ inter-ionic distances inside fluoride crystal lattice seem to be somewhat elongated for glass-ceramics annealed at 900°C (compared to analogous samples from the GC₇₀₀ series with equivalent nominal concentration), even though their segregation inside fluoride crystal phase is higher. This hypothesis could explain why the concentration quenching process of Ho³⁺ ions (CQ_{Ho}) is less efficient for materials heat-treated at a higher temperature, i.e., 900°C.

Table S5. Luminescence decay times for individual excited states of Ho^{3+} ions in prepared GCs compared with the data from literature.

Excited state	Type of material	Sample	Decay time	Ref.
		GC1700	72.2 μs	
		GC2700	81.6 µs	
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3700	145.7 μs	[this would]
	(700°C)	GC4700	79.5 μs	[uns work]
		GC5 ₇₀₀	45.5 μs	
		GC6700	14.2 μs	
		GC1900	620.8 μs	
	-	GC2900	581.2 μs	
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3 ₉₀₀	547.6 μs	[4]
	(900°C)	GC4900	322.5 μs	- [this work] - -
		GC5 ₉₀₀	232.9 μs	
		GC6900	155.8 μs	
(59 5E)	Y ₂ Zr ₂ O ₇ :Ho ³⁺ transparent ceramics	1 mol% Ho ³⁺	42 μs	- [13]
(° S ₂ ,° F ₄)		2 mol% Ho ³⁺	48 μs	
		3 mol% Ho ³⁺	40 µs	
		4 mol% Ho ³⁺	36 µs	
	- Ho ³⁺ -doped - germanate glasses -	0.1% Ho ³⁺	21 µs	
		0.5% Ho ³⁺	18 µs	[14]
		1.0% Ho ³⁺	16 µs	
		1.5% Ho ³⁺	25 μs	
	-	2.5% Ho ³⁺	16 µs	
		glass	1 μs	- [15]
	Ho ³⁺ /Yb ³⁺ co-doped	GC (650°C)	1 µs	
	silica glass and glass-	GC (675°C)	7 μs	
	ceramics	GC (700°C)	10 µs	
	-	GC (725°C)	11 µs	1

a) lifetimes for the (⁵S₂,⁵F₄) excited level

5

Excited state	Type of material	Sample	Decay time	Ref.
		GC1700	118.9 µs	_
		GC2700	121.7 μs	-
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3700	125.7 μs	[4].:
	(700°C)	GC4700	97.0 μs	[unis work]
	-	GC5 ₇₀₀	84.4 μs	-
		GC6700	54.1 μs	-
5 F -	SiO ₂ -LaF ₃ :Ho ³⁺ GCs (900°C)	GC1900	168.5 μs	
Γ5		GC2900	154.0 μs	
		GC3900	157.0 μs	- [4].:
		GC4900	125.2 μs	[this work]
		GC5 ₉₀₀	105.5 μs	-
	·	GC6900	92.2 μs	-
	Ho ³⁺ -doped	Y ₂ O ₃ :Ho ³⁺	103.7 μs	[16]
	transparent ceramics	Y ₃ Al ₅ O ₁₂ :Ho ³⁺	3.47 µs	[10]

Excited state	Type of material	Sample	Decay time	Ref.
		GC1700	218.3 µs	_
		GC2700	256.5 μs	_
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3700	450.5 μs	- [4].:
	(700°C)	GC4700	248.2 μs	[this work]
		GC5 ₇₀₀	209.6 µs	-
		GC6700	96.1 µs	-
5т.	SiO ₂ -LaF ₃ :Ho ³⁺ GCs (900°C)	GC1900	8.97 ms	
16		GC2900	10.19 ms	
		GC3 ₉₀₀	9.11 ms	- [4].:
		GC4 ₉₀₀	8.21 ms	[this work]
		GC5900	7.85 ms	-
		GC6 ₉₀₀	5.55 ms	-
	Ho ³⁺ -doped	$Y_2O_3:Ho^{3+}$	928 μs	[17]
	transparent ceramics	Y ₃ Al ₅ O ₁₂ :Ho ³⁺	44.9 µs	[16]

c) lifetimes for the ⁵I₆ excited level

d) lifetimes for the ⁵I₇ excited level

Excited state	Type of material	Sample	Decay time	Ref.
		GC1700	712.1 μs	
		GC2700	947.6 μs	_
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3700	1472.9 μs	- [this work]
	(700°C)	GC4700	903.9 μs	
		GC5700	558.1 μs	-
		GC6 ₇₀₀	191.2 μs	_
		GC1900	4.65 ms	_
		GC2 ₉₀₀	8.44 ms	-
	SiO ₂ -LaF ₃ :Ho ³⁺ GCs	GC3900	7.68 ms	- [this work]
	(900°C)	GC4900	6.87 ms	
		GC5900	5.12 ms	-
		GC6900	4.61 ms	
	Ho ³⁺ -doped	Y_2O_3 :Ho ³⁺	10.92 ms	[16]
5T_	transparent ceramics	$Y_3Al_5O_{12}$:Ho ³⁺	7.04 ms	[10]
1 7	$(Lu,Sc)_2O_3:Ho^{3+}$	1.4 at% Ho	9.0 ms	[17]
	transparent ceramics	3 at% Ho	5.5 ms	
	1 1 11 1	Al:Si = 1.0:98.8	0.91 ms	_
	sol-gel silica glasses	Al:Si = 2.0:97.8	1.04 ms	
	with modified AI:Si	Al:Si = 3.0:96.8	1.19 ms	[18]
	$(0.2\% \text{ mol Ho}^{3+})$	Al:Si = 4.0:95.8	1.23 ms	_
	(0.270 mor mor)	Al:Si = 5.0:94.8	1.33 ms	
		0.5% mol Ho ³⁺	30.7 ms	_
	CoE (Uo ³⁺ transmort)	1% mol Ho ³⁺	29.1 ms	
	Car ₂ :no ⁻ transparent	2% mol Ho ³⁺	27.9 ms	[19]
	ceramics	3% mol Ho ³⁺	25.4 ms	_
		5% mol Ho ³⁺	25.3 ms	
	Y ₃ NbO ₇ :Ho ³⁺ transparent ceramic	0.6% mol Ho ³⁺	8.09 ms	[20]

6. References

[1] P. D'Angelo, A. Zitolo, V. Migliorati, G. Chillemi, M. Duvail, P. Vitorge, S. Abadie, and R. Spezia, *Inorg. Chem.*, 2011, **50**, 4572-4579.

[2] W. Korczak and P. Mikołajczak, J. Cryst. Growth, 1983, 61, 601-605.

[3] N. Pawlik, T. Goryczka, E. Pietrasik, J. Śmiarowska, and W.A. Pisarski, Nanomater., 2022, 12, 4500.

[4] N. Pawlik, B. Szpikowska-Sroka, T. Goryczka, and W.A. Pisarski, *Ceram. Int.*, 2023, **49**, 41041-41053.

[5] N. Pawlik, T. Goryczka, M. Zubko, J. Śmiarowska, and W.A. Pisarski, *Nanoscale*, 2024, **16**, 4249-4265.

[6] V. Reddy Prasad, S. Damodaraian, and Y.C. Ratnakaram, Opt. Mater., 2018, 78, 63-71.

[7] M. Venkateswarlu, Sk. Mahamuda, K. Swapna, M.V.V.K.S. Prasad, A. Srinivasa Rao, S. Shakya, A. Mohan Babu, and G. Vijaya Prakash, *J. Lumin.*, 2015, **163**, 54-71.

[8] Sk. Mahamuda, K. Swapna, P. Packiyaraj, A. Srinivasa Rao, and G. Vijaya Prakash, *Opt. Mater.*, 2013, **36**, 362-371.

[9] A.S. Alqarni, R. Hussin, S.N. Alamri, and S.K. Ghoshal, J. Lumin., 2020, 223, 117218.

[10] C.K. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, *J. Alloy. Compd.*, 2017, **704**, 557-564.

[11] V. Singh, A.A. Bhat, A.R. Kadam, S. Saravanakumar, P. K. Tripathi, S.J. Dhoble, and J.B. Joo, *J. Electron. Mater.*, 2024, **53**, 6384-6394.

[12] Y.-F. Wu, Y.-T. Nien, Y.-J. Wang, and I.-G. Chen, J. Am. Ceram. Soc., 2012, 95, 1360-1366.

[13] Y. Ye, Z. Tang, Z. Ji, H. Xiao, Y. Liu, Y. Qin, L. Liang, J. Qi, and T. Lu, *Opt. Mater.*, 2021, **121**, 111643.

[14] M. Ravi Prakash, G. Neelima, V.K. Kummara, N. Ravi, C.S. Dwaraka Viswanath, T. Subba Rao, and S. Mahaboob Jilani, *Opt. Mater.*, 2019, **94**, 436-443.

[15] P. Babu, U.R. Rodríguez-Mendoza, V. Lavín, and R. Praveena, Opt. Mater., 2024, 153, 115609.

[16] P. Loiko, L. Basyrova, R. Maksimov, V. Shitor, M. Baranov, F. Starecki, X. Mateos, and P. Camy, *J. Lumin.*, 2021, **240**, 118460.

[17] W. Jing, P. Loiko, J.M. Serres, Y. Wang, E. Kifle, E. Vilejshikova, M. Augiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, *J. Lumin.*, 2018, **203**, 145-151.

[18] X. Wang, W. Xu, S. Wang, C. Yu, D. Chen, and L. Hu, J. Alloy. Compd., 2016, 657, 478-482.

[19] Z. Wan, W. Li, B. Mei, Z. Liu, and Y. Yang, J. Lumin., 2020, 223, 117188.

[20] L. Cornet, S. Guene-Girard, J.-M. Heintz, R. Boulesteix, A. Maître, and V. Jubera, *Opt. Mater.*, 2023, **144**, 114319.