Supporting Information

Coordinated assembly of alkali and alkaline earth metals with perfluorinated [AlF₆] group to design deep-ultraviolet zero-order

waveplate materials

Shaohua Liu^{a,b}, Lili Zhang^{*a,b}, Ke Li^c, Xiaotian Ma^{c,d}, Xifa Long^{c,d}, Yun Yang^{*c,d} ^aXinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.

^bYili Engineering Research Center of Green Silicon-based Materials, Yining, Xinjiang, 83500.

^cResearch Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.

^dCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

Empirical formula	AlF ₃	BaAlF ₅	Li ₂ KAl ₂ F ₉
Formula weight	83.98	259.32	277.94
Crystal system	Hexagonal	Tetragonal	Monoclinic
Space group	<i>P6/mmm</i> (No.191)	<i>14/m</i> (No.87)	<i>C2/m</i> (No. 12)
<i>a</i> /Å	6.9195(5)	14.4398(13)	7.1962(10)
b /Å	6.9195(5)	14.4398(13)	14.7046(15)
c /Å	3.5596(3)	7.2843(9)	7.1852(9)
α /°	90	90	90
eta /°	90	90	119.857(5)
γ /°	120	90	90
V/Å ³	147.60(2)	1518.8(3)	659.40(14)
Ζ	3	16	4
$ ho_{calc}g/cm^3$	2.834	4.536	2.8
μ/mm^{-1}	0.779	10.678	1.199
F(000)	120	1824	528
Theta range for data collection/°	5.895 to 27.428	1.995 to 27.538	2.770 to 27.522
Index ranges	$-8 \le h \le 7, -8 \le k \le 8, -4 \le l \le 4$	$-18 {\leq} h {\leq} {18}, -18 {\leq} k {\leq} {18}, 9 {\leq} 1 {\leq} {9}$	$-8 \le h \le 9, -18 \le k \le 18, -9 \le l \le 9$
Reflections collected / unique	1240/89 [R(int) = 0.0415]	5623/942 [R(int) = 0.0672]	2884/798 [R(int) = 0.0574]
Data / restraints / parameters	89 / 0 / 11	942 / 12 / 77	798 / 0 / 69
Goodness-of-fit on F ²	1.349	1.252	1.078
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0188, wR_2 = 0.0533$	$R_1 = 0.0525, wR_2 = 0.1317$	$R_1 = 0.0409, wR_2 = 0.1060$
R indices (all data) ^a	$R_1 = 0.0188, wR_2 = 0.0533$	$R_1 = 0.0584, wR_2 = 0.1352$	$R_1 = 0.0535, wR_2 = 0.1167$
Largest diff. peak and hole / $e{\cdot}{\rm \AA}^{-3}$	0.424 / -0.230	1.558 / -1.897	1.223 / -0.626

Table S1. Crystal data and structure refinement for AlF₃, BaAlF₅, and $Li_2KAl_2F_9$.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ and $wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})$

Х	У	Z	$U_{\text{eq}}(\text{\AA}^2)$	BVS
5000	0	0	6(1)	3.177
4225(3)	2112(2)	0	20(1)	1.029
5000	0	5000	31(1)	1.060
	x 5000 4225(3) 5000	x y 5000 0 4225(3) 2112(2) 5000 0	xyz5000004225(3)2112(2)0500005000	xyz $U_{eq}(Å^2)$ 5000006(1)4225(3)2112(2)020(1)50000500031(1)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for AlF₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond lengths (Å) and angles (°) of AlF_3 .

Atom	Bond	Atom	Bond
Al(1)-F(1)#1	1.7912(5)	Al(1)-F(1)	1.7912(5)
Al(1)-F(1)#2	1.7912(5)	Al(1)-F(2)#4	1.7798(15)
Al(1)-F(1)#3	1.7912(5)	Al(1)-F(2)	1.7798(15)
F(1)#2-Al(1)-F(1)	180	F(2)#4-Al(1)-F(1)	90
F(1)#2-Al(1)-F(1)#1	90.07(11)	F(2)-Al(1)-F(1)#2	90
F(1)-Al(1)-F(1)#3	90.07(11)	F(2)#4-Al(1)-F(1)#1	90
F(1)#3-Al(1)-F(1)#1	180.00(7)	F(2)-Al(1)-F(1)#3	90
F(1)-Al(1)-F(1)#1	89.93(11)	F(2)#4-Al(1)-F(1)#3	90
F(1)#2-Al(1)-F(1)#3	89.93(11)	F(2)-Al(1)-F(1)	90
F(2)-Al(1)-F(1)#1	90	F(2)#4-Al(1)-F(2)	180
F(2)#4-Al(1)-F(1)#2	90		

Symmetry transformations used to generate equivalent atoms:

#1 y,-x+y,-z #2 -x+1,-y,-z #3 -y+1,x-y,z

#4 x,y,z-1 #5 x-y,x,z #6 x,y,z+1

X	у	Z	$U_{eq}(Å^2)$	BVS
564(1)	2222(1)	5000	19(1)	2.351
752(1)	7580(1)	0	23(1)	2.322
0	5000	5000	28(2)	2.917
1775(4)	6636(4)	5000	28(1)	2.979
0	10000	2474(12)	27(2)	3.175
669(9)	3913(8)	5000	38(3)	1.134
0	5000	7500	14(2)	0.949
1094(9)	5560(9)	5000	43(3)	1.150
2499(7)	6077(7)	6700(13)	48(2)	1.005
2489(10)	7641(9)	5000	47(3)	1.207
1005(6)	7101(7)	3304(12)	45(2)	1.120
483(6)	8880(6)	2563(16)	52(3)	1.004
0	10000	0	79(11)	0.999
0	10000	5000	79(11)	0.901
	x 564(1) 752(1) 0 1775(4) 0 669(9) 0 1094(9) 2499(7) 2489(10) 1005(6) 483(6) 0 0	x y 564(1) 2222(1) 752(1) 7580(1) 0 5000 1775(4) 6636(4) 0 10000 669(9) 3913(8) 0 5000 1094(9) 5560(9) 2499(7) 6077(7) 2489(10) 7641(9) 1005(6) 7101(7) 483(6) 8880(6) 0 10000 0 10000	x y z 564(1) 2222(1) 5000 752(1) 7580(1) 0 0 5000 5000 1775(4) 6636(4) 5000 0 10000 2474(12) 669(9) 3913(8) 5000 0 5000 7500 0 5000 7500 1094(9) 5560(9) 5000 2499(7) 6077(7) 6700(13) 2489(10) 7641(9) 5000 1005(6) 7101(7) 3304(12) 483(6) 8880(6) 2563(16) 0 10000 0 0 10000 5000	xyz $U_{eq}(Å^2)$ 564(1)2222(1)500019(1)752(1)7580(1)023(1)05000500028(2)1775(4)6636(4)500028(1)0100002474(12)27(2)669(9)3913(8)500038(3)05000750014(2)1094(9)5560(9)500043(3)2499(7)6077(7)6700(13)48(2)2489(10)7641(9)500047(3)1005(6)7101(7)3304(12)45(2)483(6)8880(6)2563(16)52(3)010000079(11)010000500079(11)

Table S4. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for BaAlF₅. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table S5. Selected bond lengths(Å) and angles (°) of $BaAlF_5$.

Atom	Bond	Atom	Bond
Ba(1)-F(1)	2.447(12)	Al(1)-F(1)	1.843(11)
Ba(1)-F(4)#3	2.547(10)	Al(1)-F(1)#1	1.843(11)
Ba(1)-F(4)#4	2.547(10)	Al(1)-F(3)	1.774(12)
Ba(1)-F(5)#5	2.619(13)	Al(1)-F(3)#1	1.774(12)
Ba(1)-F(6)#6	2.760(9)	Al(1)-F(2)	1.8211(2)
Ba(1)-F(6)#1	2.760(9)	Al(1)-F(2)#1	1.8211(2)
Ba(1)-F(7)#6	2.823(10)	Al(2)-F(3)	1.839(13)
Ba(1)-F(7)#1	2.823(10)	Al(2)-F(4)	1.811(10)
Ba(2)-F(1)#8	2.803(13)	Al(2)-F(4)#12	1.811(10)
Ba(2)-F(3)#8	2.864(14)	Al(2)-F(5)	1.781(14)
Ba(2)-F(4)#8	2.919(10)	Al(2)-F(6)#12	1.792(10)
Ba(2)-F(4)#9	2.919(10)	Al(2)-F(6)	1.792(10)
Ba(2)-F(5)#10	2.559(15)	Al(3)-F(7)	1.763(9)
Ba(2)-F(6)	2.531(9)	Al(3)-F(7)#13	1.763(9)
Ba(2)-F(6)#11	2.531(9)	Al(3)-F(7)#14	1.763(9)
Ba(2)-F(7)#11	2.675(10)	Al(3)-F(7)#15	1.763(9)
Ba(2)-F(7)	2.675(10)	Al(3)-F(8)	1.802(9)
		Al(3)-F(9)	1.840(9)
F(1)#1-Al(1)-F(1)	180	F(6)#12-Al(2)-F(3)	89.1(5)
F(3)#1-Al(1)-F(1)#1	85.5(6)	F(6)-Al(2)-F(3)	89.1(5)
F(3)-Al(1)-F(1)	85.5(6)	F(6)-Al(2)-F(4)	175.2(6)
F(3)-Al(1)-F(1)#1	94.5(6)	F(6)#12-Al(2)-F(4)	93.1(4)
F(3)#1-Al(1)-F(1)	94.5(6)	F(6)-Al(2)-F(4)#12	93.1(4)
F(3)#1-Al(1)-F(3)	180	F(6)#12-Al(2)-F(4)#12	175.2(6)
F(3)#1-Al(1)-F(2)#1	90	F(6)#12-Al(2)-F(6)	87.2(6)
F(3)-Al(1)-F(2)	90	F(7)#13-Al(3)-F(7)	175.8(9)

F(3)-Al(1)-F(2)#1	90	F(7)#14-Al(3)-F(7)	89.92(4)
F(3)#1-Al(1)-F(2)	90	F(7)#15-Al(3)-F(7)#13	89.92(4)
F(2)-Al(1)-F(1)	90	F(7)#15-Al(3)-F(7)	89.92(4)
F(2)#1-Al(1)-F(1)	90	F(7)#14-Al(3)-F(7)#13	89.92(4)
F(2)-Al(1)-F(1)#1	90	F(7)#14-Al(3)-F(7)#15	175.8(9)
F(2)#1-Al(1)-F(1)#1	90	F(7)-Al(3)-F(8)	92.1(5)
F(2)#1-Al(1)-F(2)	180	F(7)#15-Al(3)-F(8)	92.1(5)
F(4)-Al(2)-F(3)	86.1(5)	F(7)#14-Al(3)-F(8)	92.1(5)
F(4)#12-Al(2)-F(3)	86.1(5)	F(7)#13-Al(3)-F(8)	92.1(5)
F(4)-Al(2)-F(4)#12	86.3(7)	F(7)#14-Al(3)-F(9)	87.9(5)
F(5)-Al(2)-F(3)	176.9(7)	F(7)#15-Al(3)-F(9)	87.9(5)
F(5)-Al(2)-F(4)	91.7(5)	F(7)#13-Al(3)-F(9)	87.9(5)
F(5)-Al(2)-F(4)#12	91.7(5)	F(7)-Al(3)-F(9)	87.9(5)
F(5)-Al(2)-F(6)	93.1(5)	F(8)-Al(3)-F(9)	180
F(5)-Al(2)-F(6)#12	93.1(5)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1 #2 -x,-y+1,-z #3 y-1/2,-x+1/2,-z+3/2 #4 y-1/2,-x+1/2,z-1/2 #5 -y+1,x,z #6 -x,-y+1,z #7 -y+1,x,-z+1 #8 -y+1/2,x+1/2,z-1/2 #9 -y+1/2,x+1/2,-z+1/2 #11 x,y,-z #10 -x+1/2,-y+3/2,-z+1/2 #12 x,y,-z+1 #13 -x,-y+2,z #14 -y+1,x+1,z #15 y-1,-x+1,z #16 -y+1/2,x+1/2,z+1/2 #17 y-1/2,-x+1/2,-z+1/2 #18 y,-x+1,-z+1 #19 -y,x+1,z #20 x,y+1,z #21 -x,-y+2,-z #22 -x,-y+2,-z+1 #23 -y+1/2,x+1/2,-z+3/2

	-				
Atom	х	У	Z	$\mathrm{U}_{\mathrm{eq}}(\mathrm{\AA}^2)$	BVS
Li(1)	10000	7101(4)	5000	21(1)	0.911
Li(2)	5000	6971(4)	10000	17(1)	1.029
K(1)	2463(1)	5000	7459(1)	25(1)	0.836
Al(1)	7516(1)	6212(1)	7501(1)	8(1)	3.047
F(1)	5000	6421(1)	5000	20(1)	1.027
F(2)	10000	6037(1)	10000	23(1)	0.967
F(3)	7175(3)	5000	7006(3)	20(1)	0.967
F(4)	6077(2)	6111(1)	8894(2)	18(1)	1.031
F(5)	7686(2)	7419(1)	7766(2)	20(1)	0.918
F(6)	8928(2)	6221(1)	6071(2)	19(1)	1.001

Table S6. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Li₂KAl₂F₉. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Bond	Atom	Bond
Li(1)-F(1)#4	2.174(6)	K(1)-F(4)#6	2.8102(15)
Li(1)-F(5)#4	2.088(3)	K(1)-F(6)#12	2.8569(16)
Li(1)-F(5)#3	2.088(3)	K(1)-F(6)#13	2.8569(16)
Li(1)-F(6)#5	1.858(5)	K(1)-F(6)#14	2.8509(16)
Li(1)-F(6)	1.858(5)	K(1)-F(6)#1	2.8509(16)
Li(2)-F(4)	1.857(4)	Al(1)-F(1)	1.8337(7)
Li(2)-F(4)#9	1.857(4)	Al(1)-F(2)	1.8137(7)
Li(2)-F(5)#7	1.868(3)	Al(1)-F(3)	1.8102(8)
Li(2)-F(5)#8	1.868(3)	Al(1)-F(4)	1.7686(17)
K(1)-F(4)#11	2.7970(16)	Al(1)-F(5)	1.7828(17)
K(1)-F(4)	2.7970(16)	Al(1)-F(6)	1.7690(18)
K(1)-F(4)#9	2.8102(16)		
F(2)-Al(1)-F(1)	178.39(8)	F(5)-Al(1)-F(1)	85.40(8)
F(3)-Al(1)-F(1)	90.07(9)	F(5)-Al(1)-F(2)	93.09(8)
F(3)-Al(1)-F(2)	91.46(9)	F(5)-Al(1)-F(3)	175.32(8)
F(4)-Al(1)-F(1)	89.90(6)	F(6)-Al(1)-F(1)	90.12(6)
F(4)-Al(1)-F(2)	89.65(6)	F(6)-Al(1)-F(2)	90.45(6)
F(4)-Al(1)-F(3)	88.17(8)	F(6)-Al(1)-F(3)	87.34(8)
F(4)-Al(1)-F(5)	92.99(7)	F(6)-Al(1)-F(5)	91.49(7)
F(4)-Al(1)-F(6)	175.51(8)		

Table S7. Selected bond lengths(Å) and angles (°) of Li₂KAl₂F₉.

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x+1,y,z #3 x+1/2,-y+3/2,z #4 -x+3/2,-y+3/2,-z+1 #5 -x+2,y,-z+1 #6 -x+1,-y+1,-z+2 #7 -x+3/2,-y+3/2,-z+2 #8 x-1/2,-y+3/2,z #9 -x+1,y,-z+2 #10 -x,-y+1,-z+1 #11 x,-y+1,z #12 x-1,y,z #13 x-1,-y+1,z #14 -x+1,y,-z+1 #15 -x+2,y,-z+2

Figure S1. Ba atom coordination environment in the BaAlF₅ structure.

Figure S2. Li and K atom coordination environment in the Li₂KAl₂F₉ structure.

Figure. S3. (a) The TG and DSC curves of Li₂KAl₂F₉. (b) The calcination experiments.

Figure. S4. (a) The UV-vis-NIR diffuse reflectance spectrum of $Li_2KAl_2F_{9.}$ (b-d) The peaks at 660, 596 and 478 cm⁻¹ could arise from the stretch-bend vibrations of the [AlF₆] units.

Figure S5. Geometric configuration of the available $[AlO_mF_n]$ (m + n = 6) units. The orange, red, and blue atoms are Al, O, and F atoms, respectively.

Number	Cluster	Polarization	HOMO-LOMO	ICSD code
	Clusici	anisotropy	gap	
1^a	AlO ₆	0.32	2.97	30538
2^a	AlO ₅ F	7.14	2.69	68320
3 ^{<i>a</i>}	$AlO_4F_2^I$	9.84	2.79	186579
4^a	$AlO_4F_2{}^{\rm II}$	2.44	2.69	186579
5 ^{<i>a</i>}	AlO ₃ F ₃ ^I	8.94	3.08	166958
6 ^{<i>a</i>}	AlO ₃ F ₃ ^{II}	9.74	2.27	79740
7^a	$AlO_2F_4^I$	2.84	4.19	170410
8^a	$AlO_2F_4{}^{II}$	4.23	3.54	79700
9^a	AlOF ₅	3.13	3.92	92303
10^{a}	AlF_6	0.12	9.17	this work
11^{b}	AlO ₆	0.00	2.85	/
12^{b}	AlO ₅ F	1.87	2.64	/
13^{b}	$AlO_4F_2^{I}$	10.02	2.83	/
14^b	$AlO_4F_2{}^{\rm II}$	0.14	2.70	/
15^{b}	AlO ₃ F ₃ ^I	8.26	3.12	/
16^{b}	AlO ₃ F ₃ ^{II}	2.29	2.53	/
17^{b}	$AlO_2F_4^I$	2.92	4.25	/
18^{b}	$AlO_2F_4{}^{II}$	7.78	3.01	/
19 ^b	AlOF ₅	3.48	3.70	/
20^b	AlF_6	0.00	9.20	/

Table S8. Polarizability anisotropy and HOMO-LUMO calculations of the experimental structure and theoretical model of $[AlO_mF_n]$ (m + n = 6) units.

^{*a*}experimental structure and ^{*b*}theoretiacl model

Figure S6. The electron localization function of (a) AlF_3 , (b) $BaAlF_5$, and (c) $Li_2KAl_2F_9$.