Electronic Supplementary Information

Palladium-Catalyzed Intramolecular Oxidative Annulation: Synthesis

of o-Carboranoxazole

Hui Rao,^{‡,a,b} Hairui Jia,^{‡,a,b} Zaozao Qiu,^{*,b,c} and Zuowei Xie^{b,d}

^aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

^bShanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

^cInnovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China ^dShenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China [‡]These authors contributed equally to this work.

E-mail: <u>giuzz@sioc.ac.cn</u>

Table of Contents

Experimental Section	S2
Mechanistic Study	S23
Crystal Data and Summary of Data Collection and Refinements	S23
References	S26
NMR Spectra	S27

General Procedures.

All reactions were carried out in oven-dried glassware under an atmosphere of dry N₂ with the rigid exclusion of air and moisture using standard Schlenk techniques or in a glovebox. Toluene was purified by solvent purification system prior to use. 1-Aminoo-carboranes were prepared according to literature procedures.¹ All other chemicals were purchased from either Aldrich or J&K Chemical Co. and used as received unless otherwise specified. ¹H NMR spectra were recorded on a Bruker/Agilent/Varian 400 spectrometer at 400 MHz. ¹³C{¹H}, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker/Agilent/Varian 400 spectrometer at 101, 128 and 376 MHz, respectively. All signals were reported in ppm unit with references to the residual solvent resonances of the deuterated solvents for proton and carbon chemical shifts, to external BF₃·OEt₂ (0.00) for boron chemical shifts and to external CFCl₃ (0.00) for fluorine chemical shifts. Mass spectra were obtained on Thermo Fisher Scientific LTQ FTICR-MS spectrometer, Shanghai Institute of Organic Chemistry, CAS. The melting points of solid compounds were determined by a melting point apparatus without corrections (Shanghai INESA Physico-Optical Instrument Co., LTD).

the second secon	10 mol% PdC Ph 10 mol% Lig 0 2 eq. K ₃ Po 2 eq. Ph 2 eq. Ph Solvent, 80 °C	$\begin{array}{c} 0 \\ 0 \\ 0_4 \\ 0_4 \\ 0_4 \\ 0_5, 12 \\ h \end{array}$	Ph N N
Entry	Ligand	Solvent	Yield $(\%)^b$
1	-	Toluene	33
2	PCy ₃	Toluene	94
3	P ⁿ Bu ₃	Toluene	93
4	P(OMe) ₃	Toluene	N.R.
5	PPh ₃	Toluene	trace
6	$P(o-OMe-C_6H_4)_3$	Toluene	N.R.
7	PCy ₃	Et ₂ O	62
8	PCy ₃	THF	35
9	PCy ₃	MeCN	N.R.
10	PCy ₃	HFIP	N.R.
11	PCy ₃	DCE	N.R.
12	PCy ₃	PhCl	trace

Table S1. Optimization of Reaction Solvents and Ligands^[a]

^{*a*} Reactions were conducted on 0.2 mmol scale in 4.0 mL of solvent. ^{*b*} Yield determined by ¹H NMR using 1,1,2,2-tetrachloroethane as the internal standard.

A Representative Procedure for the Preparation of Starting Materials 1a-z.

According to the literature procedure,² to a toluene solution (15 mL) of 1-amino-2substituted-*o*-carborane (5.0 mmol) was added pyridine (1.2 mL, 15.0 mmol) and acyl chloride (15.0 mmol) successively under an atmosphere of dry nitrogen. The reaction flask was closed and the mixture was stirred at 80 °C for 12 h. After hydrolysis with water (20 mL) and extraction with diethyl ether (20 mL x 3), the organic portions were combined, dried over anhydrous Na₂SO₄ and concentrated to dryness in vacuo. The residue was subjected to flash column chromatography on silica gel (230-400 mesh) using *n*-hexane and ethyl acetate (3/1 in v/v) as eluent to give the products **1a-z**.

1a: White solid. 88% yield. M.p. = 162-163 °C. TLC: $R_f = 0.30$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H)

(aromatic C*H*), 6.88 (s, 1H) (N*H*), 5.28 (s, 1H) (cage C*H*). ¹³C {¹H} NMR (CDCl₃, 101 MHz): δ 165.1 (*C*=O), 133.3, 131.9, 129.2, 127.2 (aromatic *C*), 78.8, 59.2 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, *J* = 153.6 Hz, 1B), -7.0 (d, *J* = 142.1 Hz, 1B), -10.9 (d, *J* = 149.8 Hz, 6B), -13.7 (d, *J* = 169.0 Hz, 2B) (*B*H). HRMS (DART) Calcd for C₉H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 264.2386, Found: 264.2386.

1b: White solid. 90% yield. M.p. = 156-157 °C. TLC: $R_f = 0.32$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400

MHz): δ 7.55 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H)

(aromatic C*H*), 6.95 (s, 1H) (N*H*), 5.24 (s, 1H) (cage C*H*), 2.41 (s, 3H) (C*H*₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 165.8 (*C*=O), 144.1, 129.8, 129.5, 127.2 (aromatic *C*), 79.0, 59.8 (cage *C*), 21.7 (*C*H₃). ¹¹B NMR (CDCl₃, 128 M Hz): δ -4.1 (d, *J* = 153.6 Hz, 1B), -7.0 (d, *J* = 140.8 Hz, 1B), -10.9 (d, *J* = 148.5 Hz, 6B), -13.7 (d, *J* = 170.2 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 276.2397, Found: 276.2389.

1c: White solid. 80% yield. M.p. = 150-151 °C. TLC: $R_f = 0.15$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, J = 9.2 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H) (aromatic CH), 6.79 (s, 1H) (NH), 5.28 (s, 1H) (cage CH),

3.86 (s, 3H) (OC*H*₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 165.2 (*C*=O), 163.6, 129.3, 124.4, 114.4 (aromatic *C*), 79.1, 59.8 (cage *C*), 55.7 (OCH₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, *J* = 144.6 Hz, 1B), -7.1 (d, *J* = 145.9 Hz, 1B), -10.9 (d, *J* = 148.5 Hz, 6B), -13.6 (d, *J* = 217.6 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO₂⁻ [M-H⁺]: 292.2355, Found: 292.2343.

1d: White solid. 50% yield. M.p. = 164-165 °C. TLC: $R_f = 0.31$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, J = 8.4, 4.8 Hz, 2H), 7.28 (t, J = 8.4 Hz, 2H) (aromatic CH), 6.84 (s, 1H) (NH), 5.24 (s, 1H) (cage CH).

¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 164.7 (*C*=O), 165.7 (d, ¹*J*_{C-F} = 255.6 Hz), 129.9 (d, ³*J*_{C-F} = 9.1 Hz), 128.6 (d, ⁴*J*_{C-F} = 3.0 Hz),116.4 (d, ²*J*_{C-F} = 22.1 Hz) (aromatic *C*), 78.7, 59.7 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.0 (d, *J* = 152.3 Hz, 1B), -6.9 (d, *J* = 147.2 Hz, 1B), -10.8 (d, *J* = 148.5 Hz, 6B), -13.6 (d, *J* = 175.4 Hz, 2B) (*B*H). ¹⁹F NMR (377 MHz, CDCl₃): δ -104.6 (m,1F). HRMS (ESI) Calcd for C₉H₁₅¹⁰B₂¹¹B₈FNO⁻[M-H⁺]: 280.2146, Found: 280.2139.

CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 164.8 (*C*=O), 135.7, 134.8 (q, ²*J*_{C-F} = 32.2 Hz), 127.8, 126.2 (q, ³*J*_{C-F} = 4.0 Hz) (aromatic *C*), 123.4 (q, ¹*J*_{C-F} = 272.7 Hz) (*C*F₃), 78.4, 59.8 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ -3.9 (d, *J* = 156.2 Hz, 1B), -6.7 (d, *J* = 149.8 Hz, 1B), -10.8 (d, *J* = 145.9 Hz, 6B), -13.6 (d, *J* = 177.9 Hz, 2B) (*B*H). ¹⁹F NMR (377 MHz, CDCl₃): δ -63.2 (s, 3F). HRMS (ESI) Calcd for C₁₀H₁₅¹⁰B₂¹¹B₈F₃NO⁻[M-H⁺]: 330.2114, Found: 330.2108.

1f: White solid. 92% yield. M.p. = 159-160 °C. TLC: $R_f = 0.10$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (400 MHz, acetone-*d*₆): δ 9.50 (s, 1H) (N*H*), 7.98 (d, *J* = 8.0 Hz, 2H),

7.91 (d, J = 8.4 Hz, 2H) (aromatic CH), 5.42 (s, 1H) (cage CH). ¹³C{¹H} NMR (acetone- d_6 , 101 MHz): δ 165.2 (C=O), 137.2, 132.3, 128.7, 117.7, 115.6 (aromatic C and CN), 79.9, 63.8 (cage C). ¹¹B NMR (THF, 128 MHz): δ -4.3 (d, J = 147.2 Hz, 1B), -6.9 (m, 1B), -11.1 (d, J = 152.3 Hz, 6B), -13.8 (m, 2B) (BH). HRMS (ESI) Calcd for

2.41 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 166.1 (*C*=O), 139.2, 134.0, 132.4, 129.0, 127.9, 124.2 (aromatic *C*), 78.9, 59.8 (cage *C*), 21.4 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, *J* = 149.8 Hz, 1B), -7.1 (d, *J* = 139.5 Hz, 1B), -10.9 (d, *J* = 152.3 Hz, 6B), -13.7 (d, *J* = 171.5 Hz, 2B) (*B*H). HRMS (DART) Calcd for C₁₀H₂₀¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 278.2543, Found: 278.2543.

1h: White solid. 82% yield. M.p. = 147-148 °C. TLC: $R_f = 0.30$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.43 (m, 3H), 7.30 (m, 1H) (aromatic CH), 6.91 (s, 1H) (NH), 5.22 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101

MHz): δ 164.6 (d, ${}^{4}J_{C-F} = 3.0$ Hz) (*C*=O), 162.9 (d, ${}^{1}J_{C-F} = 249.6$ Hz), 134.5 (d, ${}^{3}J_{C-F} = 7.0$ Hz), 131.0 (d, ${}^{3}J_{C-F} = 8.1$ Hz), 122.6 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 120.4 (d, ${}^{2}J_{C-F} = 21.1$ Hz), 114.8 (d, ${}^{2}J_{C-F} = 23.1$ Hz) (aromatic *C*) 78.5, 59.7 (cage *C*). 11 B NMR (CDCl₃, 128 MHz): δ -4.0 (d, *J* = 142.1 Hz, 1B), -6.7 (d, *J* = 151.0 Hz, 1B), -10.8 (d, *J* = 151.0 Hz, 6B), -13.6 (d, *J* = 169.0 Hz, 2B) (*B*H). 19 F NMR (377 MHz, CDCl₃): δ -110.1 (m, 1F). HRMS (ESI) Calcd for C₉H₁₅ 10 B₂ 11 B₈FNO⁻ [M-H⁺]: 280.2146, Found: 280.2139.

1i: White solid. 91% yield. M.p. = 157-159 °C. TLC: $R_f = 0.30$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.43 (m, 1H), 7.30 (m, 3H) (aromatic CH), 6.74 (s, 1H) (NH), 5.32 (s, 1H) (cage CH), 2.44 (s, 3H) (CH₃). ¹³C{¹H} NMR

(CDCl₃, 101 MHz): δ 168.1 (*C*=O), 136.7, 133.8, 131.7, 131.5, 126.7, 126.3 (aromatic *C*), 78.6, 59.4 (cage *C*), 19.8 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, *J* = 151.0

Hz, 1B), -7.0 (d, J = 143.4 Hz, 1B), -10.9 (d, J = 147.2 Hz, 6B), -13.6 (d, J = 166.4 Hz, 2B) (*B*H). HRMS (ESI) Calcd for $C_{10}H_{18}^{10}B_2^{11}B_8NO^-$ [M-H⁺]: 276.2397, Found: 276.2389.

1j: White solid. 65% yield. M.p. = 121-122 °C. TLC: $R_f = 0.30$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.01 (td, J = 8.0, 2.0 Hz, 1H), 7.57 (m, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.16 (dd, J = 12.8, 8.4 Hz, 1H) (aromatic CH), 7.64 (s, 1H)

(N*H*), 5.18 (s, 1H) (cage C*H*). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 161.7 (d, ³*J*_{C-F} = 3.0 Hz) (*C*=O), 160.4 (d, ¹*J*_{C-F} = 247.6 Hz), 135.2 (d, ³*J*_{C-F} = 9.1 Hz), 132.1 (d, ⁴*J*_{C-F} = 1.0 Hz), 125.5 (d, ³*J*_{C-F} = 3.0 Hz), 119.0 (d, ²*J*_{C-F} = 10.1 Hz), 116.5 (d, ²*J*_{C-F} = 25.2 Hz) (aromatic *C*), 78.4, 60.3 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ -3.9 (d, *J* = 149.8 Hz, 1B), -6.8 (d, *J* = 145.9 Hz, 1B), -10.8 (d, *J* = 151.0 Hz, 6B), -13.7 (d, *J* = 172.8 Hz, 2B) (*B*H). ¹⁹F NMR (377 MHz, CDCl₃): δ -112.6 (m,1F). HRMS (ESI) Calcd for C₉H₁₅¹⁰B₂¹¹B₈FNO⁻ [M-H⁺]: 280.2146, Found: 280.2139.

1k: White solid. 20% yield. M.p. = 231-232 °C. TLC: $R_f = 0.47$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 6.85 (s, 2H) (aromatic CH), 6.54 (s, 1H) (NH), 5.41 (s, 1H) (cage CH), 2.28 (s, 3H), 2.22 (s, 6H) (CH₃). ¹³C{¹H}

NMR (CDCl₃, 101 MHz) δ 169.4 (*C*=O), 140.1, 134.1, 132.5, 128.6 (aromatic *C*), 78.3, 59.2 (cage *C*) 21.3, 18.9 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.2 (d, *J* = 151.0 Hz, 1B), -6.9 (d, *J* = 134.4 Hz, 1B), -10.8 (d, *J* = 143.4 Hz, 6B), -13.6 (d, *J* = 203.5 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₁₂H₂₂¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 304.2710, Found: 304.2704.

11: White solid. 85% yield. M.p. = 188-189 °C. TLC: $R_f = 0.25$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.13 (d, J = 6.8 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.58 (m, 3H), 7.48 (t, J = 7.2 Hz 1H) (aromatic CH), 6.84 (s, 1H) (NH), 5.40 (s, 1H) (cage CH). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 101 MHz): δ 167.8 (C=O), 133.7, 132.4, 131.5, 129.7, 128.8, 128.1, 127.1, 125.7, 124.6, 124.4 (aromatic C), 78.6, 59.6 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ -5.0 (d, J = 145.9 Hz, 1B), -7.9 (d, J = 152.3 Hz, 1B), -11.9 (d, J = 129.3 Hz, 6B), -14.7 (d, J = 181.8 Hz, 2B) (BH). HRMS (ESI) Calcd for C₁₃H₁₈¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 312.2397, Found: 312.2395.

1m: White solid. 82% yield. M.p. = 132-133 °C. TLC: $R_f = 0.10$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, J = 1.6 Hz, 1H), 7.20 (d, J = 3.6 Hz, 1H), 6.56 (dd, J =

1n: White solid. 90% yield. M.p. = 151-152 °C. TLC: $R_f = 0.15$

3.6, 2.0 Hz, 1H) (aromatic CH), 7.12 (s, 1H) (NH), 5.11 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 155.9 (C=O), 145.5, 145.4, 145.4, 117.4, 113.2 (aromatic C), 78.3, 60.1 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.0 (d, J = 151.0 Hz, 1B), -6.9 (d, *J* = 145.9 Hz, 1B), -10.8 (d, *J* = 148.5 Hz, 6B), -13.7 (d, *J* = 172.8 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₇H₁₄¹⁰B₂¹¹B₈NO₂⁻ [M-H⁺]: 252.2033, Found: 252.2025.

(*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (m, 1H), 7.50 (m, 1H), 7.12 (m, 1H) (aromatic CH), 6.79 (s, 1H) (NH), 5.18 (s, 1H) (cage CH). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 101 MHz): δ 160.0 (C=O), 136.3, 132.8, 129.8, 128.3 (aromatic C), 78.6, 60.0 (cage C). ¹¹B NMR (CDCl₃, 128) MHz): δ -4.0 (d, J = 152.3 Hz, 1B), -6.9 (d, J = 148.5 Hz, 1B), -10.8 (d, J = 151.0 Hz, 6B), -13.6 (d, J = 167.7 Hz, 2B) (BH). HRMS (ESI) Calcd for $C_7H_{14}^{10}B_2^{11}B_8NOS^-$ [M-H⁺]: 268.1805, Found: 268.1798.

10: White solid. 88% yield. M.p. = 116-117 °C. TLC:
$$R_f = 0.23$$

(*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz):
5 7.67 (d. $J = 16.0$ Hz, 1H) (alkenyl CH), 7.46 (m. 2H), 7.37

(m, 3H) (aromatic CH), 6.40 (d, J = 16.0 Hz, H) (alkenyl CH), 5.11 (s, 1H) (cage CH).

 $^{13}C{^{1}H}$ NMR (CDCl₃, 101 MHz): δ 164.3 (C=O), 145.2, 133.8, 131.0, 129.2, 128.3, 118.1 (aromatic C and alkenyl C), 78.8, 59.9 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.0 (d, J = 147.2 Hz, 1B), -6.8 (d, J = 138.2 Hz, 1B), -10.8 (d, J = 151.0 Hz, 6B), -13.6(d, J = 170.2 Hz, 2B) (BH). HRMS (ESI) Calcd for $C_{11}H_{18}^{10}B_2^{11}B_8NO^{-1}$ [M-H⁺]: 288.2397, Found: 288.2394.

> **1p**: is a known compound and its ¹H NMR data are the same as the reported one.² White solid. 76% yield. M.p. = 178-179 °C.¹H NMR (CDCl₃, 400 MHz): 6.50 (s, 1H) (NH), 5.07 (s, 1H) (cage CH), 1.99

1p

(s, 3H) (CH₃).

 $_{\text{Et}}$ 1q: White solid. 88% yield. M.p. = 129-131 °C. TLC: $R_f = 0.10$ (*n*hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 6.40 (s, 1p 1H) (NH), 5.09 (s, 1H) (cage CH), 2.18 (q, J = 7.6 Hz, 2H) (CH₂), 1.12 (t, J = 7.6 Hz, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 172.2 (C=O), 78.5, 59.7 (cage C), 30.0 (CH₂), 9.1 (CH₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, J = 147.2 Hz, 1B), -7.1 (d, J = 140.8 Hz, 1B), -11.0 (d, J = 151.0 Hz, 6B), -13.8 (d, J = 169.0 Hz, 2B) (BH). HRMS (ESI) Calcd for $C_5H_{16}^{10}B_2^{11}B_8NO^{-1}$ [M-H⁺]: 214.2241, Found: 214.2230.

 n_{Pr} **1r**: White solid. 80% yield. M.p. = 116-117 °C. TLC: $R_f = 0.16 (n-1)^{10}$ hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 6.57 (s, 1H) (NH), 5.08 (s, 1H) (cage CH), 2.13 (t, J = 7.2 Hz, 2H), 1.62 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H) (alkyl H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 171.8 (C=O), 78.5, 59.8 (cage C), 38.7 (CH₂), 18.7 (CH₂), 13.5 (CH₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.2 (d, J = 147.2 Hz, 1B), -7.1 (d, J = 152.3 Hz, 1B), -11.0 (d, J = 147.2 Hz, 6B), -13.8 (d, J = 167.9 Hz, 2B) (BH). HRMS (DART) Calcd for $C_6H_{20}{}^{10}B_2{}^{11}B_8NO^{-1}$ [M+H⁺]: 230.2543, Found: 230.2541.

1s: White solid. 52% yield. M.p. = 151-152 °C. TLC: $R_f = 0.18$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 6.31 (s, 1H) (NH), 5.14 (s, 1H) (cage CH), 2.26 (m, 1H), 1.12 (d, J = 6.8 Hz,

6H) (alkyl *H*). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 175.5 (*C*=O), 78.6, 59.5 (cage *C*), 36.1 (*C*H), 19.1 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.2 (d, *J* = 144.6 Hz, 1B), -7.1 (d, *J* = 142.1 Hz, 1B), -11.0 (d, *J* = 152.3 Hz, 6B), -13.7 (d, *J* = 170.2 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₆H₁₈¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 228.2397, Found: 228.2389.

1u

1t: White solid. 88% yield. M.p. = 151-152 °C. TLC: $R_f = 0.40$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 6.30 (s, 1H) (NH), 5.15 (s, 1H) (cage CH), 1.98 (m, 1H), 1.78 (m, 3H), 1.68 (m, 2H), 1.37 (m, 2H), 1.23 (m, 3H) (alkyl H). ¹³C {¹H}

NMR (CDCl₃, 101 MHz): δ 174.7 (*C*=O), 78.7, 59.6 (cage *C*), 45.6 (*C*H), 29.2, 25.5, 25.4 (*C*H₂). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.3 (d, *J* = 145.9 Hz, 1B), -7.3 (d, *J* = 142.1 Hz, 1B), -11.1 (d, *J* = 152.3 Hz, 6B), -13.8 (d, *J* = 170.2 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₉H₂₂¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 268.2710, Found: 268.2705.

^{Ph} _H ^{Ph} _O 1u: White solid. 95% yield. M.p. = 153-154 °C. TLC: $R_f = 0.18$ (*n*hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (m, 3H), 7.18 (d, J = 7.6 Hz, 2H) (aromatic CH), 6.32 (s, 1H) (NH), 5.04 (s, 1H) (cage CH), 3.53 (s, 2H) (CH₂). ¹³C{¹H} NMR (CDCl₃, 101

MHz): δ 169.4 (*C*=O), 132.8, 129.6, 129.3, 128.4 (aromatic *C*), 78.4, 59.4 (cage *C*), 43.9 (*C*H₂). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.2 (d, *J* = 147.2 Hz, 1B), -7.1 (d, *J* = 140.8 Hz, 1B), -11.0 (d, *J* = 147.2 Hz, 6B), -13.8 (d, *J* = 167.8 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 276.2397, Found: 276.2392.

(N*H*), 5.13 (s, 1H) (cage C*H*), 4.82 (s, 1H) (C*H*). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 170.7 (*C*=O), 137.6, 129.3, 128.7, 128.2 (aromatic C), 78.5, 59.3 (cage C), 59.1 (*C*H). ¹¹B NMR (CDCl₃, 128 MHz): δ -4.1 (d, *J* = 148.5 Hz, 1B), -7.0 (d, *J* = 137.0 Hz, 1B), -10.9 (d, *J* = 143.4 Hz, 6B), -13.7 (d, *J* = 169.0 Hz, 2B) (*B*H). HRMS (ESI) Calcd for C₁₆H₂₂¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 352.2710, Found: 352.2703.

H
N
MePh1w: White solid. 87% yield. M.p. = 147-148 °C. TLC: $R_f = 0.17$ (n-
hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.12
(d, J = 7.2 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.62 (m, 1H), 7.50 (m,

2H) (aromatic C*H*), 7.05 (s, 1H) (N*H*), 2.04 (s, 3H) (C*H*₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 165.5 (*C*=O), 133.3, 132.7, 129.3, 127.3 (aromatic *C*), 82.2, 78.8 (cage *C*), 22.5 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ -7.1 (d, *J* = 143.4 Hz, 2B), -12.0 (m, 8B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 276.2397, Found: 276.2390.

7.31 (m, 3H) (aromatic C*H*), 7.18 (s, 1H) (N*H*), 7.13 (m, 2H) (aromatic C*H*), 3.49 (s, 2H) (C*H*₂). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 165.5 (*C*=O), 134.9, 133.4, 132.6, 130.3, 129.3, 128.8, 128.7, 128.2, 127.3 (aromatic C), 83.8, 83.4 (cage C), 40.7(CH₂). ¹¹B NMR (CDCl₃, 128 MHz): δ -5.0 (d, *J* = 90.9 Hz, 1B), -5.7 (d, *J* = 101.1 Hz, 1B), -11.4 (d, *J* = 134.4 Hz, 8B) (*B*H). HRMS (DART) Calcd for C₁₆H₂₄¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 354.2856, Found: 354.2855.

H
N
Ph1y: White solid. 85% yield. M.p. = 151-152 °C. TLC: Rf = 0.18I
y(n-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ I
y7.71 (d, J = 8.0 Hz, 2H), 7.47 (q, J = 7.6 Hz, 2H), 7.40 (m, 2H),

7.28 (m, 2H), 7.10 (d, J = 7.6 Hz, 2H) (aromatic CH), 6.91 (s, 1H) (NH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 166.1 (C=O), 133.0, 132.9, 131.4, 131.1, 130.4, 129.1, 129.0,

127.0 (aromatic *C*), 88.0, 85.5 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ -3.7 (d, *J* = 144.6 Hz, 1B), -4.8 (d, *J* = 137.0 Hz, 1B), -10.8 (m, 8B) (*B*H). HRMS (ESI) Calcd for C₁₅H₂₀¹⁰B₂¹¹B₈NO⁻ [M-H⁺]: 338.2554, Found: 338.2548.

1z: White solid. 60% yield. M.p. = 156-157 °C. TLC: $R_f = 0.29$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.47 (m, 2H) (aromatic CH), 6.81 (s, 1H) (NH), 5.05 (s, 1H) (cage CH), 0.23 (s, 3H), 0.20 (s, 3H) (cage B-CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 165.9 (C=O), 133.1, 132.6, 129.2, 127.2 (aromatic C), 72.9, 52.9 (cage C), the B_{cage}-C were not observed. ¹¹B NMR (CDCl₃, 128 MHz): δ -5.0 (s, 1B) (BC), -2.3 (s, 1B) (BC), -9.9 (d, J = 151.0 Hz, 2B), -12.1 (d, J = 171.5 Hz, 2B), -14.8 (d, J = 148.5 Hz, 4B) (BH). HRMS (DART) Calcd for C₁₁H₂₂¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 292.2699, Found: 292.2699.

General procedure for the synthesis of 2.

To an oven-dried Schlenk flask equipped with a stir bar was sequentially added 1 (0.2 mmol), PdCl₂(cod) (4.3 mg, 0.015 mmol), PCy₃ (4.2 mg, 0.015 mmol), K₃PO₄ (85.0 mg, 0.4 mmol), PhCl (45.0 mg, 0.4 mmol), and toluene (4 mL). The flask was closed under an atmosphere of nitrogen, then stirred at 80 °C for 12 h. After hydrolysis with water (5 mL) and extraction with diethyl ether (10 mL x 3), the ether solutions were combined, dried over anhydrous Na₂SO₄ and concentrated to dryness in vacuo. The residue was subjected to flash column chromatography on silica gel (230-400 mesh) using *n*-hexane as eluent to give product **2**.

2a: White solid. 90% yield. M.p. = 126-127 °C. TLC: $R_f = 0.22$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 2H) (aromatic CH), 4.38 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.4 (*C*=N), 133.4, 128.9, 128.8, 128.7 (aromatic *C*),

99.8, 56.8 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.9 (s, 1B) (*B*O), -5.4 (d, *J* = 151.0 Hz, 1B), -10.2 (d, *J* = 171.5 Hz, 2B), -13.3 (d, *J* = 143.4 Hz, 2B), -14.1 (d, *J* = 120.3 Hz, 1B), -15.6 (d, *J* = 148.5 Hz, 1B), -16.6 (d, *J* = 96.0 Hz, 1B), -21.4 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₉H₁₆¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 262.2230, Found: 262.2238.

Me **2b**: White solid. 91% yield. M.p. = 182-183 °C. TLC: $R_f = 0.22$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H) (aromatic CH), 4.35 (s, 1H) (cage CH), 2.42 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.7 (C=N), 144.2, 129.5, 128.8, 126.1 (aromatic C), 100.1, 56.9 (cage C), 21.9 (CH₃). ¹¹B NMR (CDCl₃,

128 MHz): δ 1.9 (s, 1B) (*B*O), -5.5 (d, *J* = 152.3 Hz, 1B), -10.1 (d, *J* = 170.2 Hz, 2B), -13.4 (d, *J* = 135.7 Hz, 2B), -14.2 (d, *J* = 124.2 Hz, 1B), -15.7 (d, *J* = 156.2 Hz, 1B), -16.6 (d, *J* = 107.5 Hz, 1B), -21.4 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for $C_{10}H_{18}^{10}B_2^{11}B_8NO^+$ [M+H⁺]: 276.2386, Found: 276.2388.

2c: White solid. 76% yield. M.p. = 188-190 °C. TLC: $R_f = 0.1$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.01 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H) (aromatic CH), 4.34 (s, 1H) (cage CH), 3.87 (s, 3H) (OCH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.3 (C=N), 163.7, 130.8, 121.3, 114.1 (aromatic C), 100.3, 56.9 (cage C), 55.7 (OCH₃). ¹¹B

NMR (acetone- d_6 , 128 MHz): δ 1.0 (s, 1B) (BO), -6.6, (d, J = 158.7 Hz, 1B), -11.0 (d, J = 171.5 Hz, 2B), -14.5 (d, J = 145.9 Hz, 2B), -15.3 (d, J = 113.9 Hz, 1B), -16.8 (d, J = 140.8 Hz, 1B), -17.6 (d, J = 99.8 Hz, 1B), -22.5 (d, J = 170.2 Hz, 1B) (BH). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO₂⁺ [M+H⁺]: 292.2335, Found: 292.2334.

2d: White solid. 90% yield. M.p. = 125-127 °C. TLC: $R_f = 0.23$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (dd, J = 8.8, 5.6 Hz, 2H), 7.14 (t, J = 8.4 Hz, 2H) (aromatic CH), 4.35 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 180.4 (*C*=N), 165.9 (d, ¹*J*_{C-F} = 254.6 Hz), 136.3 (d, ³*J*_{C-F} = 9.1 Hz), 125.5 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 116.1 (d, ${}^{2}J_{C-F} = 22.1$ Hz) (aromatic

C), 56.9 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.9 (s, 1B) (BO), -5.4 (d, J = 152.3 Hz, 1B), -10.2 (d, J = 171.5 Hz, 2B), -13.3 (d, J = 152.3 Hz, 2B), -14.1 (d, J = 111.4 Hz, 1B), -15.7 (d, J = 144.6 Hz, 1B), -16.6 (d, J = 111.4 Hz, 1B), -21.4 (d, J = 166.4 Hz, 1B) (BH). ¹⁹F NMR (377 MHz, CDCl₃): δ -104.5 (m, 1F). HRMS (ESI) Calcd for C₉H₁₅¹⁰B₂¹¹B₈FNO⁺ [M+H⁺]: 280.2135, Found: 280.2133.

2e: White solid. 84% yield. M.p. = 109-111 °C. TLC: $R_f = 0.28$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.19 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H) (aromatic CH), 4.38 (s, 1H) (cage CH). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 101 MHz): δ 179.9 (*C*=N), 134.8 (q, ${}^{2}J_{C-F}$ = 33.2 Hz), 131.9, 129.2, 125.9 (q, ${}^{3}J_{C-F} = 4.0 \text{ Hz}$ (aromatic C), 123.6 (q, ${}^{1}J_{C-F} = 272.7 \text{ Hz}$) (CF₃),

99.4, 57.0 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.8 (s, 1B) (BO), -5.2 (d, J = 152.3 Hz, 1B), -10.4 (d, J = 171.5 Hz, 2B), -13.2 (d, J = 139.5 Hz, 2B), -14.0 (d, J = 130.6 Hz, 1B), -15.5 (d, *J* = 157.4 Hz, 1B), -16.5 (d, *J* = 112.6 Hz, 1B), -21.3(d, *J* = 167.7 Hz, 1B) (BH). ¹⁹F NMR (377 MHz, CDCl₃): δ -63.2 (s, 3F). HRMS (ESI) Calcd for C₁₀H₁₅¹⁰B₂¹¹B₈F₃NO⁺ [M+H⁺]: 330.2103, Found: 330.2109.

2f: White solid. 74% yield. M.p. = 179-181 °C. TLC: $R_f = 0.1$ (*n*hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.18 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H) (aromatic CH), 4.40 (s, 1H) (cage CH). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 101 MHz): δ 179.4 (C=N), 132.6, 132.4, 129.2, 117.9, 116.6 (aromatic C and CN), 99.2, 57.0 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.8 (s, 1B) (*B*O), -5.2 (d, *J* = 152.3 Hz, 1B), -10.4 (d, *J* = 172.8 Hz, 2B), -13.1 (d, *J* = 119.0 Hz, 2B), -13.9 (d, *J* = 148.5 Hz, 1B), -15.5 (d, *J* = 162.6 Hz, 1B), -16.4 (d, *J* = 108.8 Hz, 1B), -21.2 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (DART) Calcd for C₁₀H₁₅¹⁰B₂¹¹B₈N₂O⁺ [M+H⁺]: 287.2182, Found: 287.2182.

2g: White solid. 94% yield. M.p. = 117-118 °C. TLC: $R_f = 0.24$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H) (aromatic CH), 4.36 (s, 1H) (cage CH), 2.41 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ

181.7 (*C*=N), 138.7, 134.2, 129.2, 128.8, 128.6, 125.9 (aromatic *C*), 99.9, 56.9 (cage *C*), 21.4 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.9 (s, 1B) (*B*O), -5.4 (d, *J* = 152.3 Hz, 1B), -10.2 (d, *J* = 171.5 Hz, 2B), -13.4 (d, *J* = 151.0 Hz, 2B), -14.1 (d, *J* = 111.4 Hz, 1B), -15.7 (d, *J* = 149.8 Hz, 1B), -16.6 (d, *J* = 102.4 Hz, 1B), -21.4 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 276.2386, Found: 276.2393.

2h: White solid. 90% yield. M.p. = 119-121 °C. TLC: $R_f = 0.23$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.87 (d, J = 8.0 Hz, 1H), 7.77 (dt, J = 9.6, 2.4 Hz, 1H), 7.45 (td, J = 8.0, 5.6 Hz, 1H), 7.28 (td, J = 8.4, 2.8 Hz,1H) (aromatic CH), 4.37 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ

180.2 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$) (*C*=N), 162.7 (d, ${}^{1}J_{C-F} = 247.6 \text{ Hz}$), 130.7 (d, ${}^{3}J_{C-F} = 8.1 \text{ Hz}$), 130.6 (d, ${}^{4}J_{C-F} = 8.1 \text{ Hz}$), 124.5 (d, ${}^{3}J_{C-F} = 11.1 \text{ Hz}$), 120.4 (d, ${}^{2}J_{C-F} = 21.1 \text{ Hz}$), 115.8 (d, ${}^{2}J_{C-F} = 23.1 \text{ Hz}$) (aromatic *C*), 99.5, 56.9 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.8 (s, 1B) (*B*O), -5.3 (d, *J* = 151.0 Hz, 1B), -10.3 (d, *J* = 174.1 Hz, 2B), -13.3 (d, *J* = 136.9 Hz, 2B), -14.1 (d, *J* = 133.1 Hz, 1B), -15.6 (d, *J* = 152.3 Hz, 1B), -16.5 (d, *J* = 115.2 Hz, 1B), -21.3(d, *J* = 167.7 Hz, 1B) (*B*H). ¹⁹F NMR (377 MHz, CDCl₃): δ -111.6 (m,1F). HRMS (ESI) Calcd for $C_9H_{15}{}^{10}B_2{}^{11}B_8FNO^+$ [M+H⁺]: 280.2146, Found: 280.2139.

99.9, 57.0 (cage *C*), 22.3 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.5 (s, 1B) (*B*O), -5.4 (d, *J* = 147.2 Hz, 1B) -10.3, (d, *J* = 171.5 Hz, 2B), -13.4 (d, *J* = 138.2 Hz, 2B), -14.2 (d, *J* = 122.9 Hz, 1B), -15.6 (d, *J* = 161.3 Hz, 1B), -16.6 (d, *J* = 153.6 Hz, 1B), -21.5 (d, *J* = 167.7 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 276.2397, Found: 276.2390.

2j: White solid. 86% yield. M.p. = 90-92 °C. TLC: $R_f = 0.15$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (td, J = 7.6, 1.6 Hz, 1H), 7.56 (m, 1H), 7.23 (m, 2H) (aromatic CH), 4.45 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 177.7 (d, ³ $J_{C-F} = 7.0$ Hz) (C=N), 161.6 (d, ¹ $J_{C-F} = 261.7$ Hz), 134.9 (d, ³ $J_{C-F} = 7.0$ Hz) (C=N), 161.6 (d, ¹ $J_{C-F} = 261.7$ Hz), 134.9 (d, ³ $J_{C-F} = 7.0$ Hz) (C=N), 161.6 (d, ¹ $J_{C-F} = 261.7$ Hz), 134.9 (d, ³ $J_{C-F} = 261.7$ Hz), 136.9 (d, ³ $J_{C-F} = 261.7$ H

F = 9.1 Hz), 131.5, 124.5 (d, ${}^{3}J_{C-F}$ = 4.0 Hz), 117.3 (d, ${}^{2}J_{C-F}$ = 21.1 Hz), 117.2 (d, ${}^{2}J_{C-F}$ = 22.1 Hz) (aromatic *C*), 99.5, 57.1 (cage *C*).¹¹B NMR (CDCl₃, 128 MHz): δ 1.4 (s, 1B) (*B*O), -5.3 (d, *J* = 152.3 Hz, 1B), -10.4 (d, *J* = 167.7 Hz, 2B), -13.2 (d, *J* = 139.5 Hz, 2B), -14.1 (d, *J* = 128.0 Hz, 1B), -15.5 (d, *J* = 163.8 Hz, 1B), -16.5 (d, *J* = 154.88 Hz, 1B), -21.3(d, *J* = 166.4 Hz, 1B) (*B*H). ¹⁹F NMR (377 MHz, CDCl₃): δ -107.5 (m, 1F). HRMS (ESI) Calcd for C₉H₁₅¹⁰B₂¹¹B₈FNO⁺ [M+H⁺]: 280.2135, Found: 280.2141.

[M+H⁺]: 304.2699, Found: 304.2694.

4.46 (s, 1H) (cage C*H*). ¹³C {¹H} NMR (CDCl₃, 101 MHz): δ 181.6 (*C*=N), 134.0, 133.9, 130.7, 130.7, 129.0, 128.2, 126.6, 125.8, 125.4, 124.8 (aromatic *C*), 99.9, 57.1 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.5 (s, 1B) (*B*O), -5.3 (d, *J* = 152.3 Hz, 1B), -10.1 (d, *J* = 170.2 Hz, 2B), -13.2 (d, *J* = 139.5 Hz, 2B), -14.0 (d, *J* = 125.4 Hz, 1B), -15.4 (d, *J* = 163.8 Hz, 1B), -16.5 (d, *J* = 115.2 Hz, 1B), -21.3 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₃H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 312.2397, Found: 312.2395.

2m: White solid. 86% yield. M.p. = 184-186 °C. TLC: $R_f = 0.10$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.60 (m, 1H), 7.24 (d, J = 3.6 Hz, 1H), 6.57 (dd, J = 3.6, 1.6 Hz, 1H) (aromatic CH), 4.37 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 172.1 (C=N), 146.9, 144.1, 117.8, 112.4 (aromatic C), 99.2,

57.0 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.6 (s, 1B) (BO), -5.5 (d, J = 152.3 Hz,

1B), -10.2 (d, J = 171.5 Hz, 2B), -13.4 (d, J = 142.1 Hz, 2B), -14.1 (d, J = 115.2 Hz, 1B), -15.7 (d, J = 147.2 Hz, 1B), -16.5 (d, J = 90.9 Hz, 1B), -21.3(d, J = 167.7 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₇H₁₄¹⁰B₂¹¹B₈NO₂⁺ [M+H⁺]: 252.2022, Found: 252.2021.

2n: White solid. 88% yield. M.p. = 161-162 °C. TLC: $R_f = 0.16$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.84 (d, J = 3.6 Hz, 1H), 7.57 (d, J = 4.8 Hz, 1H), 7.13 (t, J = 4.0 Hz, 1H) (aromatic CH), 4.35 (s, 1H) (cage CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 176.5 (C=N), 132.9, 132.5, 131.7, 128.2 (aromatic C), 99.6,

56.8 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.8 (s, 1B) (*B*O), -5.5 (d, *J* = 152.3 Hz, 1B), -10.0 (d, *J* = 172.8 Hz, 2B), -13.3 (d, *J* = 133.1 Hz, 2B), -14.1 (d, *J* = 131.8 Hz, 1B), -15.7 (d, *J* = 139.5 Hz, 1B), -16.5 (d, *J* = 98.6 Hz, 1B), -21.3 (d, *J* = 167.7 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₇H₁₄¹⁰B₂¹¹B₈NOS⁺ [M+H⁺]: 268.1805, Found: 268.1798.

20: White solid. 85% yield. M.p. = 152-153 °C. TLC: $R_f = 0.10$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (d, J = 16.4 Hz, 1H) (alkenyl CH), 7.54 (m, 2H), 7.41 (m, 3H) (aromatic CH), 6.67 (d, J = 16.0 Hz, H) (alkenyl CH), 4.31 (s, 1H) (cage CH).

20 ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.0 (*C*=N), 143.9, 134.3, 130.8, 129.2, 128.2, 116.4 (alkenyl & aromatic *C*), 99.7, 56.8 (cage *C*). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.8 (s, 1B) (*B*O), -5.4 (d, *J* = 151.0 Hz, 1B), -10.2 (d, *J* = 171.5 Hz, 2B), -13.4 (d, *J* = 134.4 Hz, 2B), -14.1 (d, *J* = 119.0 Hz, 1B), -15.7 (d, *J* = 144.6 Hz, 1B), -16.5 (d, *J* = 97.3 Hz, 1B), -21.4 (d, *J* = 162.6 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₁H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 288.2386, Found: 288.2387.

2p: White solid. 86% yield. M.p. = 82-84 °C. TLC: R_f = 0.10 (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 4.25 (s, 1H) (cage CH), 2.25 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 184.4 (C=N), 99.0, 56.6 (cage C), 18.6 (CH₃). ¹¹B NMR (CDCl₃,

128 MHz): δ 1.7 (s, 1B) (*B*O), -5.4 (d, *J* = 152.3 Hz, 1B), -10.4 (d, *J* = 171.5 Hz, 2B), -13.4 (d, *J* = 139.5 Hz, 2B), -14.3 (d, *J* = 139.5 Hz, 1B), -15.8 (d, *J* = 144.6 Hz, 1B), -16.7 (d, *J* = 162.6 Hz, 1B), -21.4 (d, *J* = 165.1 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₄H₁₄¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 200.2073, Found: 200.2067.

Et **2q**: White solid. 80% yield. M.p. = 80-81 °C. TLC: $R_f = 0.16$ (*n*hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 4.27 (s, H 1H) (cage CH), 2.54 (q, J = 7.6 Hz, 2H) (CH₂), 1.21 (t, J = 7.6 Hz, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 188.5 (C=N), 99.5, 56.6

(cage *C*), 26.0 (*C*H₂), 10.2 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.7 (s, 1B) (*B*O), -5.5 (d, *J* = 151.0 Hz, 1B), -10.4 (d, *J* = 170.2 Hz, 2B), -13.5 (d, *J* = 138.2 Hz, 2B), -14.4 (d, *J* = 137.0 Hz, 1B), -15.8 (d, *J* = 152.3 Hz, 1B), -16.8 (d, *J* = 110.1 Hz, 1B), -21.5 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₅H₁₆¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 214.2230, Found: 214.2226.

2r: White solid. 78% yield. M.p. = 128-130 °C. TLC: $R_f = 0.17$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 4.27 (s, 1H) (cage CH), 2.49 (t, J = 7.2 Hz, 2H), 1.71 (m, 2H) (CH₂), 0.95 (t,

^{2r} J = 7.2 Hz, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 187.7 (C=N), 99.0, 56.6 (cage C), 34.2 (CH₂), 19.6 (CH₂), 13.6 (CH₃). ¹¹B NMR (THF, 128 MHz): δ 1.3 (s, 1B) (BO), -5.8 (d, J = 153.3 Hz, 1B), -10.7 (d, J = 171.5 Hz, 2B), -13.8 (d, J = 137.0 Hz, 2B), -14.6 (d, J = 134.4 Hz, 1B), -16.1 (d, J = 157.4 Hz, 1B), -17.0 (d, J = 152.3 Hz, 1B), -21.8 (d, J = 167.7 Hz, 1B) (BH). HRMS (ESI) Calcd for C₆H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 228.2386, Found: 228.2383.

²r 2s: White solid. 86% yield. M.p. = 71-73 °C. TLC: R_f = 0.23 (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 4.28 (s, 1H) (cage CH), 2.77 (m, 1H) (CH), 1.21 (d, J = 7.2 Hz, 6H) (CH₃).
¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 191.7 (C=N), 99.1, 56.7 (cage

C), 32.3 (CH), 19.6 (CH₃), 19.5 (CH₃). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.7 (s, 1B) (*B*O), -5.4 (d, *J* = 152.3 Hz, 1B) -10.4 (d, *J* = 171.5 Hz, 2B), -13.4 (d, *J* = 131.8 Hz, 2B), -14.3 (d, *J* = 138.2 Hz, 1B), -15.7 (d, *J* = 147.2 Hz, 1B), -16.7 (d, *J* = 117.8 Hz, 1B), -21.5 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₆H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 228.2397, Found: 228.2389.

2t: White solid. 88% yield. M.p. = 118-120 °C. TLC: R_f = 0.22 (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 4.26 (s, 1H) (cage CH), 2.51 (m, J = m, 1H) (CH), 1.92 (m, 2H), 1.77 (m, 2H), 1.68 (m, 1H), 1.45 (m, 2H), 1.29 (m, 3H) (CH₂). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 190.8 (C=N), 99.2, 56.7 (cage C), 41.3

(CH), 29.7, 29.6, 25.7, 25.4, 25.4 (CH₂). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.6 (s, 1B) (*B*O), -5.5 (d, *J* = 152.3 Hz, 1B), -10.4 (d, *J* = 171.5 Hz, 2B), -13.5 (d, *J* = 135.7 Hz, 2B), -14.4 (d, *J* = 137.0 Hz, 1B), -15.8 (d, *J* = 154.9 Hz, 1B), -16.8 (d, *J* = 103.7 Hz, 1B), -21.6 (d, *J* = 166.4 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₉H₂₂¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 268.2699, Found: 268.2703.

2u: Colorless oil. 76% yield. TLC: $R_f = 0.1$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 7.30 (m, 3H), 7.20 (d, J = 6.4 Hz, 2H) (aromatic CH), 4.21 (s, 1H) (cage CH), 3.77 (s, 2H) (CH₂). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 185.4 (C=N), 133.6, 129.1, 129.0, 127.7 (aromatic CH), 98.9, 56.7 (cage C), 38.8 (CH₂). ¹¹B NMR (CDCl₃, 128

MHz): δ 1.7 (s, 1B) (*B*O), -5.3 (d, *J* = 152.3 Hz, 1B), -10.5 (d, *J* = 171.5 Hz, 2B), -13.3 (d, *J* = 140.8 Hz, 2B), -14.3 (d, *J* = 140.8 Hz, 1B), -15.7 (d, *J* = 163.8 Hz, 1B), -16.7 (d, *J* = 116.5 Hz, 1B), -21.3 (d, *J* = 169.0 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 276.2386, Found: 276.2392.

2u

(cage *C*), 54.5 (*C*H). ¹¹B NMR (CDCl₃, 128 MHz): δ 1.7 (s, 1B) (*B*O), -5.2 (d, *J* = 152.3 Hz, 1B), -10.6 (d, *J* = 144.6 Hz, 2B), -13.2 (d, *J* = 144.6 Hz, 2B), -14.2 (d, *J* = 137.0 Hz, 1B), -15.6 (d, *J* = 165.1 Hz, 1B), -16.6 (d, *J* = 113.9 Hz, 1B), -21.3 (d, *J* = 163.8 Hz, 1B) (*B*H). RMS (ESI) Calcd for C₁₆H₂₂¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 352.2699, Found: 352.2697.

Ph **2w**: White solid. 78% yield. M.p. = 75-77 °C. TLC: $R_f = 0.2$ (*n*hexane:ethyl acetate = 80:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.13 (d, J = 6.8 Hz, 2H), 7.58 (m, 1H), 7.47(t, J = 7.6 Hz, 2H) (aromatic CH), **2w** 2.26 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.4 (C=N),

133.3, 129.0, 128.8, 128.8 (aromatic *C*), 102.1, 72.3 (cage *C*), 21.0 (*C*H₃). ¹¹B NMR (CDCl₃, 128 MHz): δ 2.5 (s, 1B) (*B*O), -7.7 (d, *J* = 201.0 Hz, 1B), -9.2 (d, *J* = 158.7 Hz, 2B), -15.4 (m, 5B), -18.3 (d, *J* = 167.7 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₀H₁₈¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 276.2397, Found: 276.2390.

2x: White solid. 72% yield. M.p. = 71-72 °C. TLC: R_f = 0.26 (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.31 (m, 5H) (aromatic CH), 3.80 (m, 2H) (CH₂). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.4 (C=N), 135.4, 133.3, 130.5, 129.0, 128.9, 128.8,

128.7, 128.1 (aromatic *C*), 102.8 (cage *C*), 39.5 (*C*H₂). ¹¹B NMR (CDCl₃, 128 MHz): δ 2.5 (s, 1B) (*B*O), -8.2 (d, *J* = 167.7 Hz, 2B), -9.9 (d, *J* = 216.3 Hz, 1B), -13.7 (m, 5B), -19.2 (d, *J* = 163.8 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₆H₂₂¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 352.2699, Found: 352.2707.

2x

Ph **2y**: Colorless oil. 64% yield. TLC: $R_f = 0.25$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.15 (d, J = 7.6 Hz, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.46 (m, 5H) (aromatic CH). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 180.9 (C=N), 133.3, 131.6, 130.1, 129.4, 128.9, 128.9, 128.8, 128.7 (aromatic C), 103.7, 78.9 (cage C). ¹¹B NMR (CDCl₃, 128 MHz): δ 2.6 (s, 1B) (BO), -7.5 (d, J = 176.6 Hz, 2B), -9.3 (d, J = 212.5 Hz, 1B), -13.3 (m, 5B), -18.0 (d, J = 166.4 Hz, 1B) (BH). HRMS

(ESI) Calcd for $C_{15}H_{20}{}^{10}B_2{}^{11}B_8NO^+$ [M+H⁺]: 338.2543, Found: 338.2548.

2z: White solid. 75% yield. M.p. = 165-166 °C. TLC: $R_f = 0.18$ (*n*-hexane:ethyl acetate = 10:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.08 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6Hz, 2H) (aromatic CH), 4.19 (s, 1H) (cage CH), 0.45 (s, 3H), 0.23 (s, 3H) (CH₃). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 181.1

(*C*=N), 133.1, 128.9, 128.8, 128.7 (aromatic *C*), 94.3, 50.3 (cage *C*), the B_{cage}-C were not observed. ¹¹B NMR (CDCl₃, 128 MHz): δ 4.8 (s, 1B) (*B*O), 0.9 (s, 1B) (*B*C), -2.9 (s, 1B) (*B*C), -11.5 (d, *J* = 153.6 Hz, 4B), -16.8 (d, *J* = 161.3 Hz, 2B), -20.8 (d, *J* = 165.1 Hz, 1B) (*B*H). HRMS (ESI) Calcd for C₁₁H₂₀¹⁰B₂¹¹B₈NO⁺ [M+H⁺]: 290.2543, Found: 290.2541.

Preliminary mechanistic study.

1a (13.1 mg, 0.05 mmol), $PdCl_2(cod)$ (1.4 mg, 10 mol%), PCy_3 (1.4 mg, 10 mol%), K_3PO_4 (21.1 mg, 0.1 mmol), PhCl (9.0 mg, 0.8 mmol), and 1,3,5-trimethoxybenzene (internal standard, 5.5 mg, 0.033 mmol) were mixed in C_6D_6 (2 mL) in a J. Young valve NMR tube in glovebox. The tube was closed and heated at 80 °C (bath temperature) for 12 h. The reaction was then monitored by ¹H NMR.

Figure S1. ¹H NMR spectra of the control experiment

X-ray Structure Determination. The data of **2b**, **2m**, and **2t** were collected at 213 K on a Bruker APEX DUO diffractometer. An empirical absorption correction was applied using the SADABS program.³ All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-

hydrogen atoms by full-matrix least-squares on F^2 using the SHELXTL program package⁴. All hydrogen atoms were geometrically fixed using the riding model. Crystal data and details of data collection and structure refinements were given in Table S2. CCDC 2417342-2417344 (**2b**, **2m** and **2t**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

compound	2b	2m	2t
formula	C ₁₀ H ₁₇ B ₁₀ NO	$C_7H_{14}B_{10}NO_2$	$C_9H_{21}B_{10}NO$
crystal size (mm ³)	0.07x0.07x0.05	0.07x0.07x0.05	0.07x0.07x0.05
fw	275.35	252.29	267.37
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$	$P2_{1}/n$
<i>a</i> , Å	11.486(1)	6.759(1)	11.687(1)
b, Å	19.564(1)	20.968(1)	11.014(1)
<i>c</i> , Å	6.782(1)	9.278(1)	12.611(1)
β , deg	95.718(2)	98.688(2)	110.678(2)
$V, Å^3$	1516.3(1)	1299.7(1)	1518.7(1)
Ζ	4	4	4
D_{calcd} , Mg/m ³	1.206	1.289	1.169
radiation (λ) Å	1.34139	1.34139	1.34139
2θ range, deg	7.8 to 110.1	9.2 to 109.9	7.7 to 109.8
μ , mm ⁻¹	0.304	0.360	0.289
<i>F</i> (000)	568	516	560
no. of obsd reflns	2849	2458	2886
no. of params refnd	200	181	190
goodness of fit	1.081	1.047	1.060
R1	0.0678	0.0450	0.0443
wR2	0.1797	0.1202	0.1209

 Table S2. Crystal Data and Summary of Data Collection and Refinements.

References

- N. Yong, Y. Wang, J. Miao, Y. Li and Z. Zhang, J. Organomet. Chem., 2015, 798, 182-188.
- 2. R. Cheng, J. Zhang, H. Zhang, Z. Qiu and Z. Xie, Nat. Commun., 2021, 12, 7146.
- 3. Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen: Germany, 1996.
- Sheldrick, G. M. SHELXTL 5.10 for Windows NT: Structure Determination Software Programs. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997.

101- 101- 101- 101- 101- 101- 101- 101-	Parameter	50.
	1 Data File Name 2 标题 3 Comment	Y:/ jhr-1d-0112 1/ fid jhr-1d-0112-F.1
	4 Origin 5 Owner 6 Site	Bruker BioSpin nmr
	7 Instrument 8 Author	spect
H	9 Solvent 10 Temperature 11 Pulse Sequence	CDC13 295.1 zgflqn
N N	12 Experiment 13 Probe	1D 2116098_0640 () BB0 400S1 BBF-1 D-05 Z SP)
H	14 Number of Scans	8
	15 Receiver Gain	195.5
1d	16 Relaxation Delay	1.0000
	17 Pulse Width	18.0000
	18 Presaturation Frequency	
	19 Acquisition Time	0.9999
	20 Acquisition Date	2023-01-12T10:
	21 Modification Date	2023-01-12T10:
	22 Class	
	23 Spectrometer Frequency	376.53
	24 Spectral Width	150000.0
l	25 Lowest Frequency	-112656.4
	26 Nucleus	19F
	27 Acquired Size	149992
	28 Spectral Size	524288

8		
	Parameter	67.
CF ₃	1 Data File Name 2 移見題 3 Comment	Y:/ jhr-le-0112-F/ 1/ fid jhr-le-0112-F. 1. fid
	4 Origin 5 Owner 6 Site	Bruker BioSpin GmbH nmr
H O	7 Instrument 8 Author	spect
1e	9 Solvent 10 Temperature 11 Pulse Sequence	CDC13 295.0 zgflqn
	12 Experiment 13 Probe	1D 2116098_0640 (PA BB0 40051 BBF-H- D-05 Z SP)
	14 Number of Scans	9
	15 Receiver Gain 16 Relaxation Delay	195. 5 1. 0000
	17 Pulse Width 18 Presaturation Frequency	18. 0000
	19 Acquisition Time	0.9999
	20 Acquisition Date	2023-01-12710:47:23
	21 Modification Date 22 Class	2023-01-12710:47:23
	23 Spectrometer Frequency	376.53
	24 Spectral Width	150000.0
]]	25 Lowest Frequency	-112656.4
	26 Nucleus 27 Acquired Size	19F 149992
	28 Spectral Size	524288

28 Spectral Size 524288 jo -55 -60 -65 -70 -75 -60 -65 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 fl (gem)

20 -55 -60 -65 -70 -75 -50 -55 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 80 40 30 20 10 0 fl (ppm)

10 200 190 180 170 180 180 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 100 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 F1 (seen)

0 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (ppm)

S87

S89

(1-10)-2 10-101-2	- 104-46 - 104-47 - 104-47 - 104-47 - 104-49 - 104-49	Parameter 1 Data File Name	值 E:/ 布告克-jhr/ 收 语/ jhr-2d-1103-F/ 1/ fid
		2 标题 3 Comment	jhr-2d-1103-F.1.fid
		4 Origin 5 Owner 6 Site	Bruker BioSpin GmbH nmr
		7 Instrument 8 Author	spect
F		9 Solvent 10 Temperature 11 Pulse Sequence	CDC13 295.8 zgflqn
		12 Experiment 13 Probe	1D Z116098_0640 (PA BBO 40051 BBF-H- D-05 Z SP)
		14 Number of Scans	9
		15 Receiver Gain	195.5
N		16 Relaxation Delay	1.0000
		17 Pulse Width 18 Presaturation Frequency	18. 0000
Н		19 Acquisition Time	0. 9999
2d		20 Acquisition Date	2022-11-03T12:18:25
		21 Modification Date	2022-11-03T12:18:26
		22 Class	
		23 Spectrometer Frequency	376.53
		24 Spectral Width	75000.0
		25 Lowest Frequency	-75156.4
		26 Nucleus	19F
		27 Acquired Size	74996
		28 Spectral Size	262144
		29 Digital	0.29
10 -55 -60 -65 -70 -75 -80 -85 -90 -95 -10	o -ios -i1o -i1s -i2o -i2s -i3o -i3s -i4o -i4s -i5o -i6s -i6c fl (ppm)	Resolution	

10 200 190 180 170 160 180 140 130 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (ppm)

2			
4	CF ₂	Parameter	缅
1		1 Data File Name	E:/ 布鲁克-jhr/ 收 谱/ jhr-2e-1119-F/ 1/ fid
	<pre></pre>	2 标题 3 Comment	jhr-2e-1119-F.1.fid
	0	4 Origin 5 Owner 6 Site	Bruker BioSpin GmbH nmr
	Ň	7 Instrument 8 Author	spect
		9 Solvent 10 Temperature 11 Pulse	CDC13 295.7 zgflgn
	Н	Sequence	
	2e	12 Experiment 13 Probe	1D 2116098_0640 (PA BB0 400S1 BBF-H- D-05 Z SP)
		14 Number of Scans	21
		15 Receiver Gain	195.5
		16 Relaxation Delay	1.0000
		17 Pulse Width	18.0000
		18 Presaturation Frequency	
		19 Acquisition Time	0.9999
		20 Acquisition Date	2022-11-19T17:53:17
		21 Modification Date	2022-11-19T17:53:20
		22 Class	
		23 Spectrometer Frequency	376.53
		24 Spectral Width	150000. 0
		25 Lowest Frequency	-112656.4
		26 Nucleus	19F
		27 Acquired Size	149992
		28 Spactral Siza	574788

10 200 100 100 100 100 100 100 100 120 110 100 90 80 70 60 50 40 50 20 10 0 f1 (ppm)

200 190 180 170 180 130 140 130 120 110 100 90 80 70 80 80 40 50 20 10 0 f1 (som)

S97

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 80 40 50 20 10 0 fl (ppm)

33 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (ppm)

10 200 190 180 170 160 180 140 130 120 110 100 90 80 70 60 80 40 30 20 10 0 11 (ppm)

0 35 30 25 20 15 10 5 0 -20 -25 -30 -35 -40 -45 -50 -55 -5 -10 f1 (ppm) -15

10 200 190 180 170 160 180 140 130 120 110 100 90 60 70 60 60 40 30 20 10 0 -10 f1 (ppm)

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (ppm)

10 200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

10 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

10 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 fi (ppm)

S113

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 fl (spm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (sem)

10 200 190 190 170 180 190 140 150 120 110 100 90 80 70 60 80 40 50 20 10 0 -10 11 (ppm)

io 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

-5 -10 fl (ppm) 0 35 30 25 20 15 10 5 -20 -30 -35 -40 -45 -50 0 -15 -25 -55

io 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (com)

0 35 30 25 20 15 10 5 -5 -10 f1 (ppm) -25 -30 -35 -40 -50 -55 0 -15 -20 -45

10 200 190 180 170 160 180 140 130 120 110 100 60 80 70 60 80 40 50 20 10 0 -10 f1 (ppm)

200 100 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 70 0 -10 f1 (ppm)

10 200 190 180 170 160 180 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fi (ppm)

0 35 50 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 f1 (pend)