CsCl–Flux Synthesis of Titanium Oxynitride Ti_{2.85}O₄N for Photocatalysis

Xiaoxuan Xie,^{#,1} Zihan Wang,^{#,2} Yatong Wang,³ Wenqian Chen*,²

¹ Department of Chemistry, School of Science, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, China.

² Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

³ Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

*corresponding author: Wenqian Chen

[#] Authors contributed equally.

Fig.S1 SEM images of the product (a) and (b) $CsTi_{0.68}O_4$, (c) and (d) $CsTi_{0.68}O_4$ -Cl.

Fig. S2 XPS analysis of pristine and Cl-assisted synthesized Cs_{0.68}Ti_{1.83}O₄.
(a) Survey spectra, (b) Cs 3d, (c) Ti 2p, and (d) O 1s. (The suffix "-Cl" denotes samples synthesized via a molten chloride salt method, with no residual Cl detected.)

Fig. S3 XPS analysis of Ti_{2.85}O₄N with varying Cl-treatment steps.
(a) Survey spectra, (b) N 1s, (c) Ti 2p, and (d) O 1s. (Labels "-0" and "-Cl" indicate the absence or presence of Cl-assisted processing steps, respectively.)

Fig. S4 N₂ adsorption-desorption isotherm test results. (a,d) Isotherm Linear Absolute
 Plots, (b,e) Barret-Joyner-Halenda Adsorption Pore Volume vs. Pore Width Plots, (c,f)
 Brunauer-Emmet-Teller Surface Area vs. Pore Width Plots.

Fig. S5 UV-visible DRS spectra and photographs of the oxides and oxynitrides.

Fig. S6 The band gap obtained by fitting the Tauc-Plot method between oxides and oxynitrides.

Fig. S7 The density of states (PDOS) of (a) $CsTi_{0.68}O_4$ and (b) $Ti_{2.85}O_4N$.

Fig. S8 Influencing factors and stability of photocatalysis. (a) Effect of pH. [Catalyst]
= 0.6 g L⁻¹; [MB] = 10 ppm. (b) Effect of MB concentration. [Catalyst] = 0.6 g L⁻¹, pH 6.8. (c) Effect of catalyst concentration. [MB] = 10 ppm; pH 6.8. (d) Recycling stability.

Fig. S9 Recycling stability of Ti_{2.85}O₄N-Cl-Cl morphology during photocatalysis. (a-b) SEM of Ti_{2.85}O₄N-Cl-Cl after 1 cycle. (c-d) SEM of Ti_{2.85}O₄N-Cl-Cl after 5 cycles.

Fig. S10 (a) DMPO- \bullet O₂⁻, (b) DMPO-h⁺, (c) TEMPO- \bullet OH spectrum of the electron spin resonance tested in dark and light conditions.

	Cs (wt%)	Ti (wt%)	O (wt%)	N (wt%)
Ti _{2.85} O ₄ N-0-0	11.71	55.495	21.94	5.92
Ti _{2.85} O ₄ N-0-Cl	18.65	50.765	21.84	5.23
Ti _{2.85} O ₄ N-Cl-0	20.445	50.025	19.385	6.43
Ti _{2.85} O ₄ N-Cl-Cl	19.64	50.705	18.905	6.92

Table S1 Element content obtained from EDS scanning.

Table S2 Specific surface area, pore volume and pore size information

	BET Surface	t-Plot Micropore	Single point Total	Average Pore
Sample	Area	Area	Pore Volume	Size
	m^2/g	m^{2}/g	cm ³ /g	nm
Cs _{0.68} Ti _{1.83} O ₄ -0	56.86	10.97	0.0866	17.37
$Cs_{0.68}Ti_{1.83}O_4$ -Cl	45.69	2.22	0.0760	20.26
Ti _{2.85} O ₄ N-0-0	92.68	22.40	0.1242	20.13
Ti _{2.85} O ₄ N-Cl-0	67.28	12.63	0.1122	19.67
Ti _{2.85} O ₄ N-Cl-Cl	56.14	6.65	0.0926	26.91

Table S3 Performance Comparison.

	Catalyst amount (g L ⁻¹)	Pollutant Consent (mg L ⁻¹)	Reaction time (min)	Degradation (%)	Ref.
Ti _{2.85} O ₄ N-Cl- Cl	0.6	10	120	77	This work
$Cs_{0.68}Ti_{1.83}O_4$	0.6	10	120	39	This work
Carbon- doped TiO ₂	1	10	100	61	S 1
Carbon/TiO ₂ (T-PVA)	1	10	60	48	S2
0.1 wt% Ag - doped TiO ₂	10	10	600	71	S3
5% N/TiO ₂	1	20	150	56.5	S4
AlHF-TiO ₂	2.5	20	60	65	S5
Hg-doped TiO ₂	Thin films	31.985	120	72	S6

References

S1 Q. Xiao, J. Zhang, C. Xiao, Z. Si and X. Tan, Sol. Energy, 2008, 82, 706–713.

S2 F. Teng, G. Zhang, Y. Wang, C. Gao, L. Chen, P. Zhang, Z. Zhang and E. Xie, *Appl. Surf. Sci.*, 2014, **320**, 703–709.

S3 Jayasinghe K.W.P.V., Palliyaguru L., and Jayaweera P.M., *JOM*, 2015, **87**, 2104-2107.

S4 D. Li, V. C. Calebe, Y. Li, H. Liu and Y. Lei, Catalysts, 2024, 14, 681.

S5 E. Magnone, M.-K. Kim, H. J. Lee and J. H. Park, *Ceram. Int.*, 2019, **45**, 3359–3367.

S6 F. Abbas and R. Bensaha, Optik, 2021, 247, 167846.