Electronic Supplementary Information

Synthesis of Highly Dispersible TiO₂ Nanoparticles and Their Application in Quantum Dot Light Emitting Diodes

Botao Hu, Mengxin Liu, Xinan Shi*, and Daocheng Pan*

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

*E-mail: xashi@gxu.edu.cn and dcpan@gxu.edu.cn

Figure S1. XRD patterns of TiO₂ nanoparticles synthesized at different reaction time.

Figure S2. Raman spectra of as-prepared and DMSO-capped TiO₂ nanoparticles.

Figure S3. Digital photographs of TiO_2 nanoparticle solutions with different concentrations after DMSO post-treatment.

Figure S4. FT-IR spectra of TiO₂ nanoparticle with and without DMSO post-treatment.

Figure S5. High-resolution SEM image of DMSO-capped TiO₂ nanoparticle thin film.

Figure S6. AFM image of DMSO-capped TiO₂ nanoparticle thin film.

Figure S7. Digital photograph of turbid solution of as-prepared and unmodified TiO₂ nanoparticles.

Figure S8. Comparison of the device lifetimes of encapsulated and unencapsulated TiO₂- and ZnO-based QLEDs.

	Device structure	EQE (%)	Luminance	Ref.
			(cd/m^2)	
ZnO	Ag/ZnO /QDs/TFB/PEDOT:PSS/ITO/Glass	21.81	250755.8	1
TiO ₂	Al/TiO ₂ /QDs/TFB/PEDOT:PSS/ITO/Glass	/	12380	2
	Al/MoO ₃ /CBP/QDs/TiO ₂ /ITO/Glass	/	8802	3
	Al/MoO ₃ /CBP/QDs/Li-TiO ₂ /ITO/Glass	9.12	159840	4
	Al/MoO3/CBP/QDs/Li-TiO2/ITO/Glass	10.27	169790	5
				This

Al/MoO₃/CBP/QDs/TiO₂/ITO/Glass

12.03

103420

work

Table S1. Summary of recent works on TiO₂-based QLEDs and one of the best ZnObased QLED.

References

- T. Chen, K. B. Yu, H. L. Hu, Y. H. Li, W. J. Huang, R. J. Li, Y. Qie, H. Y. Lin, T. L. Guo and F. S. Li, ACS Appl. Nano Mater., 2025, 8, 4573-4579.
- (2) K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. Kim, S. J. Kwon, J. Y. Han, B. K. Kim,
 B. L. Choi, B. L. Choi and J. M. Kim, *Nat. Photonics*, 2009, **3**, 341-345.
- (3) S. Wei, J. Miao, Q. Shi, S. Shao and L. Zhang, J. Mater. Sci. Mater. Electron, 2021, 32, 9795-9803.
- (4) M. Kim and J. Kim, Korean J. Met. Mater., 2021, 59, 476-480.
- (5) M. Kim, N. Lee, J. H. Yang, C. W. Han, H. M. Kim, W. Han, H. H. Park, H. Yang and J. Kim, *Nanoscale*, 2021, **13**, 2838-2842.