A Biologically Inspired Iron Complex for the Homogeneous Reduction of Cr(VI) to Cr(III)

Kelly L. Gullett,^a Jewelianna M. Moore, ^b Courtney L. Ford,^a and Alison R. Fout^{b*}

^{*a*} School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA.

^b Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, USA

Supporting Information Table of Contents:

Selected NMR Spectra and tables from NMR Experiments	2
¹ H NMR Spectra of Chromate Reductions	6
XPS Measurements	8

Figure S1. A representative ¹H NMR spectrum from the generation of the calibration curve (test 2, entry 10) (500 MHz, CD₃CN).

	Test 1			[N(afa ^{Cy}) ₃ FeOTf]OTf (1)		[N(afa ^{Cy}) ₃ FeO]OTf (2)		
Entry	mL 1	mL 2	mmol 2 / mmol 1	Integration	$\Delta v_{1/2}$ (Hz)	δ(¹ H) (ppm)	$\begin{array}{c} \Delta v_{1/2} \\ (\text{Hz}) \end{array}$	δ(¹ H) (ppm)
1	1.9	0.1	0.052632	0.03	40.29	36.85	53.41	60.49
2	1.8	0.2	0.111111	0.06	34.42	36.85	352.86	60.70
3	1.7	0.3	0.176471	0.09	28.78	36.87	451.09	60.65
4	1.6	0.4	0.25	0.11	34.49	36.87	521.66	60.73
5	1.5	0.5	0.333333	0.13	34.42	36.87	354.0	60.73
6	1.4	0.6	0.428571	0.17	38.28	36.88	567.44	60.73
7	1.3	0.7	0.538462	0.19	36.37	36.88	565.53	60.85
8	1.2	0.8	0.666667	0.22	38.19	36.89	600.81	60.83
9	1.1	0.9	0.818182	0.27	34.45	36.90	647.54	60.72
10	1.0	1.0	1	0.29	28.73	36.93	719.07	60.91
11	0.9	1.1	1.222222	0.38	38.44	36.95	680.92	60.56
12	0.8	1.2	1.5	0.46	36.56	36.94	657.08	60.68
13	0.7	1.3	1.857143	0.5	36.51	36.94	650.41	60.76
14	0.6	1.4	2.333333	0.59	42.23	36.95	678.06	60.66

Table S1. ¹H NMR chemical shifts (δ (¹H)) and the line halfwidths ($\Delta v_{1/2}$) of one selected resonance from 1 and 2, and the integration value of the selected 2 resonance for mixtures of 1

	Test 2			[N(afa ^{Cy}) ₃ FeOTf]OTf (1)		[N(afa ^{Cy}) ₃ FeO]OTf (2)		
Entry	mL 1	mL 2	mmol 2 / mmol 1	Integration	$\Delta v_{1/2}$ (Hz)	δ(¹ H) (ppm)	$\Delta v_{1/2}$ (Hz)	δ(¹ H) (ppm)
1	1.9	0.1	0.052632	0.06	34.68	36.85	81.06	60.65
2	1.8	0.2	0.111111	0.06	29.07	36.89	435.85	61.09
3	1.7	0.3	0.176471	0.09	30.84	36.88	562.67	60.48
4	1.6	0.4	0.25	0.11	30.81	36.90	553.13	60.71
5	1.5	0.5	0.333333	0.16	36.14	36.89	432.43	60.60
6	1.4	0.6	0.428571	0.19	34.24	36.90	592.23	60.58
7	1.3	0.7	0.538462	0.21	30.65	36.91	629.43	60.72
8	1.2	0.8	0.666667	0.27	36.27	36.90	695.23	60.48
9	1.1	0.9	0.818182	0.28	32.26	36.92	608.44	60.51
10	1.0	1.0	1	0.32	38.26	36.93	689.51	60.74
11	0.9	1.1	1.222222	0.39	38.49	36.93	700.00	60.64
12	0.8	1.2	1.5	0.45	36.54	36.85	716.21	60.62
13	0.7	1.3	1.857143	0.53	27.06	36.95	655.17	60.59
14	0.6	1.4	2.333333	0.57	38.44	36.95	680.92	60.56

and 2 in the indicated ratios from Test 1. (The selected resonances from 1 and 2 are indicated in in the representative spectra depicted in Figure S1.)

Table S2. ¹H NMR chemical shifts (δ (¹H)) and the line halfwidths ($\Delta v_{1/2}$) of one selected resonance from 1 and 2, and the integration value of the selected 2 resonance for mixtures of 1 and 2 in the indicated ratios from Test 2.

	Test 2			[N(afa ^{Cy}) ₃ F (1)	eOTf]OTf)	[N(afa ^{Cy}) ₃ (2	FeO]OTf 2)	
Entry	mL 1	mL 2	mmol 2 / mmol 1	Integration	$\Delta v_{1/2}$ (Hz)	δ(¹ H) (ppm)	$\begin{array}{c} \Delta v_{1/2} \\ (Hz) \end{array}$	δ(¹ H) (ppm)
1	1.9	0.1	0.052632	0.03	34.97	36.84	50.54	58.99
2	1.8	0.2	0.111111	0.06	37.95	36.84	404.36	60.92
3	1.7	0.3	0.176471	0.09	38.08	36.84	389.1	60.64
4	1.6	0.4	0.25	0.11	36.15	36.84	570.3	60.74
5	1.5	0.5	0.333333	0.13	32.37	36.71	553.13	60.61
6	1.4	0.6	0.428571	0.17	36.28	36.71	637.05	60.61
7	1.3	0.7	0.538462	0.19	28.53	36.73	638.01	60.64
8	1.2	0.8	0.666667	0.22	38.13	36.74	566.48	60.43
9	1.1	0.9	0.818182	0.27	34.32	36.73	618.93	60.43
10	1.0	1.0	1	0.29	36.21	36.75	641.82	60.55

Table S3. ¹H NMR chemical shifts (δ (¹H)) and the line halfwidths ($\Delta v_{1/2}$) of one selected resonance from 1 and 2, and the integration value of the selected 2 resonance for mixtures of 1 and 2 in the indicated ratios from Test 3.

Summary							
Entry	mL 1	mL 2	mmol 2/ mmol 1	Average Integration	Standard Deviation	Standard Error	
1	1.9	0.1	0.052632	0.06	0.025166	0.01453	
2	1.8	0.2	0.111111	0.06	0.005774	0.003333	
3	1.7	0.3	0.176471	0.09	0.011547	0.006667	
4	1.6	0.4	0.25	0.11	0.005774	0.003333	
5	1.5	0.5	0.333333	0.16	0.025166	0.01453	
6	1.4	0.6	0.428571	0.19	0.025166	0.01453	
7	1.3	0.7	0.538462	0.21	0.030551	0.017638	
8	1.2	0.8	0.666667	0.27	0.032146	0.018559	
9	1.1	0.9	0.818182	0.28	0.015275	0.008819	
10	1.0	1.0	1	0.32	0.025166	0.01453	
11	0.9	1.1	1.222222	0.39	0	0	
12	0.8	1.2	1.5	0.45	0.021213	0.015	
13	0.7	1.3	1.857143	0.53	0.021213	0.015	
14	0.6	1.4	2.333333	0.57	0.007071	0.005	
				Average	0.017945	0.010819	

Table S4. The average integration value of the selected 2 resonance for mixtures of 1 and 2 in the indicated ratios from Tests 1-3 with the standard deviation and standard error

Figure S2. ¹H NMR spectrum of the reaction of 4 equiv of 1 and 1 equiv of K_2CrO_4 , which furnished 2 and $H_3N(pi^{Cy})_3 \cdot 3$ HOTf (500 MHz, CD₃CN).

Figure S3. ¹H NMR spectrum of the quantification of chromate reduction using 1,2diphenylhydrazine, demonstrating the formation of 2.47 equiv of **2** (500 MHz, CD₃CN).

Figure S4. ¹H NMR spectrum of the stoichiometric reduction of [TBA]₂Cr₂O₇ by **1** in the presence of triethyl amine.

		[N(afa ^{Cy}) ₃ FeOTf]OTf (1)		[N(afa ^{Cy}) ₃ Fe(D]OTf (2)
Aliquot	Integration	δ(¹ H) (ppm)	$\Delta v_{1/2}$ (Hz)	δ(1H) (ppm)	$\Delta v_{1/2}$ (Hz)
A-20	0.12	36.69	30.43	60.82	631.33
B-20	0.15	36.7	32.42	60.95	549.32
C - 20	0.15	36.69	37.94	60.55	483.51
A-60	0.16	36.69	32.55	60.78	536.92
B - 60	0.14	36.7	28.66	69.62	745.77
Average	0.144				
% yield	97.7				

Table S5. ¹H NMR chemical shifts (δ (¹H)) and the line halfwidths ($\Delta v_{1/2}$) of one selected resonance from **1** and **2**, and the integration value of the selected **2** resonance for the reduction of [TBA]₂Cr₂O₇ by **1**.

		[N(afa ^{Cy}) ₃ FeOTf]OTf (1)		[N(afa ^{Cy}) ₃ F	eO]OTf
Aliquot	Integration	δ(¹ H) (ppm)	$\Delta v_{1/2}$ (Hz)	δ(¹ H) (ppm)	$\Delta v_{1/2}$ (Hz)
А	0.11	36.66	30.97	60.74	635.15
В	0.11	36.67	30.97	60.81	373.84
С	0.12	36.66	30.74	60.5	668.53
Average	0.113				
% yield	99.5				

Table S6. ¹H NMR chemical shifts (δ (¹H)) and the line halfwidths ($\Delta v_{1/2}$) of one selected resonance from **1** and **2**, and the integration value of the selected **2** resonance for the reduction of [TBA]₂Cr₂O₇ by **1**.

Figure S5. A representative ¹H NMR spectrum of the reduction of [TBA]₂Cr₂O₇ by **1** (trial 2, aliquot A) (500 MHz, CD₃CN).

Figure S6. XPS analysis of the precipitated material from the large scale reduction of [TBA]₂Cr₂O₇.