Electronic Supplementary Information

Interplay of the Cu…Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(I) halide complexes with derivatives of 4-pyrazolylpyrimidine-2thiol

Sofia V. Skvortsova,^{*a,b} Fyodor K. Verkhov,^{b,c} Elena B. Nikolaenkova,^c Marianna I. Rakhmanova,^a Tatiana E. Kokina,^a Taisiya S. Sukhikh,^a Nikita A. Shekhovtsov ^{*a} and Mark B. Bushuev ^{*a}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia. E-mail: s.skvortsova@g.nsu.ru (S. V. Skvortsova), shekhovtsov@niic.nsc.ru (Nikita A. Shekhovtsov), bushuev@niic.nsc.ru (Mark B. Bushuev).

^b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia.

^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.

Table of contents

Experimental section	4
General Information	4
Synthesis of 2-benzylthio-4-hydrazinylpyrimidine	4
Synthesis of 2-benzylthio-4-hydrazinyl-6-methylpyrimidine	4
Synthesis of 2-benzylthio-4-(3,5-dimethyl-1 <i>H</i> -pyrazol-1-yl)pyrimidine (L ^H)	4
Synthesis of 2-benzylthio-4-(3,5-dimethyl-1 <i>H</i> -pyrazol-1-yl)-6-methylpyrimidine (L ^{Me})	5
Synthesis of [Cu ₂ (L ^H) ₂ I ₂] (form I)	5
Synthesis of [Cu ₂ (L ^H) ₂ I ₂] (form II)	5
Synthesis of [Cu ₂ (L ^H) ₂ Br ₂]	5
Synthesis of [Cu ₂ (L ^{Me}) ₂ I ₂]	5
Structural formulae of ligands and complexes	6
Scheme S1	6
X-ray crystal structures	7
Computational details	7
NMR data	8
Figure S1	8
Figure S2	8
Figure S3	9
Figure S4	9
Figure S5	10
Figure S6	10
Figure S7	11
Figure S8	11
Structural data	12
Table S1	12
Table S2	13
Figure S9	14
Figure S10	14
Figure S11	15
Figure S12	15
Figure S14	16
Figure S15	17
Figure S16	17
Figure S17	17
Figure S18	
Figure S19	
Figure S20	
Figure S21	19
Figure S22	19
Figure S23	19
Figure S24	20
Figure S25	20
Figure S26	20
- Figure S27	21
Figure S28	21
- Figure S29	21
- Figure S30	22
Figure S31	23
Figure S32	24
- Figure S33	25

X-ray powder diffraction patterns	26
Figure S34	26
Figure S35	26
Figure S36	27
Figure S37	27
IR spectra	28
Figure S38	28
Figure S39	29
Diffuse reflectance spectra	30
Figure S40	30
Computational data	31
Figure S41	31
Figure S42	31
Figure S43	31
Figure S44	32
Figure S45	32
Figure S46	32
Figure S47	
Figure S48	
Figure S49	
Figure S50	34
Figure S51	
Table S3	
Table S4	
Table S5	43
Table S6	46
References	50

Experimental section

General Information

All solvents were of analytical grade. 2-Benzylthio-4-chloropyrimidine and 2-benzylthio-4-chloro-6-methylpyrimidine were synthesized according to literature procedures.^{1,2} All other reactants were purchased from commercial suppliers and used as received. Elemental analyses were performed with a EuroEA3000 analyser using standard technique. ¹H and ¹³C NMR spectra were registered on Bruker AV-300 (300.13 and 75.46 MHz), Bruker AV-400 (400.13 and 100.61 MHz) and Bruker DRX-500 (500.13 and 125.76 MHz) spectrometers using the residual signals of the solvents: CDCl₃ at 7.24 ppm for ¹H and 76.9 ppm for ¹³C and DMSO-d₆ at 2.50 ppm for ¹H and 39.5 ppm for ¹³C with respect to TMS as the internal standard. IR spectra were recorded in KBr on a Bruker Vector-22 spectrometer. Melting points were determined on a Mettler Toledo FP-900 instrument. High-resolution mass spectra were recorded on a DFS Thermo Electron instrument (ionizing electron energy 70 eV, direct sample injection into the ion source). Corrected photoluminescence spectra were recorded on a Fluorolog 3 spectrometer (Horiba Jobin Yvon) with a cooled PC177CE-010 photon detection module equipped with R2658 photomultiplier. Luminescence decay kinetics were recorded using a Xe-flash lamp and a NanoLED pulsed light source with a NanoLED-C2 controller. Diffuse reflectance spectra were recorded on a UV-3101 PC Shimadzu spectrophotometer. BaSO₄ was used for the baseline. Spectra are reported as the Kubelka-Munk function, $F(R) = (1 - R)^2/(2R)$, where R is the diffuse reflectance of the compounds relative to $BaSO_4$. X-ray powder diffraction patterns of the compounds were recorded on a Tongda TD-3700 diffractometer with Dectris Mythen2 1D detector (energy-discriminating Cu-Kα radiation).

Synthesis of 2-benzylthio-4-hydrazinylpyrimidine

Hydrazine hydrate (0.27 ml, 5.34 mmol) was added to a solution of 2-benzylthio-4-chloropyrimidine (0.42 g, 1.78 mmol) in EtOH (6 ml). The reaction mixture was heated under reflux for 3.5 h. After cooling down to room temperature, the resulting mixture was diluted with water, the precipitate formed was filtered off, washed with H₂O and dried. Yield: 0.25 g (60%), m. p. 136.6–138.4°C. ¹H NMR (DMSO-d₆, 300.13 MHz) δ (ppm): 8.51 (s, 1H, NH), 7.95 (br. s, 1H, 6-H_{pyrimidine}), 7.42–7.39 (m, 2H, 2', 6'-H_{Ph}), 7.31–7.19 (m, 3H, 3', 5', 4'-H_{Ph}), 6.47 (br. s, 1H, 5-H_{pyrimidine}), 4.38 (s, 2H, NH₂), 4.31 (s, 2H, CH₂). ¹³C NMR (DMSO-d₆, 125.76 MHz) δ (ppm): 168.78 (br.), 164.86 (br.), 155.13 (br.), 138.67, 128.86 (2), 128.28 (2), 126.78, 98.44 (br.), 33.80. IR (KBr, v cm⁻¹): 1660s, 1574s, 1558s, 1518m, 1496m, 1452w, 1402vs, 1369m, 1331s, 1228s, 1211m, 1196m, 1144m, 1072w, 976m, 897w, 823m, 768m, 729m, 698s, 604w, 565w. High-resolution mass spectrum, m/z: Calc. for C₁₁H₁₂N₄S 232.0777. Found 232.0780.

Synthesis of 2-benzylthio-4-hydrazinyl-6-methylpyrimidine

A mixture of 2-benzylthio-4-chloro-6-methylpyrimidine (2.1 g, 8.38 mmol), hydrazine hydrate (1.25 ml, 25 mmol) and EtOH (25 ml) was heated under reflux for 3 h. After cooling, the solvent was removed by distillation under reduced pressure, and the residue was treated with water. The precipitate formed was filtered off, washed with H₂O and dried. Yield: 1.67 g (81%), m. p. 92.3–93.5°C. ¹H NMR (CDCl₃, 400.13 MHz) δ (ppm): 7.40–7.39 (m, 2H, 2',6'-H_{Ph}), 7.28–7.25 (m, 2H, 3',5'-H_{Ph}), 7.22–7.18 (m, 1H, 4'-H_{Ph}), 6.31 (br. s, 1H, NH), 6.19 (s, 1H, 5-H_{pyrimidine}), 4.35 (s, 2H, CH₂), 3.75 (br. s, 2H, NH₂), 2.29 (s, 3H, Me). ¹³C NMR (DMSO-d₆, 125.76 MHz) δ (ppm): 168.14 (br.), 165.71 (br.), 164.73 (br.), 138.99, 129.04 (2), 128.33 (2), 126.82, 96.42 (br.), 33.76, 23.61. IR (KBr, v cm⁻¹): 1653s, 1587vs, 1568s, 1512w, 1495m, 1412vs, 1360m, 1282s, 1234s, 1192m, 1128m, 1030w, 987m, 972m, 924m, 885m, 864w, 837w, 766m, 723m, 696s. High-resolution mass spectrum, m/z: Calc. for C₁₂H₁₄N₄S 246.0934. Found 246.0931.

Synthesis of 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine (L^H)

A mixture of 2-bezylthio-4-hydrazinylpyrimidine (0.232 g, 1 mmol) and acetylacetone (0.12 ml, 1.2 mmol) in EtOH (7 ml) was refluxed for 2 h. The reaction mixture was cooled, the solvent was removed by distillation under reduced pressure, and the residue was purified by column chromatography (SiO₂, CHCl₃) to give the title ligand. Yield: 0.228 g (77%), m. p. 69.2–69.9°C. Anal. Calc. for C₁₆H₁₆N₄S: C, 64.83; H, 5.44; N, 18.90; S, 10.82. Found: C, 65.14; H, 5.61; N, 18.63; S, 10.56%. ¹H NMR (CDCl₃, 400.13 MHz) δ (ppm):

8.46 (d, 1H, J = 5.6 Hz, 6-H_{pyrimidine}), 7.57 (d, 1H, J = 5.6 Hz, 5-H_{pyrimidine}), 7.41–7.39 (m, 2H, 2', 6'-H_{Ph}), 7.32–7.28 (m, 2H, 3', 5'-H_{Ph}), 7.26–7.22 (m, 1H, 4'-H_{Ph}), 5.99 (s, 1H, H_{pyrazole}), 4.43 (s, 2H, CH₂), 2.65 (br. s, 3H, Me), 2.26 (s, 3H, Me). ¹³C NMR (CDCl₃, 125.76 MHz) δ (ppm): 171.00, 158.95, 158.08, 151.86, 142.79, 136.61, 128.76 (2), 128.45 (2), 127.18, 110.92, 105.89, 35.21, 15.53, 13.60. IR (KBr, v cm⁻¹): 1581s, 1560vs, 1549vs, 1479m, 1466m, 1441s, 1412m, 1383m, 1344vs, 1275w, 1213m, 1163m, 1142m, 1065w, 1026w, 970m, 829m, 810w, 733w, 714m, 698w, 683m.

Synthesis of 2-benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (L^{Me})

2-Benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine was obtained similarly from 2benzylthio-4-hydrazinyl-6-methylpyrimidine (0.492 g, 2 mmol), acetylacetone (0.24 ml, 2.4 mmol) and EtOH (15 ml). Yield: 0.59 g (95%), m. p. 49–51°C. Anal. Calc. for C₁₇H₁₈N₄S: C, 65.77; H, 5.85; N, 18.05; S, 10.33. Found: C, 65.84; H, 5.88; N, 18.10; S, 10.28%. ¹H NMR (CDCl₃, 300.13 MHz) δ (ppm): 7.44 (s, 1H, 5-H_{pyrimidine}), 7.41–7.39 (m, 2H, 2', 6'-H_{Ph}), 7.32–7.27 (m, 2H, 3', 5'-H_{Ph}), 7.25–7.20 (m, 1H, 4'-H_{Ph}), 5.97 (s, 1H, H_{pyrazole}), 4.42 (s, 2H, CH₂), 2.63 (s, 3H, Me), 2.47 (s, 3H, Me), 2.26 (s, 3H, Me). ¹³C NMR (CDCl₃, 125.76 MHz) δ (ppm): 170.49, 168.77, 159.07, 151.56, 142.74, 136.87, 128.75 (2), 128.40 (2), 127.09, 110.62, 104.90, 35.14, 24.09, 15.49, 13.59. IR (KBr, v cm⁻¹): 1585s, 1564vs, 1481m, 1468m, 1441s, 1396s, 1363s, 1288s, 1242w, 1194m, 1134m, 1070w, 1030w, 968m, 920w, 847m, 835w, 808w, 787w, 737m, 714m, 696w.

Synthesis of $[Cu_2(L^H)_2I_2]$ (form I)

A solution of Cul (19.0 mg, 0.1 mmol) in MeCN (2 ml) was added to a solution of L (29.6 mg, 0.1 mmol) in MeCN (2 ml). The resulting yellow-orange solution was allowed to slowly evaporate at room temperature for 3 days, yielding orange crystals of the complex. The obtained crystals were filtered off, washed with MeCN, and dried in air. Yield: 31.6 mg (65%). Anal. Calcd for $C_{32}H_{32}Cu_2I_2N_8S_2$: C, 39.5; H, 3.3; N, 11.5; S, 6.6. Found: C, 39.3; H, 3.3; N, 11.5; S, 7.0%. Single crystals of the complex were obtained by slow crystallization at room temperature from the supernatant.

Synthesis of $[Cu_2(L^H)_2I_2]$ (form II)

A solution of Cul (19.0 mg, 0.1 mmol) in MeCN (2 mL) was added to a solution of L (29.6 mg, 0.1 mmol) in MeCN (2 mL). The resulting yellow-orange solution was stirred for 10 minutes and then quickly concentrated to ca. 1 mL, which yielded a yellow precipitate of the complex. The obtained precipitate was filtered off, washed with MeCN, and dried in air. Yield: 39.3 mg (81%). Anal. Calcd for $C_{32}H_{32}Cu_2I_2N_8S_2$: C, 39.5; H, 3.3; N, 11.5; S, 6.6. Found: C, 39.1; H, 3.3; N, 11.4; S, 6.9%. Slow evaporation of the supernatant led to the formation of crystals of form I. Single crystals of **form II** were obtained from the supernatant that was seeded with about 1 mg of form II and left to stand at 5°C for a week. XRPD data for the sample obtained by quick precipitation are in agreement with single-crystal X-ray diffraction data for [$Cu_2(L^H)_2I_2$] (form II).

Synthesis of [Cu₂(L^H)₂Br₂]

The complex was synthesized by the same procedure as $[Cu_2(L^H)_2l_2]$ (form II). Orange powder was obtained. Yield: 34.3 mg (78%). Anal. Calcd for $C_{32}H_{32}Br_2Cu_2N_8S_2$: C, 43.7; H, 3.7; N, 12.7; S, 7.3. Found: C, 43.2; H, 3.8; N, 12.8; S, 7.8%. When attempting to crystallize the complex in air, oxidation occurred. Therefore, single crystals of the complex were obtained by slow crystallization from the supernatant in an argon atmosphere.

Synthesis of $[Cu_2(L^{Me})_2I_2]$

Both slow crystallization and quick precipitation (procedures for the form I and the form II of $[Cu_2(L^H)_2l_2]$, respectively) afforded the same complex, according to XRPD data. Yellow-orange powder was obtained. Yield: 39.3 mg (89%). Anal. Calcd for $C_{34}H_{36}Cu_2l_2N_8S_2$: C, 40.8; H, 3.6; N, 11.2; S, 6.4. Found: C, 40.2; H, 3.7; N, 11.3; S, 6.9%. Single crystals of the complex were obtained by slow crystallization at room temperature from the supernatant.

Structural formulae of ligands and complexes

(a) pyrazolylpyrimidine ligands and copper(I) complexes synthesized in the present work

(b) previously synthesized pyrazolylpyrimidine ligands and copper(I) complexes

Scheme S1. Structural formulae of pyrazolylpyrimidine ligands and copper(I) complexes synthesized in the present work and previously synthesized pyrazolylpyrimidine ligands and copper(I) complexes based on them.³⁻⁶

X-ray crystal structures

Single-crystal X-ray diffraction data for the crystals of L^H, L^{Me}, [Cu₂(L^H)₂Br₂], [Cu₂(L^H)₂I₂] (form I), [Cu₂(L^H)₂I₂] (form II) and [Cu₂(L^{Me})₂I₂] were collected at 150 K with a Bruker D8 Venture diffractometer (0.5° ω- and φ-scans, fixed-x three circle goniometer, CMOS PHOTON III detector, IµS 3.0 microfocus source, focusing Montel mirrors, $\lambda = 0.71073$ Å MoK_a radiation (L^H, [Cu₂(L^H)₂Br₂], [Cu₂(L^H)₂I₂] (form I), and $[Cu_2(L^H)_2I_2]$ (form II)) or $\lambda = 1.54178$ Å CuK_a radiation (L^{Me} and $[Cu_2(L^{Me})_2I_2]$), N₂-flow thermostat). Data reduction was performed routinely via APEX 3 suite.⁷ The crystal structures were solved using the SheIXT⁸ and were refined using ShelXL⁹ programs assisted by Olex2 GUI.¹⁰ Atomic displacements for non-hydrogen atoms were refined in harmonic anisotropic approximation. Hydrogen atoms were located either geometrically ([Cu₂(L^H)₂I₂] (form I), [Cu₂(L^H)₂I₂] (form II)), or from residual electron density map (L^H), or by combining both methods ([Cu₂(L^{Me})₂I₂], [Cu₂(L^H)₂Br₂], L^{Me}) and refined in a riding model or isotropically, depending on the method used. In the structure of [Cu₂(L^H)₂I₂] (form II), the benzylthio group is disordered over two positions with the occupancy factors of 0.58 and 0.42. The complex [Cu₂(L^{Me})₂I₂] tends to twin by non-merohedry. The data were reduced with two domains (fraction of 0.85/0.15) with the same unit cell parameters. For the final refinement, the merged data for the major domain were used. The structures of L^H, L^{Me}, [Cu₂(L^H)₂Br₂], [Cu₂(L^H)₂I₂] (form I), [Cu₂(L^H)₂I₂] (form II) and [Cu₂(L^{Me})₂I₂] were deposited to the Cambridge Crystallographic Data Centre (CCDC) as a supplementary publication, CCDC 2424475-2424480.

Computational details

Photophysical properties of the free ligands and the copper(I) complexes were studied by density functional theory (DFT) and time-dependent density functional dependent theory (TDDFT) methods in Gaussian 16 software package. The hybrid functional PBEO with Stuttgart RSC 1997 basis set and its corresponding pseudopotential for the copper atom, 6-311G(d) basis set for the iodine atom and the 6-31+G(d) basis set for other atoms were adopted for all computations. The QM/MM approach, which is implemented in the two-layer ONIOM model, was adopted in order to simulate the environment of all studied molecules in the crystal structure in the S₀ state. The QM part (central molecule, ESI, Figures S41 - S45) was treated with the above-mentioned PBEO/ Stuttgart RSC 1997/6-31+G(d) level of theory, the universal force field (UFF) was adopted for the MM part (surrounding molecules, ESI, Figures S41 – S45). The first triplet excited state (T_1) of the copper(I) complexes was optimized with unrestricted DFT in the gas phase. The relaxed potential energy scans of the T1 state along the Cu…Cu distance coordinate were also carried out by unrestricted DFT. Vertical electronic emission energies were theoretically simulated by TDDFT calculations within the Tamm–Dancoff approximation at the triplet excited state optimized geometries. The D3 version of Grimme's dispersion with Becke-Johnson damping was employed for each calculation. All frequencies in the harmonic approximation for the calculated global minimum energy geometries are positive, confirming that the optimized molecular geometries correspond to the real minima on the potential energy surfaces. The atomic coordinates of all optimized geometries are given in ESI, Tables S3 – S6. The geometries and molecular orbitals were visualized using ChemCraft software.

Figure S1. ¹H NMR spectrum of 2-benzylthio-4-hydrazinylpyrimidine.

Figure S2. ¹H NMR spectrum of 2-benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)pyrimidine (L^H).

Figure S3. ¹H NMR spectrum of 2-benzylthio-4-hydrazinyl-6-methylpyrimidine.

Figure S4. ¹H NMR spectrum of 2-benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (L^{Me}).

Figure S5. ¹³C NMR spectrum of 2-benzylthio-4-hydrazinylpyrimidine.

Figure S6. ¹³C NMR spectrum of 2-benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)pyrimidine (L^H).

Figure S7. ¹³C NMR spectrum of 2-benzylthio-4-hydrazinyl-6-methylpyrimidine.

Figure S8. ¹³C NMR spectrum of 2-benzylthio-4-(3,5-dimethyl-1*H*-pyrazol-1-yl)-6-methylpyrimidine (L^{Me}).

Structural data

Compound	L ^H	L ^{Me}
Empirical formula	$C_{16}H_{16}N_4S$	$C_{17}H_{18}N_4S$
<i>M</i> _r , g/mol	296.39	310.41
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/m
Temperature, K	150(2)	150(2)
<i>a,</i> Å	4.9099(1)	11.0358(8)
<i>b,</i> Å	24.0621(5)	6.7859(6)
<i>c,</i> Å	12.6078(2)	11.4683(7)
α, deg.	90	90
β, deg.	95.836(1)	100.397(5)
γ, deg.	90	90
<i>V,</i> Å ³	1481.80(5)	844.73(11)
Ζ	4	2
Density (calculated), g/cm ³	1.329	1.220
μ, mm ^{−1}	0.22	1.71
F(000)	624	328
Crystal size, mm	$0.18 \times 0.14 \times 0.08$	0.09 × 0.05 × 0.03
θ range for data collection, deg.	2.4 — 27.9	3.9 – 74.6
Index ranges	-6 ≤ <i>h</i> ≤ 6, -31 ≤ <i>k</i> ≤ 31, -16 ≤ <i>l</i> ≤ 16	-13 ≤ h ≤ 13, -8 ≤ k ≤ 8, -13 ≤ / ≤ 14
Reflections collected / independent	27953 / 3558	8763 / 1864
R _{int}	0.0255	0.0840
Observed reflections [I > 2σ(I)]	3244	1495
Goodness-of-fit on F ²	1.050	1.032
Final R indices	$R_1 = 0.0302,$	$R_1 = 0.0385,$
[I > 2σ(I)]	$wR_2 = 0.0799$	$wR_2 = 0.0951$
R indices (all data)	$R_1 = 0.0334,$ $wR_2 = 0.0827$	$R_1 = 0.0561,$ $wR_2 = 0.1027$
Largest diff. peak / hole, <i>e</i> /ų	0.27 / -0.19	0.18 / -0.36
CCDC Number	2424480	2424475

Table S1. Crystal data and structure refinement for $\mathbf{L}^{\mathbf{H}}$ and $\mathbf{L}^{\mathbf{Me}}.$

Table S2. Crystal data and structure refinement for $[Cu_2(L^H)_2Br_2]$, $[Cu_2(L^H)_2I_2]$ (form I), $[Cu_2(L^H)_2I_2]$ (form II) and $[Cu_2(L^{Me})_2I_2]$.

Compound	[Cu ₂ (L ^H) ₂ I ₂] (form I)	[Cu ₂ (L ^H) ₂ I ₂] (form II)	[Cu ₂ (L ^H) ₂ Br ₂]	[Cu ₂ (L ^{Me}) ₂ I ₂]
Empirical formula	$C_{32}H_{32}Cu_2I_2N_8S_2$	$C_{32}H_{32}Cu_2I_2N_8S_2$	$C_{32}H_{32}Br_2Cu_2N_8S_2$	$C_{34}H_{36}Cu_2I_2N_8S_2$
<i>M</i> _r , g/mol	973.65	973.65	879.67	1001.71
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	P-1	P21/c	P-1	P-1
Temperature, K	150(2)	150(2)	150(2)	150(2)
a, Å	9.5514(10)	9.405(2)	9.3376(3)	9.7622(5)
<i>b,</i> Å	10.0363(12)	9.845(2)	9.7651(5)	9.9792(5)
<i>c,</i> Å	10.101(1)	19.150(5)	10.1034(4)	10.2039(5)
α, deg.	77.316(4)	90	76.831(2)	77.565(3)
β, deg.	70.532(4)	91.785(8)	72.557(1)	71.076(2)
γ, deg.	76.891(4)	90	76.000(2)	79.975(3)
<i>V,</i> Å ³	878.14(17)	1772.3(7)	840.70(6)	912.40(8)
Ζ	1	2	1	1
Density (calculated), g/cm ³	1.841	1.825	1.738	1.823
μ, mm ^{−1}	3.12	3.10	3.80	16.08
F(000)	476	952	440	492
Crystal size, mm	$0.1 \times 0.08 \times 0.03$	0.2 × 0.04 × 0.02	0.17 × 0.05 × 0.02	$0.1 \times 0.04 \times 0.04$
θ range for data collection, deg.	2.8 — 30.5	2.1 — 26.4	2.3 — 28.3	4.6 — 63.7
	$-13 \le h \le 13$,	$-11 \le h \le 11$,	$-12 \le h \le 12$,	$-10 \le h \le 11$,
Index ranges	$-14 \le k \le 14,$	$-12 \leq k \leq 12,$	$-13 \le k \le 13,$	$-10 \le k \le 11,$
	-12 ≤ / ≤ 14	-23 ≤ l ≤ 22	-13 ≤ / ≤ 13	-11 ≤ / ≤ 11
Reflections collected / independent	11341 / 5350	18304 / 3619	9828 / 4178	7325 / 2861
R _{int}	0.0376	0.0682	0.0290	0.0918
Observed reflections $[I > 2\sigma(I)]$	4298	2795	3461	2672
Goodness-of-fit on F ²	1.036	1.300	1.033	1.106
Final R indices	$R_1 = 0.0369,$	$R_1 = 0.0898,$	$R_1 = 0.0318,$	$R_1 = 0.0379,$
[l > 2σ(l)]	$wR_2 = 0.0650$	$wR_2 = 0.2021$	$wR_2 = 0.0644$	$wR_2 = 0.1011$
R indices (all data)	$R_1 = 0.0489,$	$R_1 = 0.1146,$	$R_1 = 0.0417,$	$R_1 = 0.0407,$
	$wR_2 = 0.0713$	$wR_2 = 0.2117$	$wR_2 = 0.0684$	$wR_2 = 0.1038$
Largest diff. peak / hole <i>, e</i> /ų	0.71 / -0.60	1.24 / -1.73	0.53 / -0.38	0.86 / -0.83
CCDC Number	2424478	2424479	2424477	2424476

Figure S9. Supramolecular chain in the structure of L^H (hydrogen atoms are omitted for clarity).

Figure S10. C–H…S interactions between supramolecular chains in the structure of L^{H} .

Figure S11. Packing of L^H (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S12. Packing of L^{H} (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S13. Packing of L^{H} (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S14. Supramolecular chains in the structure of L^{Me} (hydrogen atoms are omitted for clarity).

Figure S15. Packing of L^{Me} (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S16. Packing of L^{Me} (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S17. Packing of L^{Me} (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S18. Packing of $[Cu_2(L^H)_2Br_2]$ (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S19. Packing of [Cu₂(L^H)₂Br₂] (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S20. Packing of [Cu₂(L^H)₂Br₂] (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S21. Packing of [Cu₂(L^H)₂I₂] (form I) (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S22. Packing of [Cu₂(L^H)₂I₂] (form I) (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S23. Packing of [Cu₂(L^H)₂I₂] (form I) (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S24. Packing of [Cu₂(L^H)₂I₂] (form II) (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S25. Packing of [Cu₂(L^H)₂I₂] (form II) (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S26. Packing of [Cu₂(L^H)₂I₂] (form II) (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S27. Packing of [Cu₂(L^{Me})₂I₂] (view along the *a* axis, hydrogen atoms are omitted for clarity).

Figure S28. Packing of $[Cu_2(L^{Me})_2I_2]$ (view along the *b* axis, hydrogen atoms are omitted for clarity).

Figure S29. Packing of [Cu₂(L^{Me})₂I₂] (view along the *c* axis, hydrogen atoms are omitted for clarity).

Figure S30. C–H···Hal interactions in the structures of $[Cu_2(L^H)_2Br_2]$ and $[Cu_2(L^H)_2I_2]$ (form I).

Figure S31. C–H··· π interactions in the structure of [Cu₂(L^H)₂I₂] (form II) (top). C(Ph)–H···C(pz) interactions in the structure of [Cu₂(L^{Me})₂I₂] (bottom).

Figure S32. C–H…I contacts in the structures of [Cu₂(L^H)₂I₂] (form I), [Cu₂(L^H)₂I₂] (form II) and [Cu₂(L^{Me})₂I₂].

Figure S33. Different degrees of merging monomers into a centrosymmetric dimer evidenced by the parameter $\tau_{dim}.$

X-ray powder diffraction patterns

Figure S34. X-ray powder diffraction patterns of [Cu₂(L^H)₂I₂] (form I).

Figure S35. X-ray powder diffraction patterns of [Cu₂(L^H)₂I₂] (form II).

Figure S36. X-ray powder diffraction patterns of [Cu₂(L^H)₂Br₂].

Figure S37. X-ray powder diffraction patterns of [Cu₂(L^{Me})₂I₂].

Figure S38. IR spectra of L^H and L^{Me} .

Figure S39. IR spectra of $[Cu_2(L^H)_2I_2]$ (form I), $[Cu_2(L^H)_2I_2]$ (form II), $[Cu_2(L^H)_2Br_2]$ and $[Cu_2(L^{Me})_2I_2]$.

Diffuse reflectance spectra

Figure S40. Diffuse reflectance spectra.

Computational data

Figure S41. ONIOM model for the QM/MM calculation of the [Cu₂(L^H)₂I₂] complex (form I).

Figure S42. ONIOM model for the QM/MM calculation of the [Cu₂(L^H)₂I₂] complex (form II).

Figure S43. ONIOM model for the QM/MM calculation of the [Cu₂(L^H)₂Br₂] complex.

Figure S44. ONIOM model for the QM/MM calculation of the [Cu₂(L^{Me})₂I₂] complex.

Figure S45. ONIOM model for the QM/MM calculation of L^H.

Figure S46. Frontier molecular orbitals of L^{H} at the S₁ optimized geometry.

Figure S47. Frontier molecular orbitals of L^{H} at the T₁ optimized geometry.

Figure S48. Frontier molecular orbitals of the $[Cu_2(L^H)_2I_2]$ complex (phase I, Cu...Cu 2.851 Å) at the T₁ optimized geometry.

Figure S49. Frontier molecular orbitals of the $[Cu_2(L^H)_2I_2]$ complex (phase II, Cu...Cu 2.619 Å) at the T₁ optimized geometry.

Figure S50. Frontier molecular orbitals of the $[Cu_2(L^{Me})_2I_2]$ complex at the T₁ optimized geometry.

Figure S51. Energies of the T₁ and S₀ states (left) and the parameters τ_{dim} and τ_{plan} (right) of the [Cu₂(L^{Me})₂I₂] complex at the relaxed T₁ optimized geometries with fixed Cu...Cu distance. Areas corresponding to a particular phase (Radiative form, NR form) are marked with different colors.

Table S3. Optimized geometries of L in Cartesian (XYZ) coordinates as calculated in Gaussian at the PBE0/6-31+g(d) level of theory in QM/MM model.

Ground state (S ₀)					
S	-0.566430000000	-0.200865000000	-0.060258000000		
N	2.355150000000	-3.962142000000	-1.598232000000		
N	1.030068000000	-2.164358000000	-0.928071000000		
N	3.409109000000	-4.410219000000	-2.33188000000		
N	1.645012000000	0.098104000000	-1.387118000000		
С	2.114232000000	-2.585733000000	-1.574653000000		
С	3.492633000000	-5.70219000000	-2.081415000000		
C	0.850408000000	-0.843766000000	-0.87638000000		
C	2.48643600000	-6.101886000000	-1.166731000000		
Н	2.319284000000	-7.092253000000	-0.771480000000		
C	1.765327000000	-4.973196000000	-0.866825000000		
C	-2.913907000000	-1.292025000000	0.708844000000		

С	3.005264000000	-1.703927000000	-2.191047000000	
Н	3.872858000000	-2.059663000000	-2.724895000000	
С	2.711138000000	-0.358507000000	-2.044494000000	
Н	3.369570000000	0.393363000000	-2.473728000000	
С	4.534469000000	-6.549052000000	-2.726908000000	
Н	4.090332000000	-7.267289000000	-3.420133000000	
Н	5.078490000000	-7.140314000000	-1.985289000000	
Н	5.245543000000	-5.928963000000	-3.277739000000	
C	-1.538646000000	-1.708389000000	0.270381000000	
Н	-1.573748000000	-2.297260000000	-0.650323000000	
Н	-1.038591000000	-2.304390000000	1.037742000000	
C	-3.235918000000	-1.215805000000	2.065656000000	
Н	-2.480756000000	-1.475650000000	2.803791000000	
C	-3.884474000000	-0.947523000000	-0.237046000000	
Н	-3.641134000000	-0.992247000000	-1.297130000000	
C	-5.151745000000	-0.542536000000	0.168331000000	
Н	-5.893217000000	-0.278158000000	-0.578319000000	
C	0.604151000000	-4.83104000000	0.051997000000	
Н	0.775236000000	-4.065245000000	0.811803000000	
Н	0.434748000000	-5.786992000000	0.551576000000	
Н	-0.307907000000	-4.548626000000	-0.481243000000	
C	-5.466872000000	-0.474748000000	1.524938000000	
Н	-6.456368000000	-0.157389000000	1.842177000000	
C	-4.506374000000	-0.814611000000	2.473970000000	
Н	-4.747711000000	-0.764103000000	3.532369000000	
	First s	inglet excited state (S ₁)	
S	-0.517354000000	-0.22050000000	0.027057000000	
N	2.394730000000	-3.974425000000	-1.595931000000	
N	0.992752000000	-2.173899000000	-0.920436000000	
N	3.447422000000	-4.414420000000	-2.336268000000	
Ν	1.581086000000	0.115337000000	-1.412573000000	
C	2.125921000000	-2.616617000000	-1.591407000000	
C	3.54934000000	-5.715912000000	-2.08254000000	
C	0.894562000000	-0.874347000000	-0.912424000000	
C	2.555242000000	-6.126506000000	-1.177409000000	
Н	2.392676000000	-7.117923000000	-0.781935000000	
C	1.818201000000	-4.994094000000	-0.872330000000	
C	-2.941626000000	-1.249732000000	0.692815000000	
C	2.953037000000	-1.687842000000	-2.253256000000	
Н	3.804843000000	-2.045947000000	-2.816259000000	
C	2.664131000000	-0.346689000000	-2.171498000000	
Н	3.268568000000	0.405488000000	-2.662015000000	
C	1 612267000000			
Н	4.013307000000	-6.533083000000	-2.733881000000	
н	4.223425000000	-6.533083000000 -7.131263000000	-2.733881000000 -3.561287000000	
	4.223425000000 5.061361000000	-6.533083000000 -7.131263000000 -7.235886000000	-2.733881000000 -3.561287000000 -2.025345000000	
н	4.223425000000 5.061361000000 5.400638000000	-6.533083000000 -7.131263000000 -7.235886000000 -5.886584000000	-2.733881000000 -3.561287000000 -2.025345000000 -3.130606000000	
H C	4.223425000000 5.061361000000 5.400638000000 -1.572122000000	-6.533083000000 -7.131263000000 -7.235886000000 -5.886584000000 -1.663106000000	-2.733881000000 -3.561287000000 -2.025345000000 -3.130606000000 0.244656000000	
н С Н	4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000	-6.53308300000 -7.13126300000 -7.23588600000 -5.88658400000 -1.66310600000 -2.20282900000	-2.733881000000 -3.561287000000 -2.025345000000 -3.130606000000 0.244656000000 -0.708756000000	
H C H H	4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000 -1.063468000000	-6.53308300000 -7.13126300000 -7.235886000000 -5.886584000000 -1.663106000000 -2.202829000000 -2.315059000000	-2.73388100000 -3.56128700000 -2.02534500000 -3.13060600000 0.244656000000 -0.70875600000 0.96480300000	
H C H H C	4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000 -1.063468000000 -3.260968000000	-6.53308300000 -7.13126300000 -7.23588600000 -5.88658400000 -1.66310600000 -2.20282900000 -2.31505900000 -1.20498900000	-2.73388100000 -3.561287000000 -2.025345000000 -3.130606000000 0.244656000000 -0.708756000000 0.964803000000 2.051465000000	
H C H H C H	4.013307000000 4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000 -1.063468000000 -3.260968000000 -2.511016000000	-6.53308300000 -7.13126300000 -7.23588600000 -5.88658400000 -1.66310600000 -2.20282900000 -2.31505900000 -1.20498900000 -1.487597000000	-2.73388100000 -3.56128700000 -2.02534500000 -3.13060600000 0.24465600000 -0.70875600000 0.96480300000 2.05146500000 2.786579000000	
H C H C H C	4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000 -1.063468000000 -3.260968000000 -2.511016000000 -3.907459000000	-6.53308300000 -7.13126300000 -7.23588600000 -5.88658400000 -1.66310600000 -2.20282900000 -2.31505900000 -1.20498900000 -1.48759700000 -0.89082900000	-2.73388100000 -3.56128700000 -2.02534500000 -3.13060600000 0.24465600000 -0.70875600000 0.96480300000 2.05146500000 2.78657900000 -0.25126400000	
H C H C H C H C H	4.223425000000 5.061361000000 5.400638000000 -1.572122000000 -1.562776000000 -1.063468000000 -3.260968000000 -2.511016000000 -3.907459000000	-6.53308300000 -7.13126300000 -7.23588600000 -5.88658400000 -1.66310600000 -2.20282900000 -2.31505900000 -1.20498900000 -1.48759700000 -0.89082900000 -0.928225000000	-2.73388100000 -3.56128700000 -2.02534500000 -3.13060600000 0.24465600000 -0.70875600000 0.96480300000 2.05146500000 2.78657900000 -0.25126400000 -1.31302600000	

Н	-5.915888000000	-0.220026000000	-0.580583000000	
C	0.664267000000	-4.874227000000	0.062822000000	
н	0.808236000000	-4.081180000000	0.800432000000	
н	0.555293000000	-5.819461000000	0.599768000000	
Н	-0.277879000000	-4.668146000000	-0.456962000000	
C	-5.489089000000	-0.450738000000	1.518915000000	
н	-6.478483000000	-0.140181000000	1.841426000000	
C	-4.530842000000	-0.809975000000	2.464287000000	
Н	-4.774597000000	-0.782472000000	3.522575000000	
	First t	riplet excited state (T ₁)	
S	-0.551675000000	-0.204151000000	-0.077519000000	
N	2.376837000000	-3.999457000000	-1.579100000000	
N	1.002121000000	-2.210553000000	-0.905653000000	
N	3.432769000000	-4.412558000000	-2.333238000000	
N	1.698876000000	0.117625000000	-1.327574000000	
C	2.069845000000	-2.655273000000	-1.567110000000	
C	3.554815000000	-5.712712000000	-2.091720000000	
C	0.830915000000	-0.916431000000	-0.834759000000	
C	2.568481000000	-6.146120000000	-1.177776000000	
Н	2.426173000000	-7.143354000000	-0.789974000000	
C	1.820135000000	-5.034592000000	-0.854603000000	
C	-2.936489000000	-1.257032000000	0.698524000000	
C	2.959659000000	-1.698349000000	-2.270063000000	
Н	3.772439000000	-2.055934000000	-2.884380000000	
C	2.701756000000	-0.349524000000	-2.073066000000	
Н	3.353271000000	0.396238000000	-2.524565000000	
C	4.621760000000	-6.517008000000	-2.75043000000	
Н	4.225524000000	-7.127322000000	-3.565761000000	
Н	5.086376000000	-7.209779000000	-2.042828000000	
Н	5.394713000000	-5.864373000000	-3.163684000000	
C	-1.568468000000	-1.678886000000	0.250286000000	
Н	-1.601551000000	-2.260809000000	-0.675726000000	
Н	-1.061461000000	-2.285941000000	1.005440000000	
C	-3.250014000000	-1.185163000000	2.057648000000	
Н	-2.491314000000	-1.447139000000	2.791477000000	
C	-3.913069000000	-0.916609000000	-0.241947000000	
Н	-3.678202000000	-0.964986000000	-1.303839000000	
C	-5.178960000000	-0.516067000000	0.171497000000	
Н	-5.925207000000	-0.256293000000	-0.571440000000	
С	0.675239000000	-4.909736000000	0.086184000000	
н	0.822204000000	-4.098691000000	0.803264000000	
н	0.572075000000	-5.844969000000	0.640010000000	
н	-0.268552000000	-4.707460000000	-0.431522000000	
C	-5.485783000000	-0.449863000000	1.529887000000	
Н	-6.474533000000	-0.136877000000	1.853138000000	
С	-4.519063000000	-0.787848000000	2.473407000000	
Н	-4.754832000000	-0.740245000000	3.533133000000	

Table S4. Optimized geometries of the $[Cu_2(L^H)_2I_2]$ complex in Cartesian (XYZ) coordinates as calculated in Gaussian at the PBE0/Stuttgart RSC 1997/6-31+g(d) level of theory (ground state geometries - QM/MM model, triplet excited state geometries - gas phase).

Ground state (S ₀), phase I				
C	-1.029897000000	5.241355000000	-0.391037000000	
C	-2.268443000000	4.733307000000	-0.684657000000	
н	-3.195395000000	5.286834000000	-0.659632000000	
C	-2.084273000000	3.358814000000	-0.979817000000	
C	1.227057000000	4.106494000000	-0.34920600000	
C	2.044817000000	5.237767000000	-0.305724000000	
Н	1.657334000000	6.230108000000	-0.459274000000	
C	3.392726000000	5.009467000000	-0.085146000000	
Н	4.091367000000	5.842445000000	-0.024504000000	
C	3.057608000000	2.779487000000	-0.062444000000	
C	5.413607000000	1.420487000000	0.355732000000	
Н	5.817087000000	2.031623000000	-0.456016000000	
Н	5.535048000000	1.973131000000	1.291436000000	
C	6.057331000000	0.065826000000	0.414494000000	
C	6.383152000000	-0.608200000000	-0.764754000000	
н	6.199279000000	-0.126814000000	-1.722715000000	
C	6.944186000000	-1.879597000000	-0.714587000000	
н	7.228128000000	-2.377932000000	-1.632841000000	
C	7.164918000000	-2.504728000000	0.509915000000	
Н	7.596279000000	-3.500850000000	0.538415000000	
C	6.841421000000	-1.841514000000	1.691271000000	
Н	7.018710000000	-2.319434000000	2.650958000000	
C	6.292297000000	-0.562896000000	1.638948000000	
Н	6.037395000000	-0.039669000000	2.55513000000	
C	-0.690985000000	6.626350000000	0.039553000000	
Н	-0.040591000000	6.637345000000	0.919762000000	
Н	-1.619030000000	7.140111000000	0.302901000000	
Н	-0.210069000000	7.210852000000	-0.754071000000	
C	-3.088104000000	2.343414000000	-1.389641000000	
Н	-3.538991000000	2.612792000000	-2.351971000000	
Н	-3.896603000000	2.268025000000	-0.65468000000	
Н	-2.611797000000	1.365060000000	-1.491921000000	
Cu	0.268600000000	1.263284000000	-0.397202000000	
1	0.548116000000	-0.699036000000	-2.06802900000	
N	-0.154662000000	4.181790000000	-0.519734000000	
N	-0.808864000000	3.040491000000	-0.862225000000	
N	1.731191000000	2.878966000000	-0.246985000000	
N	3.918457000000	3.792453000000	0.049462000000	
S	3.636518000000	1.140199000000	0.046533000000	
C	1.030250000000	-5.241376000000	0.390968000000	
C	2.268808000000	-4.733367000000	0.68458600000	
Н	3.195736000000	-5.286916000000	0.659471000000	
C	2.084682000000	-3.358889000000	0.979835000000	
C	-1.226669000000	-4.106417000000	0.349188000000	
C	-2.044496000000	-5.237644000000	0.305615000000	
Н	-1.657099000000	-6.230052000000	0.458978000000	
C	-3.392409000000	-5.009223000000	0.085194000000	
Н	-4.091116000000	-5.842146000000	0.024586000000	

C	-3.057147000000	-2,779263000000	0.062599000000	
C	-5.413120000000	-1.420281000000	-0.355328000000	
с Н	-5.816489000000	-2.031261000000	0.456590000000	
н	-5 534659000000	-1 973122000000	-1 290904000000	
C C	-6.056957000000	-0.065676000000	-0 414290000000	
	-6 383017000000	0.608415000000	0.764858000000	
н	-6 19911600000	0.127177000000	1 722888000000	
	-6 944340000000	1 879682000000	0.71/1508000000	
	-7.228478000000	2 278045000000	1 622688000000	
	-7.165152000000	2.578045000000	-0 510082000000	
	7.103133000000	2.504012000000	0.510083000000	
	-7.390739000000 6 941209000000	1 94124000000	1 601225000000	
L L	7 019759000000	2 210007000000	2 65100100000	
	-7.01073000000 6 201071000000	2.313037000000	1 62882000000	
	-0.2919/1000000	0.302838000000	-1.03882900000	
н	-6.036920000000	0.039572000000	-2.554935000000	
L L	0.691287000000	-6.626348000000	-0.039655000000	
н	0.040857000000	-6.63/316000000	-0.919838000000	
н	1.619310000000	-7.14012000000	-0.303060000000	
H	0.210394000000	-7.210855000000	0.753985000000	
С	3.088575000000	-2.343565000000	1.389694000000	
H	3.539380000000	-2.612958000000	2.352061000000	
H	3.897133000000	-2.268285000000	0.654789000000	
Н	2.612362000000	-1.365161000000	1.491920000000	
Cu	-0.268138000000	-1.263362000000	0.397311000000	
I	-0.547867000000	0.698939000000	2.068081000000	
N	0.155052000000	-4.181792000000	0.519712000000	
N	0.809271000000	-3.040536000000	0.862286000000	
N	-1.730734000000	-2.878849000000	0.247110000000	
N	-3.918073000000	-3.792167000000	-0.049275000000	
S	-3.635988000000	-1.139947000000	-0.046398000000	
	Grou	nd state (S ₀), phase	I	
I	1.096946000000	-0.723552000000	1.861605000000	
Cu	0.477340000000	-1.032120000000	-0.662039000000	
Ν	0.921188000000	-3.462416000000	-2.299177000000	
N	0.010402000000	-2.947664000000	-1.430436000000	
N	2.198559000000	-1.593304000000	-1.875547000000	
N	4.450034000000	-1.339002000000	-2.611430000000	
С	-1.084735000000	-3.674203000000	-1.56250000000	
С	2.153461000000	-2.813673000000	-2.403086000000	
С	3.268417000000	-3.380470000000	-3.026330000000	
Н	3.266899000000	-4.382728000000	-3.418957000000	
С	0.391682000000	-4.516094000000	-3.014014000000	
С	-0.890704000000	-4.666099000000	-2.552163000000	
Н	-1.609240000000	-5.391090000000	-2.905034000000	
С	-2.296737000000	-3.393630000000	-0.748862000000	
н	-2.084692000000	-3.53361000000	0.317123000000	
н	-3.120115000000	-4.053979000000	-1.033247000000	
н	-2.615423000000	-2.355768000000	-0.892450000000	
C	4.400629000000	-2.582572000000	-3.085873000000	
н	5.316447000000	-2.959247000000	-3.538274000000	
r r	5.88644500000	3.301173000000	-0.549350000000	
н	5.52467900000	4.006727000000	-1.293341000000	
r C	5.58870400000	1,945434000000	-0.69066800000	
r c	1.062651000000	-5.29082600000	-4.092631000000	
U U				

Н	1.530531000000	-4.648290000000	-4.84633600000	
Н	0.304972000000	-5.899514000000	-4.592565000000	
Н	1.820131000000	-5.97881000000	-3.700840000000	
С	6.653374000000	3.752489000000	0.523433000000	
Н	6.903885000000	4.804734000000	0.613327000000	
С	3.335053000000	-0.895849000000	-2.032496000000	
С	6.798804000000	1.498766000000	1.359649000000	
н	7.138159000000	0.792852000000	2.111197000000	
С	6.031715000000	1.051698000000	0.290460000000	
H	5.771596000000	-0.000378000000	0.209015000000	
С	7.127917000000	2.849906000000	1.466996000000	
H	7.760216000000	3.203517000000	2.273068000000	
S	3.202233000000	0.739984000000	-1.438272000000	
C	4.815580000000	1.462925000000	-1.885067000000	
H	5.355399000000	0.687190000000	-2.436661000000	
Н	4.611920000000	2.288316000000	-2.572653000000	
	-1.096739000000	0.723876000000	-1.861704000000	
Cu	-0.477194000000	1.032443000000	0.661868000000	
N	-0.921115000000	3.462646000000	2.299068000000	
N	-0.010410000000	2.948090000000	1.430111000000	
N	-2.198492000000	1.593497000000	1.875543000000	
N	-4 449839000000	1.339178000000	2,611794000000	
C	1.084834000000	3,674439000000	1.562471000000	
C	-2.153359000000	2.813892000000	2,403001000000	
C	-3.268298000000	3,380769000000	3.026191000000	
е Н	-3 266752000000	4 383137000000	3 418524000000	
C C	-0 391497000000	4 516027000000	3 014239000000	
C C	0.890960000000	4 665959000000	2 552532000000	
с Н	1 6095900000000	5 39076000000	2 905599000000	
C I	2 296828000000	3 393947000000	0 748805000000	
н	2.230020000000	3 533022000000	-0 317228000000	
н	3 119916000000	4 054903000000	1 032601000000	
н	2 616085000000	2 356341000000	0.893059000000	
C III	-4 400444000000	2 582819000000	3 086065000000	
с Н	-5 316223000000	2 959493000000	3 538544000000	
C C	-5 88640400000	-3 301028000000	0 549208000000	
ч	-5 524538000000	-4 006628000000	1 293107000000	
C C	-5 588826000000	-1 945268000000	0.690625000000	
C C	-1 062387000000	5 290521000000	4 093071000000	
Е	-1 530469000000	4 647821000000	4 846513000000	
н	-0 304608000000	5 898892000000	4 593233000000	
н	-1 819706000000	5 97881000000	3 701494000000	
C C	-6 653292000000	-3 752334000000	-0 523617000000	
с Н	-6 903661000000	-4 804597000000	-0 613623000000	
C I	-3 335008000000	0.896071000000	2 032527000000	
C C	-6 799053000000	-1 498559000000	-1 359625000000	
ч	-7 13856100000	-0 79259000000	-2 111047000000	
Г С	-6.031977000000	-1.051515000000	-0.29042500000	
н	-5.77197200000	0.000582000000	-0.20889600000	
n C	-7.12800200000	-2.849733000000	-1.467081000000	
н	-7,76025900000	-3,20336000000	-2,273182000000	
c	-3 20242600000	-0 739685000000	1 438031000000	
5 (-4.81574900000	-1.462623000000	1.885017000000	
сц	-5 35557300000		2 43646800000	
	5.55577500000	5.0000000000000000000000000000000000000	2.73070000000	

Н	-4.61213000000	-2.287892000000	2.572762000000	
	First triple	et excited state (T ₁),	ohase I	
С	4.077727764010	-2.726184775537	-2.302947584095	
С	3.619861896033	-3.636530704204	-1.370081041192	
Н	4.031286750588	-4.619667217767	-1.185496073790	
C	2.535163626343	-3.038462562669	-0.710545437865	
С	3.243275436249	-0.399664550609	-2.844788520923	
С	4.074101285864	-0.068963979851	-3.920344089447	
Н	4.792046315037	-0.757995719304	-4.337944992842	
С	3.934096062038	1.196713663075	-4.452508459349	
Н	4.545815489610	1.517034552801	-5.292049990549	
C	2.297589569197	1.698809382631	-2.971090811013	
C	1.385166037733	4.274552521805	-3.357892857669	
Н	2.432622945222	4.573926062423	-3.268776567255	
Н	1.206643885823	3.984003731494	-4.396014348221	
C	0.453546152818	5.369615045423	-2.919639409811	
C	0.797568726423	6.213146917046	-1.857824346608	
Н	1.747465373265	6.068532458838	-1.346821478554	
C	-0.062266274958	7.230550292784	-1.451210501721	
Н	0.221598428836	7.880495632702	-0.627204974247	
C	-1.281254237193	7.418059276701	-2.102800212315	
Н	-1.950193240858	8.216381577985	-1.790813324499	
С	-1.634933746306	6.580804611441	-3.160006856068	
Н	-2.581941836800	6.721801084798	-3.675237098910	
C	-0.773279342525	5.561835294388	-3.562246114349	
Н	-1.053257526239	4.907746073268	-4.385652412090	
C	5.226443939329	-2.882846699958	-3.235091212667	
Н	4.919596293953	-2.891722886295	-4.288411176529	
Н	5.705336522417	-3.843640027125	-3.027367620796	
Н	5.984230660078	-2.100971111153	-3.103805549296	
C	1.682746016734	-3.578309067488	0.378021005859	
H	2.028137631151	-4.568036959947	0.687889682344	
Н	0.641745717278	-3.663897269681	0.048536550301	
Н	1.697228772523	-2.913309767275	1.248136721543	
Cu	1.104580268576	-0.259264051487	-0.862888767925	
I	1.427889649774	0.713492896933	1.603326158560	
N	3.262006569871	-1.621839572786	-2.184625630886	
N	2.329767715853	-1.821238746147	-1.211592439241	
N	2.327167809819	0.492459478054	-2.372751487305	
N	3.049356533607	2.104535051132	-3.9/95210/6310	
S	1.121192835790	2.80943/42/483	-2.295864985835	
C	-4.0///2//64010	2./26184//553/	2.302947584095	
C	-3.619861896033	3.636530704204	1.3/0081041192	
Н	-4.031286750588	4.61966/21//6/	1.185496073790	
C	-2.535163626343	3.038462562669	0./1054543/865	
	-3.243275436249	0.399664550609	2.844788520923	
	-4.0/4101285864	0.0089639/9851	3.92034408944/	
	-4./9204031503/	0./5/995/19304	4.33/944992842	
	-3.334030002038	-1.130/130030/5	4.432308433349 5 2020/00005/0	
H C	-4.J4J01J409010 _7 707500560107	-1.31/034332801	J.ZJZU4JJJUJ49 2 071000011012	
	-2.23/30330313/	-1.030003382031	2.371030011013	
	-1.30310003/133	-4.274032321003	3.337632637009	
	-2.432022343222 _1 206612005023	-4.3/3720002423	J.200770J07233	
П	-1.200043003023	-3.304003731494	4.330014346221	

С	-0.453546152818	-5.369615045423	2.919639409811	
C	-0.797568726423	-6.213146917046	1.857824346608	
Н	-1.747465373265	-6.068532458838	1.346821478554	
С	0.062266274958	-7.230550292784	1.451210501721	
Н	-0.221598428836	-7.880495632702	0.627204974247	
С	1.281254237193	-7.418059276701	2.102800212315	
Н	1.950193240858	-8.216381577985	1.790813324499	
С	1.634933746306	-6.580804611441	3.160006856068	
Н	2.581941836800	-6.721801084798	3.675237098910	
С	0.773279342525	-5.561835294388	3.562246114349	
Н	1.053257526239	-4.907746073268	4.385652412090	
С	-5.226443939329	2.882846699958	3.235091212667	
Н	-4.919596293953	2.891722886295	4.288411176529	
Н	-5.705336522417	3.843640027125	3.027367620796	
Н	-5.984230660078	2.100971111153	3.103805549296	
С	-1.682746016734	3.578309067488	-0.378021005859	
H	-2.028137631151	4.568036959947	-0.687889682344	
Н	-0.641745717278	3.663897269681	-0.048536550301	
H	-1.697228772523	2.913309767275	-1.248136721543	
Cu	-1.104580268576	0.259264051487	0.862888767925	
	-1 427889649774	-0 713492896933	-1 603326158560	
N	-3 262006569871	1 621839572786	2 184625630886	
N	-2 329767715853	1 821238746147	1 211592439241	
N	-2 327167809819	-0 492459478054	2 372751487305	
N	-3 049356533607	-2 104535051132	3 979521076310	
S	-1 121192835790	-2 809/37/27/83	2 295864985835	
5	Eirst triplo	$\frac{2.000437427403}{100}$	base II	
<u>с</u>			2 1/202000000	
C	2 780244000000	2.703289000000	1 024045000000	
	3.780244000000	-3.461102000000	-1.024945000000	
П	4.245276000000	-4.45014000000	-0.813874000000	
L C	2.850550000000	-2.793884000000	-0.218/15000000	
C	3.079160000000	-0.419260000000	-2./34683000000	
U	3.716008000000	-0.183123000000	-3.955055000000	
H	4.330898000000	-0.920479000000	-4.44/9/9000000	
C U	3.523485000000	1.058/9100000	-4.530/12000000	
H	3.983/90000000	1.3066/6000000	-5.483595000000	
C	2.196519000000	1./1182/000000	-2.8166/000000	
C	1.344277000000	4.308972000000	-3.169859000000	
H	2.394350000000	4.61108/000000	-3.222424000000	
Н	1.049783000000	3.956237000000	-4.16081/000000	
C	0.463244000000	5.432987000000	-2.700465000000	
С	0.785641000000	6.168027000000	-1.553534000000	
Н	1.682204000000	5.915905000000	-0.990569000000	
C	-0.032212000000	7.210946000000	-1.125878000000	
H	0.232122000000	7.771880000000	-0.232906000000	
C	-1.184037000000	7.537401000000	-1.842224000000	
Н	-1.819523000000	8.355113000000	-1.511372000000	
C	-1.513129000000	6.812265000000	-2.985863000000	
Н	-2.407345000000	7.061385000000	-3.552121000000	
C	-0.696063000000	5.764602000000	-3.407615000000	
Н	-0.959222000000	5.197097000000	-4.298029000000	
C	4.901609000000	-2.990651000000	-3.288505000000	
Н	4.363454000000	-3.065987000000	-4.241282000000	
Н	5.385378000000	-3.954433000000	-3.108225000000	

F	4	5.692979000000	-2.239110000000	-3.398495000000
(С	2.295809000000	-3.192281000000	1.097968000000
F	Н	3.094263000000	-3.535937000000	1.764578000000
F	H	1.582990000000	-4.017436000000	0.988462000000
F	H	1.779733000000	-2.354606000000	1.573309000000
C	Cu	1.158596000000	-0.167954000000	-0.587223000000
I	I	1.167633000000	1.009411000000	1.752841000000
Ν	N	3.207554000000	-1.584579000000	-1.986141000000
Ν	N	2.515064000000	-1.652772000000	-0.813456000000
Ν	N	2.274160000000	0.528493000000	-2.175953000000
Ν	N	2.778914000000	2.032260000000	-3.95720900000
S	S	1.216269000000	2.913190000000	-1.995258000000
(С	-3.996394000000	2.703289000000	2.14393000000
(С	-3.780244000000	3.481162000000	1.024945000000
F	H	-4.243276000000	4.436140000000	0.815874000000
(С	-2.856556000000	2.793884000000	0.218715000000
(2	-3.079160000000	0.419260000000	2.73468300000
(2	-3.716008000000	0.183123000000	3 955055000000
F	Ч Ч	-4.330898000000	0.920479000000	4 447979000000
(- -	-3 523485000000	-1 058791000000	4 530712000000
F	4	-3 983790000000	-1 30667600000	5 483595000000
, (~	-2 196519000000	-1 711827000000	2 81667000000
(~	-1 344277000000	-4 308972000000	3 169859000000
	-	-2 39435000000	-4 611087000000	3 222424000000
	-	-1 0/9783000000	-3 956237000000	4 160817000000
ſ	~	-0.463244000000	-5 /132987000000	2 70046500000
	~	-0.403244000000	-5.452587000000	1 55252400000
	- -	1 692204000000	-0.108027000000	0.00056000000
r (1 ~	-1.082204000000	7 21004600000	1 125 97900000
		0.052212000000	7.21094000000	0.22200600000
Г	ר ר	1 18402700000	7.77100000000	1 842224000000
(1.164057000000	-7.557401000000	1.642224000000
F		1.819523000000	-8.355113000000	1.511372000000
(-	1.513129000000	-0.812265000000	2.98586300000
F		2.40/345000000	-7.061385000000	3.55212100000
(-	0.696063000000	-5.764602000000	3.407615000000
F	7	0.959222000000	-5.19/09/000000	4.29802900000
(-4.901609000000	2.990651000000	3.288505000000
F	-	-4.363454000000	3.065987000000	4.24128200000
F	-	-5.385378000000	3.954433000000	3.108225000000
F	-	-5.692979000000	2.239110000000	3.39849500000
(-	-2.295809000000	3.192281000000	-1.097968000000
F	-	-3.094263000000	3.53593/000000	-1.764578000000
F	-	-1.582990000000	4.01/436000000	-0.98846200000
F	4	-1.//9/33000000	2.354606000000	-1.5/330900000
C	u	-1.158596000000	0.16/954000000	0.587223000000
I	·	-1.167633000000	-1.009411000000	-1./52841000000
Ν	N	-3.207554000000	1.584579000000	1.986141000000
Ν	N	-2.515064000000	1.652772000000	0.813456000000
Ν	N	-2.274160000000	-0.528493000000	2.175953000000
Ν	N	-2.778914000000	-2.032260000000	3.95720900000
S	5	-1.216269000000	-2.913190000000	1.995258000000

Table S5. Optimized geometries of the $[Cu_2(L^{Me})_2I_2]$ complex in Cartesian (XYZ) coordinates as calculated in Gaussian at the PBE0/Stuttgart RSC 1997/6-31+g(d) level of theory (ground state geometry - QM/MM model, triplet excited state geometry - gas phase).

		Ground state (S ₀)	
I	-0.060875000000	-0.041243000000	-2.267886000000
Cu	0.854369000000	1.032557000000	-0.049417000000
S	3.548496000000	-0.986252000000	-0.141185000000
N	2.173707000000	3.709826000000	-0.028659000000
N	2.985423000000	1.551360000000	-0.095953000000
N	5.308895000000	1.017547000000	-0.143377000000
N	0.946103000000	3.140277000000	-0.177213000000
C	4.018744000000	0.695770000000	-0.130984000000
C	4.603816000000	3.293566000000	-0.006766000000
Н	4.864167000000	4.336285000000	0.062984000000
C	3.278919000000	2.848751000000	-0.037608000000
C	4.933067000000	-4.003833000000	1.086650000000
Н	5.046804000000	-3.472717000000	2.027378000000
C	5.597930000000	2.322931000000	-0.079011000000
C	4.985074000000	-3.285038000000	-0.110392000000
C	3.182459000000	6.074202000000	0.126235000000
Н	3.854235000000	5.859101000000	0.958572000000
Н	2.747029000000	7.059617000000	0.308758000000
Н	3.778887000000	6.138619000000	-0.790845000000
C	0.738837000000	5.37003000000	-0.122324000000
Н	0.293216000000	6.355158000000	-0.129424000000
C	2.073775000000	5.088939000000	0.00900000000
C	4.614911000000	-6.064635000000	-0.128914000000
Н	4.461846000000	-7.138856000000	-0.137558000000
C	0.074252000000	4.126523000000	-0.250745000000
C	4.83850400000	-3.977212000000	-1.315694000000
Н	4.848452000000	-3.426925000000	-2.250875000000
C	5.184926000000	-1.795725000000	-0.101651000000
Н	5.758634000000	-1.462234000000	-0.969973000000
Н	5.714080000000	-1.469283000000	0.79784000000
C	4.748655000000	-5.384758000000	1.079731000000
Н	4.718532000000	-5.932516000000	2.017176000000
C	7.052977000000	2.675135000000	-0.080724000000
Н	7.509927000000	2.370537000000	0.865791000000
Н	7.224019000000	3.74507600000	-0.222451000000
Н	7.567169000000	2.118015000000	-0.868828000000
С	4.664265000000	-5.35/90100000	-1.32870600000
Н	4.566343000000	-5.88016900000	-2.276863000000
C	-1.3/0848000000	3.862686000000	-0.462435000000
н	-1.509949000000	2.859116000000	-0.872650000000
н	-1.796935000000	4.593226000000	-1.15/13900000
H .	-1.930/35000000	3.935680000000	0.476976000000
	0.060/15000000	0.041270000000	
Cu	-0.854115000000	-1.032826000000	0.049532000000
S	-3.54841000000	0.98012/000000	0.14120100000
N	-2.1/3050000000	-3.709939000000	
		-1.331483000000	0.095950000000
		-1.01/0/000000	0.143360000000
IN IN	0.0400000000000000000000000000000000000	J.1404//000000	0.11/20000000

C	-4.018654000000	-0.695881000000	0.130926000000	
C	-4.603736000000	-3.293705000000	0.006802000000	
Н	-4.864088000000	-4.336417000000	-0.063014000000	
C	-3.27884000000	-2.848867000000	0.037641000000	
C	-4.933383000000	4.004111000000	-1.086397000000	
Н	-5.047448000000	3.473349000000	-2.027286000000	
C	-5.597844000000	-2.323062000000	0.079088000000	
C	-4.984961000000	3.284928000000	0.110393000000	
C	-3.182572000000	-6.074307000000	-0.125750000000	
Н	-3.854420000000	-5.859381000000	-0.958084000000	
Н	-2.747175000000	-7.059774000000	-0.308064000000	
Н	-3.778945000000	-6.138482000000	0.791376000000	
С	-0.738921000000	-5.370249000000	0.122567000000	
Н	-0.293324000000	-6.355385000000	0.129797000000	
C	-2.073836000000	-5.089076000000	-0.008772000000	
C	-4.614939000000	6.064552000000	0.129697000000	
Н	-4.462045000000	7.138781000000	0.138690000000	
С	-0.074243000000	-4.126762000000	0.250842000000	
C	-4.837990000000	3.976740000000	1.315894000000	
Н	-4.847551000000	3.426131000000	2.250862000000	
С	-5.184830000000	1.795618000000	0.101345000000	
Н	-5.758849000000	1.461956000000	0.969394000000	
Н	-5.713648000000	1.469369000000	-0.798435000000	
С	-4.74897800000	5.385060000000	-1.079109000000	
Н	-4.719141000000	5.933040000000	-2.016443000000	
С	-7.052898000000	-2.675247000000	0.080979000000	
Н	-7.509864000000	-2.371153000000	-0.865682000000	
Н	-7.223975000000	-3.745111000000	0.223253000000	
н	-7.567063000000	-2.117716000000	0.868805000000	
 C	-4 663886000000	5 357420000000	1 329300000000	
н	-4.565756000000	5.879409000000	2,277590000000	
C	1.370868000000	-3.863055000000	0.462580000000	
ч	1 510049000000	-2 859555000000	0.872955000000	
н	1 796883000000	-4 593734000000	1 157183000000	
н	1 930760000000	-3 935939000000	-0 476835000000	
	First t	rinlet excited state (1		
I	1 696227000000		0 101773000000	
L Cu	0.860512000000	-1.434782000000 0.932731000000	-0 65129200000	
cu	2 03/0000000	2 408255000000	2 16754000000	
J N	2.034999000000	2.408333000000	2.107340000000	
N	2.208085000000	2.337317000000	-2.745410000000	
N	2.223710000000	A 032444000000	0.455032000000	
N	1 221 22000000	1 220592000000	2 5659200000	
N	2.706022000000	1.559565000000	-2.505664000000	
	2.700983000000	3.002220000000	0.084084000000	
	3.075122000000	3.991713000000		
П	4.088099000000	4.380451000000	-2.54489100000	
	2.720734000000	2.90/251000000	-1.011/59000000	
L L		3.383045000000	5.410393000000	
H	0.8538/5000000	4.381015000000	4.894807000000	
C	4.092/1000000	4.502085000000	-0.411194000000	
C	2.477020000000	2.9/064/000000	4./8/6/600000	
С	3.307689000000	3.600/36000000	-4./01238000000	
H	3.028463000000	4.621660000000	-4.413493000000	
H	3.216995000000	3.529753000000	-5.788669000000	

Н	4.364936000000	3.449327000000	-4.450250000000	
C	1.633398000000	1.646584000000	-4.754463000000	
Н	1.552636000000	1.530864000000	-5.826895000000	
C	2.419884000000	2.572351000000	-4.094832000000	
C	1.647182000000	2.156925000000	7.341928000000	
Н	1.330023000000	1.846432000000	8.334474000000	
C	0.965906000000	0.899965000000	-3.772304000000	
C	3.144028000000	1.940619000000	5.458819000000	
Н	3.990851000000	1.452055000000	4.980830000000	
C	2.920266000000	3.404970000000	3.418708000000	
Н	3.993750000000	3.258451000000	3.275603000000	
Н	2.698354000000	4.459545000000	3.237370000000	
C	0.972179000000	3.181476000000	6.679153000000	
Н	0.124535000000	3.671760000000	7.151607000000	
C	5.107640000000	5.593831000000	-0.307613000000	
Н	4.684845000000	6.455466000000	0.223637000000	
Н	5.455640000000	5.922842000000	-1.291326000000	
Н	5.971743000000	5.254296000000	0.276818000000	
C	2.734659000000	1.536541000000	6.727693000000	
Н	3.267616000000	0.738099000000	7.238137000000	
C	-0.001512000000	-0.214771000000	-3.927455000000	
Н	0.357656000000	-1.113164000000	-3.413997000000	
Н	-0.155098000000	-0.453924000000	-4.983016000000	
Н	-0.968679000000	0.048239000000	-3.485247000000	
I	-1.696227000000	1.494782000000	-0.101773000000	
Cu	-0.860512000000	-0.932731000000	0.651292000000	
S	-2.034999000000	-2.408355000000	-2.167540000000	
Ν	-2.208683000000	-2.357517000000	2.749416000000	
Ν	-2.229716000000	-2.489033000000	0.435058000000	
N	-3.598418000000	-4.032444000000	-0.765032000000	
N	-1.321820000000	-1.339583000000	2.565884000000	
C	-2.706983000000	-3.062226000000	-0.684084000000	
C	-3.675122000000	-3.991713000000	1.626665000000	
Н	-4.088099000000	-4.380451000000	2.544891000000	
C	-2.720734000000	-2.967251000000	1.611759000000	
C	-1.384648000000	-3.583045000000	-5.410393000000	
Н	-0.853875000000	-4.381015000000	-4.894807000000	
C	-4.092710000000	-4.502085000000	0.411194000000	
C	-2.477020000000	-2.970647000000	-4.787676000000	
C	-3.307689000000	-3.600736000000	4.701238000000	
Н	-3.028463000000	-4.621660000000	4.413493000000	
Н	-3.216995000000	-3.529753000000	5.788669000000	
Н	-4.364936000000	-3.449327000000	4.450250000000	
C	-1.633398000000	-1.646584000000	4.754463000000	
Н	-1.552636000000	-1.530864000000	5.826895000000	
C	-2.419884000000	-2.572351000000	4.094832000000	
C	-1.647182000000	-2.156925000000	-7.341928000000	
H	-1.330023000000	-1.846432000000	-8.334474000000	
C	-0.965906000000	-0.899965000000	3.//2304000000	
C	-3.144028000000	-1.940619000000	-5.458819000000	
H	-3.990851000000	-1.452055000000	-4.980830000000	
C	-2.920266000000	-3.40497000000	-3.418708000000	
H	-3.993/50000000	-3.258451000000	-3.2/5603000000	
Н	-2.698354000000	-4.459545000000	-3.23/370000000	

С	-0.972179000000	-3.181476000000	-6.679153000000	
Н	-0.124535000000	-3.671760000000	-7.151607000000	
C	-5.107640000000	-5.593831000000	0.307613000000	
Н	-4.684845000000	-6.455466000000	-0.223637000000	
Н	-5.45564000000	-5.922842000000	1.291326000000	
Н	-5.971743000000	-5.254296000000	-0.276818000000	
С	-2.734659000000	-1.536541000000	-6.727693000000	
Н	-3.267616000000	-0.738099000000	-7.238137000000	
С	0.001512000000	0.214771000000	3.927455000000	
Н	-0.357656000000	1.113164000000	3.413997000000	
Н	0.155098000000	0.453924000000	4.983016000000	
Н	0.968679000000	-0.048239000000	3.485247000000	

Table S6. Optimized geometries of the $[Cu_2(L^H)_2Br_2]$ complex in Cartesian (XYZ) coordinates as calculated in Gaussian at the PBE0/Stuttgart RSC 1997/6-31+g(d) level of theory (ground state geometry - QM/MM model, triplet excited state geometry - gas phase).

		Ground state (S ₀)	
Br	-2.494671000000	0.028480000000	2.12310300000
Cu	-1.492296000000	-1.396626000000	0.399247000000
S	-4.252285000000	-3.304774000000	0.487492000000
N	0.607250000000	-3.426983000000	0.054999000000
N	-1.686747000000	-3.538874000000	0.265576000000
N	-2.903432000000	-5.595147000000	0.223033000000
N	0.492846000000	-2.108341000000	0.36459000000
C	-6.820603000000	-3.897868000000	0.863635000000
C	-8.245695000000	-2.876666000000	2.529584000000
Н	-8.448712000000	-2.675115000000	3.575168000000
C	-9.157424000000	-2.505878000000	1.541031000000
н	-10.066885000000	-1.973833000000	1.807613000000
C	-7.077292000000	-3.549085000000	2.192006000000
н	-6.362830000000	-3.820157000000	2.966042000000
C	-8.90191000000	-2.838190000000	0.212314000000
н	-9.603746000000	-2.555645000000	-0.568722000000
C	-0.543933000000	-4.206757000000	0.135836000000
C	-7.745587000000	-3.541173000000	-0.117840000000
н	-7.549144000000	-3.817100000000	-1.148458000000
C	-1.741191000000	-6.242187000000	0.132562000000
н	-1.797860000000	-7.328632000000	0.091742000000
C	1.691888000000	-1.579643000000	0.213437000000
C	1.898449000000	-3.743139000000	-0.317803000000
C	-2.814120000000	-4.267560000000	0.310511000000
C	2.603871000000	-2.573880000000	-0.22033000000
н	3.648366000000	-2.459310000000	-0.459343000000
C	-0.514779000000	-5.601181000000	0.101331000000
Н	0.412759000000	-6.142891000000	0.078031000000
C	-5.541138000000	-4.593755000000	0.503002000000
н	-5.595885000000	-5.071703000000	-0.479158000000
н	-5.263085000000	-5.354188000000	1.237508000000
C	2.401519000000	-5.066412000000	-0.780481000000
н	2.505827000000	-5.790442000000	0.036486000000
н	3.394997000000	-4.922764000000	-1.213989000000
Н	1.759906000000	-5.503415000000	-1.551444000000

C	1.933291000000	-0.144168000000	0.505073000000	
Н	1.018473000000	0.319583000000	0.881952000000	
Н	2.253710000000	0.392712000000	-0.394210000000	
Н	2.721180000000	-0.029356000000	1.256931000000	
Br	-1.804865000000	-0.418609000000	-1.925245000000	
Cu	-2.807640000000	1.006334000000	-0.201415000000	
S	-0.047923000000	2.914297000000	-0.289331000000	
N	-4.907399000000	3.036488000000	0.143181000000	
N	-2.613464000000	3.148419000000	-0.067612000000	
N	-1.396753000000	5.204697000000	-0.025114000000	
N	-4.792899000000	1.717840000000	-0.166367000000	
C	2.520321000000	3.507191000000	-0.665899000000	
C	3.945019000000	2.485978000000	-2.332190000000	
Н	4.147836000000	2.284608000000	-3.377837000000	
C	4.856878000000	2.115012000000	-1.343831000000	
Н	5.766231000000	1.582866000000	-1.610584000000	
C	2.776749000000	3.158498000000	-1.994341000000	
Н	2.062221000000	3.429753000000	-2.768253000000	
C	4.601628000000	2.447243000000	-0.015037000000	
Н	5.303629000000	2.164608000000	0.765821000000	
C	-3.756265000000	3.816345000000	0.062095000000	
C	3.445450000000	3.150327000000	0.315390000000	
Н	3.249232000000	3.426178000000	1.346071000000	
C	-2.558994000000	5.851770000000	0.065047000000	
Н	-2.50232000000	6.938222000000	0.105723000000	
C	-5.991925000000	1.189073000000	-0.015271000000	
C	-6.198637000000	3.352562000000	0.515942000000	
C	-1.486083000000	3.877107000000	-0.112590000000	
C	-6.903976000000	2.183256000000	0.418475000000	
Н	-7.948451000000	2.068494000000	0.657521000000	
C	-3.785427000000	5.210773000000	0.096281000000	
Н	-4.712968000000	5.752496000000	0.119239000000	
C	1.241004000000	4.203214000000	-0.304996000000	
Н	1.295988000000	4.681117000000	0.677162000000	
H	0.962898000000	4.963672000000	-1.039441000000	
C	-6.701667000000	4.67582000000	0.978700000000	
Н	-6.806074000000	5.399857000000	0.161754000000	
Н	-7.69510000000	4.532188000000	1.412315000000	
Н	-6.059953000000	5.112796000000	1.749594000000	
С	-6.233205000000	-0.246410000000	-0.306983000000	
Н	-5.318407000000	-0.709988000000	-0.684128000000	
н	-6.553349000000	-0.783407000000	0.59230600000	
Н	-/.02126/000000	-0.361224000000	-1.0586/3000000	
Du	First t	riplet excited state (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Br	-0.881970000000	0.713520000000	-1.443462000000	
Cu	-1.425642000000	-0.366491000000	0.730142000000	
5	-2.120202000000	-2.333028000000	-1.2/334100000	
IN N	-3.003400000000	0.02930100000	2.202403000000	
IN N	-2.1/2222000000	-1.423033000000	0.303/23000000	
	-4.300/9000000	-3.1/3/02000000	-0.241231000000	
N C	-2.323003000000	-5 00512100000	2.23030000000	
	-1.00333000000	-5.005121000000	-5.004042000000	
	-0.0033339000000	-2.21034000000	-2.230003000000	
Π	-0.921303000000	-4.502265000000	-0.293436000000	

С	0.103724000000	-6.076819000000	-4.760797000000	
Н	0.838368000000	-6.498290000000	-5.442571000000	
С	-1.828191000000	-4.682657000000	-4.364337000000	
Н	-2.596592000000	-4.009839000000	-4.739936000000	
С	0.140963000000	-6.399232000000	-3.404339000000	
Н	0.906514000000	-7.071052000000	-3.023957000000	
С	-4.148376000000	-1.041176000000	1.457139000000	
С	-0.806154000000	-5.865578000000	-2.533555000000	
н	-0.774447000000	-6.117864000000	-1.475381000000	
С	-5.528518000000	-2.779921000000	0.62718000000	
н	-6.453667000000	-3.350180000000	0.610548000000	
С	-2.422559000000	1.484971000000	3.095854000000	
С	-4.540311000000	0.763309000000	3.191584000000	
С	-3.446468000000	-2.482044000000	-0.207384000000	
C	-3.664572000000	1.690894000000	3.721228000000	
H	-3.905124000000	2.436320000000	4.46746400000	
C	-5.365863000000	-1.723480000000	1.505171000000	
H	-6.152796000000	-1.467453000000	2.19834000000	
C	-2.826375000000	-4.433196000000	-2.062238000000	
H	-3.093124000000	-5.143763000000	-1.275433000000	
н	-3.743764000000	-4.151075000000	-2.58448200000	
C	-5.984984000000	0.594209000000	3 504553000000	
н	-6 615798000000	0.652910000000	2 609482000000	
н	-6 287315000000	1 402359000000	4 176185000000	
н	-6 201096000000	-0.352901000000	4 014943000000	
c	-1 147419000000	2 232264000000	3 26589100000	
н	-0 286419000000	1 573709000000	3 11981700000	
н	-1 089327000000	2 680678000000	4 26176400000	
н	-1.069503000000	3 044210000000	2 53228300000	
Br	0.881970000000	-0 713520000000	1 443462000000	
	1 425642000000	0.366/91000000	-0 7301/2000000	
s S	2 126502000000	2 939628000000	1 27354100000	
N	3 809486000000		-2 28240500000	
N	3.173599000000	1 423633000000	-0 583725000000	
N	4 56879600000	3 175702000000	0.241251000000	
N	2 523663000000	-0.478131000000	-2 23058600000	
Ċ	1 803998000000	5 005121000000	3 004042000000	
c c	0.883359000000	5 2163/000000	5.23886300000	
н	0.0000000000000000000000000000000000000	1 962283000000	6 295/138000000	
r C	-0 10372/000000	4.502205000000 6.076819000000	4 760797000000	
н	-0.838368000000	6 498290000000	5 44257100000	
c	1 828191000000	4 682657000000	4 36433700000	
н	2 596592000000	4.002037000000	4.73993600000	
C	-0 140963000000	6 399232000000	3 404339000000	
с н	-0.140505000000	7.071052000000	3.023957000000	
r C	-0.500514000000 // 1/8376000000	1 0/1176000000	-1 45713900000	
c c	4.148370000000 0.806154000000	5 865578000000	2 53355500000	
н	0 774447000000	6 11786400000	1 475381000000	
c	5 52851800000	2 77992100000	-0 62718000000	
с н	6 45366700000	2 35012000000	-0 61054800000	
с С	2.4225507000000 2.422550000000	-1 //8/071000000	-3 09585400000	
c c	A 54031100000	-0 76330000000	-3 19158/00000	
c c	3 44646800000	2 48204400000	0 207384000000	
c c	3 664572000000	-1 69080/00000	-3 72122800000	
L د	5.004572000000	1.050854000000	5.72122000000	

Н	3.905124000000	-2.43632000000	-4.467464000000	
С	5.365863000000	1.723480000000	-1.505171000000	
Н	6.152796000000	1.467453000000	-2.198340000000	
С	2.826375000000	4.433196000000	2.062238000000	
Н	3.093124000000	5.143763000000	1.275433000000	
Н	3.743764000000	4.151075000000	2.584482000000	
С	5.984984000000	-0.594209000000	-3.504553000000	
Н	6.615798000000	-0.652910000000	-2.609482000000	
Н	6.287315000000	-1.402359000000	-4.176185000000	
Н	6.201096000000	0.352901000000	-4.014943000000	
С	1.147419000000	-2.232264000000	-3.265891000000	
Н	0.286419000000	-1.573709000000	-3.119817000000	
Н	1.089327000000	-2.680678000000	-4.261764000000	
Н	1.069503000000	-3.044210000000	-2.532283000000	

References

- [1] N. J. Basha, C. U. Reddy and N. M. Goudgaon, Cyclization of 4-(2-aminoanilino)-2benzylthiopyrimidine to novel 1-(2-benzylthiopyrimidin-4-yl)-2-substituted benzimidazoles, *Heterocycl. Commun.*, 2008, 14, 469-472. <u>https://doi.org/10.1515/HC.2008.14.6.469</u>
- [2] A. V. Erkin, V. I. Krutikov and E. B. Smirnova, Synthesis and Antimicobacterial Activity of 2-Substituted 4-Arylamino-6-methylpyrimidines, *Russ. J. Gen. Chem.*, 2008, **78**, 1944-1948. <u>https://doi.org/10.1134/s1070363208100216</u>
- [3] K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalov and M. B. Bushuev, Halide impact on emission of mononuclear copper(I) complexes with pyrazolylpyrimidine and triphenylphosphine, *Dalton Trans.*, 2014, **43**, 2953-2960. <u>https://doi.org/10.1039/C3DT53040J</u>
- [4] N. A. Shekhovtsov, T. E. Kokina, K. A. Vinogradova, A. Y. Panarin, M. I. Rakhmanova, D. Y. Naumov, N. V. Pervukhina, E. B. Nikolaenkova, V. P. Krivopalov, R. Czerwieniec and M. B. Bushuev, Nearinfrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways, *Dalton Trans.*, 2022, **51**, 2898-2911. <u>https://doi.org/10.1039/D1DT04325K</u>
- [5] K. A. Vinogradova, V. P. Krivopalov, E. B. Nikolaenkova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova and M. B. Bushuev, Copper(II) and copper(I) tetrafluoroborate complexes with 4-(3,5-diphenyl-1*H*-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine (L): Synthesis, structures and luminescence, *Inorg. Chim. Acta*, 2012, **386**, 116-121. <u>https://doi.org/10.1016/j.ica.2012.02.004</u>
- [6] K. A. Vinogradova, V. P. Krivopalov, E. B. Nikolaenkova, N. V. Pervukhina, D. Y. Naumov, M. I. Rakhmanova, E. G. Boguslavsky, L. A. Sheludyakova and M. B. Bushuev, Synthesis and structures of copper(II), copper(I,II) and copper(I) complexes with 4-(3,5-diphenyl-1*H*-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine. Luminescence of copper(I) complexes, *Polyhedron*, 2013, **57**, 1-13. https://doi.org/10.1016/j.poly.2013.04.009
- [7] Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT 8.40a; Publisher: Bruker AXS Inc., Madison, WI, USA, 2017.
- [8] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallogr., Sect. A: Found. Adv.*, 2015, **71**, 3–8. <u>https://doi.org/10.1107/S2053273314026370</u>
- [9] G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3–8, <u>https://doi.org/10.1107/S2053229614024218</u>
- [10] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42, 339–341, <u>https://doi.org/10.1107/S0021889808042726</u>