Supporting Information

In-situ Formed Ag Nanoparticle Decorated LiMn₂O₄ Cathodes with

Outstanding Electrochemical Performance

Wangqiong Xu,*^a Qiling Li,^b Shubiao Xia,^b Zhe Li,^a Feixiang Cheng,^b Shimei Guo,^a

^aCollege of Physics and Electronic Engineering, Qujing Normal University, Qujing, Yunnan 655011,

China

^bYunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry

and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China

* Corresponding authors: xuwangqiong@mail.qjnu.edu.cn (W.Q. Xu)

Fig. S1 (a-d) The particle size distribution of the $LiMn_2O_4$ and Ag-coated $LiMn_2O_4$ samples.

Fig. S2 Nitrogen adsorption/desorption isotherms of the (a) $LiMn_2O_4$ and (b) $5wt\% Ag/LiMn_2O_4$ samples. The pore size of (c) $LiMn_2O_4$ and (d) $5wt\% Ag/LiMn_2O_4$ calculated from adsorption/desorption experiments using the BJH model.

Fig. S3 Electrochemical impedance spectroscopy plots of $LiMn_2O_4$ and $5wt\% Ag/LiMn_2O_4$ after 900 cycles at 5 C, the inset in S2 is the equivalent circuit.

Fig. S4 (a) TEM and (b) HR-TEM images of 5wt% Ag/LiMn₂O₄ at 5 C after 900 cycles.

_	Phase	Atoms	Sites	x	У	Z
	LiMn ₂ O ₄	Li	8a	0.12500(0)	0.12500(0)	0.12500(0)
		Mn	16d	0.50000(0)	0.50000(0)	0.50000(0)
$L_1Mn_2O_4$		0	32e	0.26122(0)	0.26122(0)	0.26122(0)
		Space group	R _p	R _{wp}		CHI ²
		Fd3m	2.37%	3.10%		3.61
	Phase	Atoms	Sites	x	У	Z
		Li	8a	0.12500(0)	0.12500(0)	0.12500(0)
		Mn	16d	0.50000(0)	0.50000(0)	0.50000(0)
2wt% Ag/LiMn ₂ O ₄	LiMn ₂ O ₄	0	32e	0.26122(0)	0.26122(0)	0.26122(0)
		Space group	R _p	R _{wp}		CHI^2
		Fd3m	2.01%	2.59%		3.33
	Phase	Atoms	Sites	x	У	Z
	LiMn ₂ O ₄	Li	8a	0.12500(0)	0.12500(0)	0.12500(0)
		Mn	16d	0.50000(0)	0.50000(0)	0.50000(0)
5wt% Ag/L1Mn ₂ O ₄		0	32e	0.26122(0)	0.26122(0)	0.26122(0)
		Space group	R _p	R _{wp}		CHI ²
		Fd3m	2.52%	3.23%		3.74
	Phase	Atoms	Sites	x	у	Z
	LiMn ₂ O ₄	Li	8a	0.12500(0)	0.12500(0)	0.12500(0)
		Mn	16d	0.50000(0)	0.50000(0)	0.50000(0)
10wt% Ag/LiMn ₂ O ₄		0	32e	0.26294(49)	0.26294(49)	0.26294(49)
		Space group	R _p	R _{wp}		CHI^2
		Fd3m	2 65%	3 48%		3.93

Table S1 Rietveld refinement results of the $LiMn_2O_4$ and Ag-coated $LiMn_2O_4$ samples.

Peak	B.E. (eV)	FWHM (eV)	Percent (%)		
	Mn ⁴⁺ (total)=48.30				
Mn ⁴⁺	642.16	0.97	21.93		
Mn ⁴⁺	642.82	0.92	15.29		
Mn ⁴⁺	644.17	0.99	8.51		
Mn ⁴⁺	645.30	0.95	0.46		
Mn ⁴⁺	645.98	1.00	2.11		
Mn ³⁺ (total)=51.70					
Mn ³⁺	640.43	1.00	11.31		
Mn ³⁺	641.30	1.00	20.18		
Mn ³⁺	642.48	0.98	3.08		
Mn ³⁺	643.47	0.90	12.83		
Mn ³⁺	644.98	1.00	4.30		

Table S2 Mn $2p_{3/2}$ peak parameters for Mn in LiMn $_{2}O_{4}$ sample.

Peak	B.E. (eV)	FWHM (eV)	Percent (%)		
	Mn ⁴⁺ (total)=49.10				
Mn ⁴⁺	641.99	0.90	16.14		
Mn ⁴⁺	642.68	0.98	13.37		
Mn ⁴⁺	643.79	1.00	11.78		
Mn ⁴⁺	644.50	0.96	4.96		
Mn ⁴⁺	645.98	1.00	2.85		
Mn ³⁺ (total)=50.90					
Mn ³⁺	640.55	1.00	11.06		
Mn ³⁺	641.30	0.95	16.18		
Mn ³⁺	642.45	1.00	8.64		
Mn ³⁺	643.18	1.00	11.48		
Mn ³⁺	645.11	0.97	3.54		

Table S3 Mn $2p_{3/2}$ peak parameters for Mn in 5wt% Ag coated LiMn $O_{2} O_{4}$ sample.

Table S4 Cycling performance comparison of the 5wt% Ag/LiMn₂O₄ (in this work) andother Ag nanoparticle or metal surface-coating spinel Li-Mn-O (from previousliteratures).

Comulas	C-Rate/testing temperature/cycle	First discharge capacity	Capacity retention	Daf
Samples	number	(mAh g ⁻¹)	(%)	Kel.
5wt% Ag/LiMn ₂ O ₄	5 C/25°C/900 cycles	100	80	This work
0.1 mol% Ag coated LiMn ₂ O ₄	1 C/25°C/30 cycles	105.4	90.7	1
3 wt.% Ag coated $LiMn_2O_4$	0.1 C/25°C/60 cycles	115	81.9	2
6.3 wt % Ag coated $LiMn_2O_4$	1 C/25°C/50 cycles	125	96	3
5wt% Ag coated LiNi _{0.5} Mn _{1.5} O ₄	4 C/25°C/100 cycles	96	72.9	4
5wt% Ag coated LiMn ₂ O ₄	0.5 C/25°C/50 cycles	120	98.8	5
5wt% Ag coated LiMn ₂ O ₄	2 C/25°C/20 cycles	100	95	6
Ag coated LiMn ₂ O ₄	1 C/25°C/50 cycles	122	81	7
Au coated LiMn ₂ O ₄	1 C/25°C/400 cycles	140	78	8

Table S5	The fitting	results of	EIS plots.
----------	-------------	------------	------------

Sample	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
$LiMn_{2}O_{4}$ before cycle	2.19	388.48
$5wt\% Ag/LiMn_2O_4$ before cycle	2.21	250.77
$LiMn_{2}O_{4}$ after 900 cycles	4.16	129.07
5wt% Ag/LiMn $_{2}O_{4}$ after 900 cycles	4.45	107.16

Peak	B.E. (eV)	FWHM (eV)	Percent (%)	
	Mn^{4+} (to	otal)=61.13		
Mn ⁴⁺	641.65	0.97	17.57	
Mn ⁴⁺	642.31	0.97	19.74	
Mn ⁴⁺	643.87	1.00	13.76	
${ m Mn}^{4+}$	644.89	1.00	6.23	
Mn ⁴⁺	646.20	1.00	3.83	
Mn^{3+} (total)=38.87				
Mn ³⁺	640.38	0.98	9.87	
Mn ³⁺	641.10	0.92	11.16	
Mn ³⁺	642.78	0.93	5.59	
Mn ³⁺	643.13	0.91	12.08	
Mn ³⁺	644.32	1.00	0.17	

Table S6 Mn $2p_{3/2}$ peak parameters for Mn in LiMn $_{2}O_{4}$ after 900 cycles.

Peak	B.E. (eV)	FWHM (eV)	Percent (%)	
	Mn^{4+} (to	otal)=57.05		
Mn ⁴⁺	641.22	1.00	19.46	
Mn ⁴⁺	642.00	1.00	23.09	
${ m Mn}^{4+}$	643.81	1.00	7.25	
${ m Mn}^{4+}$	645.00	1.00	3.76	
Mn ⁴⁺	646.20	1.00	3.49	
Mn^{3+} (total)=42.95				
Mn ³⁺	640.23	1.00	15.44	
Mn ³⁺	641.00	1.00	8.47	
Mn ³⁺	642.68	0.90	9.28	
Mn ³⁺	643.12	0.90	8.54	
Mn ³⁺	644.33	0.90	1.22	

Table S7 Mn $2p_{3/2}$ peak parameters for Mn in 5wt% Ag coated LiMn₂O₄ after 900 cycles.

The Li⁺ diffusion coefficient (D_{Li}⁺) can be calculated by the following equation ⁹: $D_{Li}^{+} = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma^2$

Where D_{Li}^+ is the diffusion coefficient of Li^+ (cm² s⁻¹), R is the gas constant (8.314 J mol⁻¹K⁻¹), T is the absolute temperature (298.15 K), A is the surface area of electrode (1.26 cm²), n refers to the number of electrons involved in redox reaction, F is the Faraday constant (9.65×10⁴ C mol⁻¹), C is the concentration of Li⁺ in active material (0.0238 mol cm⁻³), and σ is the Warburg coefficient obtained from the slope. By linear fitting of the relationship plot Z' and the square root of the angular frequency ω (Fig. 6e), the Warburg coefficient σ was obtained.

References

- 1 W.-J. Zhou, B.-L. He and H.-L. Li, *Mater. Res. Bull.*, 2008, **43**, 2285-2294.
- 2 S. M. Abbas, A. M. Hashem, A. E. Abdel-Ghany, E. H. Ismail, M. Kotlar, M. Winter, J. Li and C. M. Julien, Energies, 2020, **13**, 5194.
- 3 S. Huang, Z. Wen, X. Yang, X. Zhu and B. Lin, *Electrochemical and Solid State Letters*, 2006, 9, A443-A447.
- 4 J. Arrebola, A. Caballero, L. Hernán, J. Morales and E. R. Castellón, *Electrochemical and Solid State* Letters, 2005, **8**, A303-A307.
- 5 R. Jiang, C. Cui, H. Ma, H. Ma and T. Chen, J. Electroanal. Chem., 2015, 744, 69-76.
- 6 J. T. Son, K. S. Park, H. G. Kim and H. T. Chung, J. Power Sources, 2004, **126**, 182-185.
- 7 M. O. Guler, A. Akbulut, T. Cetinkaya, M. Uysal and H. Akbulut, *Int. J. Hydrogen Energy*, 2014, **39**, 21447-21460.
- J. L. Esbenshade, M. D. Fox and A. A. Gewirth, J. Electrochem. Soc., 2015, 162, A26-A29.
- B. Li, M. Wang, Y. Zhang, Q. Guo, R.-N. Tian, J. Chen, D. Wang, C. Dong and Z. Mao, *Electrochim. Acta*, 2023, 464, 142898.