Supplementary Materials:

Nickel complexes based on amidine for applications in gas-assisted methods and photocatalysis

A. Butrymowicz-Kubiak, A. Topolski, T. M. Muzioł, I. B. Szymańska*

Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland

*Corresponding authors: E-mail address: Iwona B. Szymańska: Tel.: +48 566114317; e-mail address: <u>pola@umk.pl</u> Aleksandra Butrymowicz-Kubiak; e-mail address: <u>aleksandra.butrymowicz@doktorant.umk.pl</u>

Table S 1 Crystal data and structure refinement for the compound $[Ni(NHC(CF_3)NC(CF_3)NH)_2] \cdot (NH_4)(NHOCCF_3) \cdot (NH_2OCCF_3) \cdot H_2O$ (5a).

Identification code	(5a)				
Empirical formula	C12 H13 F18 N9 Ni O3				
Formula weight	732.02				
Temperature [K]	100(2)				
Wavelength [Å]	1.54184				
Crystal system, space group	Triclinic, P-1				
	$a = 9.04000(18) \qquad \alpha = 70.687(2)$				
Unit cell dimensions [Å] and [°]	$b = 11.8822(2) \qquad \beta = 79.653(2)$				
	$c = 12.1180(3)$ $\gamma = 81.9191(16)$				
Volume [Å ³]	1203.80(5)				
Z, Calculated density [Mg×m ⁻³]	2, 2.017				
Absorption coefficient [mm ⁻¹]	2.871				
F(000)	724				
Crystal size [mm ³]	0.090 x 0.060 x 0.040				
Theta range for data collection [°]	3.905 to 77.770				
	-11<=h<=11				
Limiting indices	-15<=k<=15				
	-15<=l<=15				
Reflections collected/unique	8742				
Completeness [%] to theta [°]	100.0 %				
Absorption correction	Analytical				
Max. and min. transmission	0.905 and 0.829				
Refinement method	Full-matrix least-squares on F ²				
Data/restraints/parameters	8742 / 2 / 407				
Goodness-of-fit on F ²	1.032				
Final R Indices [I>2sigma(I)]	R1 = 0.0415, wR2 = 0.1168				
R indices (all data)	R1 = 0.0421, wR2 = 0.1173				
Largest diff. peak and hole [eÅ ⁻³]	0.655 and -0.650				

Table S 2Bond lengths [Å] and angles [°] for the compound $[Ni(NHC(CF_3)NC(CF_3)NH)_2]\cdot(NH_4)(NHOCCF_3)\cdot(NH_2OCCF_3)\cdot H_2O$ (5a).

Ni(1)-N(1)	1.8587(17)
Ni(1)-N(5)	1.8628(18)
Ni(1)-N(7)	1.8642(18)
Ni(1)-N(3)	1.8633(18)
N(1)-Ni(1)-N(5)	89.93(8)
N(1)-Ni(1)-N(7)	178.42(8)
N(5)-Ni(1)-N(7)	89.97(8)
N(1)-Ni(1)-N(3)	89.66(8)
N(5)-Ni(1)-N(3)	179.59(8)
N(7)-Ni(1)-N(3)	90.43(8)
C(1)-N(1)-Ni(1)	127.61(15)
Ni(1)-N(1)-H(1)	116.2
Ni(1)-N(3)-H(3)	116.2
C(5)-N(5)-Ni(1)	127.09(15)
Ni(1)-N(5)-H(5)	116.5
Ni(1)-N(7)-H(7)	116.3

Figure S 1 Hirshfeld surfaces (left) and fingerprints (right) of selected interactions created in the crystal network of $[Ni(NHC(CF_3)NC(CF_3)NH)_2]\cdot(NH_4)(NHOCCF_3)\cdot(NH_2OCCF_3)\cdot H_2O$ (**5a**) for $[Ni(IMAMDCF_3)_2]$ molecule: (A) for H…F (4.9%), (B) for F…N (4.8%), (C) N…H (3.7%), (D) for F…C (3.3%), and (E) for C…F (2.9%).

Compound	vNH*	vCN (sh)	vasCOO	δNH ₂	vsCOO	ΔνCOO
	3524					
	3373		1668			
[Ni ₂ (HAMDCF ₃) ₂ (µ-O ₂ CCF ₃) ₄] (1)	3325	1717		1576	1450	218
	3265					
	3194					
	3514					
	3373					
$[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2)	3325	1715	1668	1566	1456	212
	3271					
	3206					
	3520					
	3373					
$[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3)	3327	1713	1678	1576	1429	249
	3269					
	3196					
	3526					
	3375					
$[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4)	3323	1713	1680	1551	1429	251
	3244					
	3198					
HAMDCE ₂	3350 1670	1670	_	1575	_	
	3163	1070		1575		
HAMDCaFe	3362	1664	_	1503	_	_
HAMDU2F5 3130 1664 -	—	1393	—	—		

Table S 3 Selected IR absorption bands (cm⁻¹) of the studied compounds [Ni₂(HAMDR_f)₂(μ -O₂CR_f)₄] (1–4).

* vasNH2, vsNH2, v=NH

 $\Delta v CF_3 CO_2 Na = 223 \text{ cm}^{-1}, \Delta v C_2 F_5 CO_2 Na = 268 \text{ cm}^{-1}; [Ni_2(\mu - O_2 CCF_3)_4] [cm^{-1}]: 1665 v_{as} COO, 1449 v_s COO; [Ni_2(\mu - O_2 CC_2 F_5)_4] [cm^{-1}]: 1713, 1641 v_{as} COO, 1431 v_s COO$

Figure S 2 ATR-IR spectrum for the compound $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1) (black) and for the reactants $[Ni_2(\mu-O_2CCF_3)_4]$ (red), HAMDCF₃ (blue).

Figure S 3 ATR-IR spectrum for the compound $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2) (black) and for the reactants $[Ni_2(\mu-O_2CCF_3)_4]$ (red), HAMDC_2F₅ (blue).

Figure S 4 ATR-IR spectrum for the compound $[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3) (black) and for the reactants $[Ni_2(\mu-O_2CC_2F_5)_4]$ (red), HAMDCF₃ (blue).

Figure S 5 ATR-IR spectrum for the compound $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4) (black) and for the reactants $[Ni_2(\mu-O_2CC_2F_5)_4]$ (red), HAMDC_2F_5 (blue).

Figure S 6 Infrared spectrum of the [Ni(IMAMDCF₃)₂] (5).

 Table S 4 Thermal analysis results.

	Temperature [K]			Residu	1e [%]
Complex	T _i	T _m	T _f	Found	Calc.
[Ni ₂ (HAMDCF ₃) ₂ (µ-O ₂ CCF ₃) ₄] (1)	319 406 529	387 432 445 477 519 597	406 529 620	19.33	14.83 (Ni)
[Ni ₂ (HAMDC ₂ F ₅) ₂ (µ-O ₂ CCF ₃) ₄] (2)	320 395 485 528	342 375 474 507 591	395 485 528 623	16.63	13.17 (Ni)
[Ni ₂ (HAMDCF ₃) ₂ (µ-O ₂ CC ₂ F ₅) ₄] (3)	313 562	488 601	562 644	5.65	11.82 (Ni)
$[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4)	320 547	503 600	547 652	4.54	10.74 (Ni)
[Ni(IMAMDCF ₃) ₂] (5)	318 378 423	345 369 413 474	378 423 487	3.97	12.47 (Ni)

T_i, initial temperature; T_m, maximum temperature; T_f, final temperature

Figure S 7 Thermal decomposition of $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1) (TG, DTG, DTA curves).

Figure S 8 Thermal decomposition of $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2) (TG, DTG, DTA curves).

Figure S 9 Thermal decomposition of $[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3) (TG, DTG, DTA curves).

Figure S 10 Thermal decomposition of $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4) (TG, DTG, DTA curves).

Figure S 11 Thermal decomposition of [Ni(IMAMDCF₃)₂] (5) (TG, DTG, DTA curves).

Figure S 12 Transmission electron microscope (TEM) diffraction pattern for the TGA residue (Ni) for [Ni(IMAMDCF₃)₂] (**5**).

Figure S 13 TEM analysis results of the residue after thermal decomposition of $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1), (A) – TEM image, (B) – EDX spectrum and (C) – atomic content of the elements.

Figure S 14 Temperature ranges for the metallated fragments for compounds (1–5). The ions which achieved the highest relative intensity are marked in the diagram.

		Relativ	ve Inten	sity (RI)	[%]
Fragments	m/z	466 K	Intensity (RI) 481 K 533 K <1 1 3 1 9 5 52 99 63 36 1 100 100 5 3 3 4 2 16 16 9 1 1 2 1 11 1 11	573 K	
$[F_2]^+$	38	—	<1	1	1
$[HN=C=N]^+$	41	1	3	1	1
$[HN=C=NH]^+$	42	2	9	5	1
$[CO_2]^+$	44	34	52	99	89
$[CO_2H]^+$	45	31	63	36	50
[Ni] ⁺	58	—	—	1	<1
$[CF_3]^+$	69	100	100	100	100
[CF ₃ CN] ⁺⁻	95	4	5	3	4
[CF ₃ CNH] ⁺	96	2	3	4	1
$[CF_3CNH_2]^+$	97	3	4	2	4
[NHNH ₂ CCF ₃] ⁺⁻	112	10	16	9	1
$[CF_3CO_2H]^+$	114	1	1	1	1
$[Ni(NHNH_2CCF_3)]^+$	170	—	-	2	_
$[Ni(HN=C=NH)(O_2CCF_3)]^+$ $[Ni(NHNHCCF_3)(CO_2)]^+$	213	_	_	2	_
[Ni(NNCCF ₃)(CF ₃ CO)] ⁺⁻	264	_	1	11	1
$[Ni_2(NHNH_2CCF_3)(NHNHCCF_3)(O_2CCF_3)(NH_3)]^+$	469	—	1	11	<1
$[Ni_3(NHNHCCF_3)(O_2CCF_3)_2(NH_3)]^+$	530	—	_	_	2

Table S 5 EI MS results for the complex $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1).

Fragmonts	m/z	Rela	tensity (RI) [%]		
Fragments		353 K	358 K	425 K	451 K
[F ₂] ^{+.}	38	<1	1	1	—
[HN=C=N] ⁺	41	4	8	1	_
[HN=C=NH] ^{+.}	42	13	15	5	1
$[\mathrm{CO}_2]^+$	44	100	100	76	73
$[CO_2H]^+$	45	14	47	28	19
$[Ni]^+$	58	1	1	3	_
[CF ₃] ⁺	69	49	70	100	100
$[CF_2CN]^+$	76	2	3	25	23
$[C_2F_4]^+$	100	11	9	8	4
$[CF_3CO_2H]^+$	114	1	1	1	_
$[C_2F_5]^+$	119	45	26	14	6
$[C_2F_4CN]^+$	126	1	1	18	22
$[C_2F_5CNH]^+$	146	4	3	6	2
$[C_2F_5CNH_2]^+$	147	<1	<1	<1	_
$[NHNH_2CC_2F_5]^+$	162	62	40	10	1
[Ni(NHNHCC ₂ F ₅)] ⁺	219	1	1	2	—
[Ni ₂ (NHNHCCF ₃)(NH ₃)] ⁺	244	<1	<1	8	3
[Ni(NHNHCC ₂ F ₅)(HN=C=N)] ⁺⁻	260	<1	1	4	2
[Ni(NHNHCC ₂ F ₅)(HN=C=NH)] ⁺	261	<1	<1	1	_
$[Ni(NHNH_2CC_2F_5)(HN=C=NH)]^+$	262	<1	<1	2	_
$[Ni(NHNH_2CC_2F_5)(CO_2)]^+$	264	<1	<1	4	2
$[Ni_2(NHNHCC_2F_5)(O_2CCF_3)_2(CF_3)]^{2+}$	286	_	_	3	1
$[Ni(CF_3)_2(C_2F_5)]^+$	315	_	<1	10	2
[Ni(NHNHCC ₂ F ₅)(O ₂ CCF ₃)] ⁺⁻	332	4	2	_	_
$[Ni_2(NHNH_2CC_2F_5)(O_2CCF_3)_4 -H]^{2+}$	364	<1	1	24	—
[Ni(NHNHCC ₂ F ₅) ₂] ⁺⁻	380	2	1	_	_
$[Ni_2(NHNHCC_2F_5)_2(O_2CCF_3)]^+$	551	<1	_	1	—
$[Ni_2(NHNH_2CC_2F_5)(NHNHCC_2F_5)(O_2CCF_3)]^+$	552	_	<1	1	_

Table S 6 EI MS results for the complex $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2).

$[Ni_2(NHNH_2CC_2F_5)_2(O_2CCF_3)(NH_3)]^+$	570	_	_	4	1
$[Ni_2(NHNH_2CC_2F_5)(O_2CCF_3)_3]^+$	617	3	2	_	—
$[Ni_2(NHNH_2CC_2F_5)_3(NH_3)]^+$	619	1	1	19	4
$[Ni(NHNHCC_2F_5)_2(O_2CCF_3)_2(NH_3)_2(CO)]^+$	668	<1	2	32	24
$[Ni_2(NHNHCC_2F_5)_2(O_2CCF_3)_3]^+$	777	7	5	_	—
$[Ni_{3}(NHNH_{2}CC_{2}F_{5})_{3}(O_{2}CCF_{3})_{2}]^{+}$	888	_	_	_	_

		Relative Intensity (R			RI) [%]	
Fragments	m/z	441 K	458 K	496 K	573 K	
$[F_2]^+$	38	<1	1	_	_	
$[HN=C=N]^+$	41	1	1	_	—	
[HN=C=NH] ⁺⁻	42	4	3	—	_	
$[\mathrm{CO}_2]^+$	44	80	100	22	92	
$[CO_2H]^+$	45	98	31	34	15	
[Ni] ⁺	58	<1	2	_	—	
$[CF_3]^+$	69	100	75	83	100	
$[CF_2CN]^+$	76	4	11	7	—	
[CF ₃ CNH] ⁺	96	5	4	_	_	
$[CF_3CNH_2]^+$	97	38	10	13	7	
$[C_2F_4]^+$	100	83	32	50	71	
[NHNH ₂ CCF ₃] ⁺⁻	112	9	8	—	_	
$[C_2F_5]^+$	119	68	26	36	40	
$[C_2F_5CO_2H]^+$	164	<1	<1	-	_	
[Ni(NHNHCCF ₃)] ⁺	169	1	1	—	_	
[Ni(NHNH ₂ CCF ₃)] ⁺	170	1	3	_	_	
[Ni(NHNHCCF ₃)(NCN)] ⁺⁻	209	2	1	—	_	
[Ni(NHNH ₂ CCF ₃)(NCN)] ⁺	210	1	1	—	_	
[Ni(NHNHCCF ₃)(CF ₃ CN)] ⁺	264	1	14	—	_	
[Ni(NHNHCCF ₃) ₂ (NH ₃)] ⁺⁻	297	_	_	5	1	
$[Ni(O_2CC_2F_5)(CF_3NH)]^+$	305	—	1	_	_	
$[Ni(NHNHCCF_3)(O_2CC_2F_5)]^+$	332	2	2	—	—	
$[Ni_2(NHNHCCF_3)(O_2CC_2F_5)]^+$	390	—	<1	9	1	
$[Ni_2(NHNH_2CCF_3)(O_2CC_2F_5)]^+$	391	—	<1	_	_	
[Ni ₃ (O ₂ CC ₂ F ₅)(HNCNC)] ⁺	392	_	<1	10	2	
$[Ni_2(O_2CC_2F_5)_2]^+$	442	_	<1	19	4	
$[Ni(NHNH_2CCF_3)_2(O_2CC_2F_5)]^+$	445	20	2	5	_	
[Ni ₂ (NHNH ₂ CCF ₃)(NHNHCCF ₃) ₂] ⁺⁻	450	<1	2	_	_	

Table S 7 EI MS results for the complex $[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3).	

$\left[\mathrm{Ni}_2(\mathrm{NHNH}_2\mathrm{CCF}_3)(\mathrm{O}_2\mathrm{CC}_2\mathrm{F}_5)(\mathrm{CF}_3)\right]^+$	460	<1	1	27	17
$[Ni_2(NHNH_2CCF_3)(NHNHCCF_3)(O_2CCF_3)(NH_3)]^+$	469	2	17	—	-
$[Ni_{2}(NHNH_{2}CCF_{3})_{2}(O_{2}CC_{2}F_{5})(NH_{3})]^{+}$	520	1	5	—	-
$[Ni_3(NHNH_2CCF_3)(NHNHCCF_3)_2(CN)]^+$	536		1	23	5
$[Ni_2(NHNHCCF_3)(O_2CC_2F_5)_2]^+$	553	<1	1	7	-
$[Ni_2(NHNHCCF_3)(NCCF_3)(O_2CC_2F_5)(C_2F_5)]^+$	604	1	2	_	_
$[Ni_2(O_2CC_2F_5)_3]^+$	605	<1	1	77	13
$[Ni_3(NHNH_2CCF_3)(O_2CC_2F_5)_2(NH_3)]^+$	629	I	1	6	_
$[Ni_{3}(NHNHCCF_{3})_{2}(O_{2}CC_{2}F_{5})(C_{2}F_{5})]^{+}$	680	<1	2	86	21
$[Ni_2(NHNHCCF_3)(O_2CC_2F_5)_3]^+$	716	2	2	_	_
$[Ni_{3}(NHNHCCF_{3})(O_{2}CC_{2}F_{5})_{3}(NH_{3})]^{+}$	793	-	-	—	5
$[Ni_2(NHNHCCF_3)_2(O_2CC_2F_5)_3]^+$	827	1	1	—	_
$[Ni_3(O_2CC_2F_5)_4(NH_3)]^+$	845		<1	13	46
$[Ni_3(O_2CC_2F_5)_5]^+$	989		<1	24	_
$[Ni_4(NHNHCCF_3)(O_2CC_2F_5)_3(CO_2)_4]^+$	1013	_	1	4	_
$[Ni_3(NHNH_2CCF_3)(NHNHCCF_3)_2(O_2CC_2F_5)_3(CF_3)(NH_3)]^+$	1085	_	<1	2	5

Fragmonts	m/a	Relative Intensity		sity (RI) [%]		
F ragments	111/Z	324 K	328 K	329 K	332 K	
$[HN=C=N]^+$	41	10	<1	_	_	
[HN=C=NH] ⁺⁻	42	20	1	1	3	
$[CO_2]^+$	44	28	37	5	69	
$[CO_2H]^+$	45	100	22	3	34	
[Ni] ⁺	58	_	1	_	_	
[CF ₃] ⁺	69	32	25	5	100	
$[CF_2CN]^+$	76	1	<1	<1	5	
$[C_2F_4]^+$	100	18	16	4	80	
$[C_2F_5]^+$	119	14	17	3	56	
$[C_2F_4CN]^+$	126	-	_	<1	3	
$[C_2F_5CNH]^+$	146	<1	2	<1	1	
$[C_2F_5CNH_2]^+$	147	1	1	<1	6	
$[NHNH_2CC_2F_5]^+$	162	3	3	1	13	
$[C_2F_5CO_2H]^+$	164	3	9	—	—	
[Ni(NHNHCC ₂ F ₅)] ⁺	219	-	8	<1	1	
[Ni(NHNH ₂ CC ₂ F ₅)] ⁺	220	_	10	<1	—	
$[\mathrm{Ni}(\mathrm{O}_2\mathrm{CC}_2\mathrm{F}_5)]^+$	221	_	4	<1	_	
[Ni(NHNHCC ₂ F ₅)(HN=C=NH)] ⁺	261	_	1	_	_	
$[Ni(NHNH_2CC_2F_5)(HN=C=NH)]^+$	262	_	2	_	_	
[Ni(NHNH ₂ CC ₂ F ₅)(NHNHCC ₂ F ₅)] ⁺	381	_	40	1	_	
$[Ni(NHNHCC_2F_5)(O_2CC_2F_5)]^+$	382	_	16	<1	_	
$[Ni_4(O_2CC_2F_5)(C_2F_5)(NH_3)]^+$	533	-	4	1	2	
$[Ni(NHNH_2CC_2F_5)_2(O_2CC_2F_5)]^+$	545	-	13	1	_	
$[Ni_{2}(NHNH_{2}CC_{2}F_{5})_{2}(O_{2}CC_{2}F_{5})]^{+}$ $[Ni_{2}(NHNHCC_{2}F_{5})(O_{2}CC_{2}F_{5})_{2}]^{+}$	603	_	15	2	1	
$[Ni_2(O_2CC_2F_5)_3]^+$	605	-	12	2	2	
$[Ni_{2}(NHNH_{2}CC_{2}F_{5})_{2}(O_{2}CC_{2}F_{5})_{2}]^{+} \\ [Ni_{2}(NHNHCC_{2}F_{5})(O_{2}CC_{2}F_{5})_{3}]^{+}$	766		_	_	1	
$[Ni_2(NHNH_2CC_2F_5)(O_2CC_2F_5)_3]^+$	767	_	6	33	_	
$[Ni_2(NHNHCC_2F_5)_2(O_2CC_2F_5)_2(CO_2)]^+$	808	_	1	3	_	

Table S 8 EI MS results for the complex $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4).

$[Ni_{2}(NHNH_{2}CC_{2}F_{5})(HN=C=NH)(O_{2}CC_{2}F_{5})_{3}]^{+}$	809	_	<1	_	_
$[Ni_3(NHNHCC_2F_5)(O_2CC_2F_5)_3(NH_3)]^+$	843	—	1	7	_
$[Ni_2(NHNH_2CC_2F_5)(NHNHCC_2F_5)(O_2CC_2F_5)_3]^+$	928	—	9	_	—
$[Ni_2(NHNH_2CC_2F_5)_2(O_2CC_2F_5)_3(CC_2F_5)]^+$	1060	—	<1	6	—
$[Ni_4(NHNH_2CC_2F_5)(O_2CC_2F_5)_3(CO_2)_4]^+$	1061	—	<1	10	1

Fragments	m/z	Relative Intensity (RI) [%]		
		332 K	334 K	339 K
[CH ₃ CN] ⁺ /[HN=C=N] ⁺	41	2	—	15
[NH=C-NH] ^{+·}	42	1	_	41
[NH=C-NH ₂] ^{+.}	43	2	3	43
$[CF_2]^+$	50	12	7	16
[Ni] ⁺	58	2	2	45
$[CF_{3}]^{+}$	69	90	62	100
$[CF_2CN]^+$	76	8	3	_
[Ni(HN=C=NH)] ⁺	100	2	6	2
$[N_2CCF_3]^+$	109	_	—	3
[NHNHCCF ₃] ⁺	111	-	—	3
[NHNH ₂ CCF ₃] ^{+.}	112	-	—	_
$[C_2F_4CN]^+$	126	-	—	3
[Ni(NCCF ₃)] ⁺	153	1	5	—
[Ni(NHNH ₂ CCF ₃)] ⁺	170	3	11	2
[Ni(NHCNCNH) ₂] ⁺⁻	194	2	9	2
[Ni(NHCNCNH) ₂ (NH ₃)] ^{+·}	211	8	18	4
[Ni(NH ₂ CNCNH) ₂ (NH ₃) ₂] ⁺⁻	230	75	53	9
[Ni(CF ₃ NCCF ₃ N)] ⁺	236	11	10	_
[Ni(NHC(CF ₃)NC(CF ₃)NH)] ⁺	264	3	13	3
$[Ni(NH_2C(CF_3)NC(CF_3)NH)]^+$	265	14	66	13
[Ni(CNC(CF ₃)NC(CF ₃)NC)] ⁺	286	48	40	3
[Ni(NHC(CF ₃)NC(CF ₃)NH)(NHC(CF ₃)NCCF ₂ N)] ⁺⁻	450	-	-	2
[Ni(NHC(CF ₃)NC(CF ₃)NH) ₂] ⁺⁻	470	18	99	24

Table S 9 EI MS results for the complex $[Ni(IMAMDCF_3)_2]$ (5).

Figure S 15 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1) heating (333–473 K).

Figure S 16 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDCF_3)_2(\mu-O_2CCF_3)_4]$ (1) heating (473–613 K).

Figure S 17 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2) heating (333–473 K).

Figure S 18 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CCF_3)_4]$ (2) heating (473–613 K).

Figure S 19 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3) heating 333–473 K (bands characteristic for: free HAMD – black, complex – green).

Figure S 20 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDCF_3)_2(\mu-O_2CC_2F_5)_4]$ (3) heating 473–613 K (bands characteristic for: free HAMD – black, complex – green, complex and HAMD – blue assignment).

Figure S 21 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4) heating 333–473 K (bands characteristic for: free HAMD – black, complex – green, complex and HAMD – blue assignment).

Figure S 22 Temperature variable infrared spectra VT IR for the vapor formed during the $[Ni_2(HAMDC_2F_5)_2(\mu-O_2CC_2F_5)_4]$ (4) heating 473–613 K (bands characteristic for: free HAMD – black, complex – green, complex and HAMD – blue assignment).

Table S 10 Vibrational band positions and assignments for gaseous products of thermal decomposition of $[Ni_2(HAMDR_f)_2(\mu-O_2CC_2F_5)_4]$ (3) and $[Ni_2(HAMDR_f)_2(\mu-O_2CC_2F_5)_4]$ (4), where $R_f = CF_3$ (3), C_2F_5 (4).

Assignement (ca.) [cm ⁻¹]	(1)	(2)	(3)	(4)
$\mathbf{vC} \equiv \mathbf{N} (R_f C \equiv N)$	—	2273	2272	2274
vCO (<i>CO</i>)	2166 2110	2170 2107	2168 2117	2168 2117
vCO ₂	2331	_	_	_
vasCOO (acid)	_	_	1820	—
$vC=O(CF_3CFO)$	_	_	_	1890
vCF (CF_3CFO)	_	_	_	1253 1199

Figure S 23 Examined scan areas' EDX spectra (8 keV) for the $[Ni(IMAMDCF_3)_2]$ (5) layer deposited on a Si(111) substrate (Mag = 200x).

Figure S 24 CVD reactor scheme with marked substrates, numbered according to the length of the transport path.

Figure S 25 SEM images of deposits formed using the precursor $[Ni_2(HAMDC_2F_5)_2(\mu - O_2CC_2F_5)_4]$ (4) (T_V = 493 K, T_D = 723 K, Ar), on titania nanotubes, (A) – Mag = 25000x, (B) – Mag = 50000x, (C) – 100000x.

Substrate	Test number	$10^9 k_{\rm obs} [{ m Ms}^{-1}]$
REF	1	0.44 ± 0.11
	2	0.21 ± 0.01
	3	0.43 ± 0.15
TNT20	1	2.14 ± 0.16
	2	1.63 ± 0.09
	3	0.91 ± 0.02
Ni-TNT20	1	3.39 ± 0.27
	2	1.73 ± 0.10
	3	0.94 ± 0.13

Table S 11 The k_{obs} values for methylene blue photocatalytic degradation under UV-lamp without (REF) and with TNT20 or Ni-TNT20 substrates as catalysts. Repetitions were carried out using the same substrates.

Table S 12 The k_{obs} values for methylene blue photocatalytic degradation under Vis-lamp without (REF) and with TNT20 and Ni-TNT20 substrates as catalysts.

Substrate	$10^9 k_{\rm obs} [{ m Ms}^{-1}]$		
REF	0.35 ± 0.04		
TNT20	0.23 ± 0.03		
Ni-TNT20	0.33 ± 0.07		

Figure S 26 The absorbance-time dependencies for the studied substrates (TNT20 and Ni-TNT20) and the sample without the substrate (REF) during the Vis irradiation. $[MB]_0 = 1 \cdot 10^5 \text{ mol/dm}^3$, T = 298.1 K.