Supporting Information

Tailoring Zero-Point Energies in Nanocrystalline 3D Hofmann-Type Spin-Crossover Networks {Fe_{1-x}M_x(pz)[Pd(CN)₄]}: Impact of Size, Composition, and Surrounding Matrices

and Surrounding Matrices

Chinmoy Das¹, Ajana Dutta², Denisa Coltuneac³, Laurentiu Stoleriu³, Pradip Chakraborty¹*

¹Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

²Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

³Faculty of Physics, Al. I. Cuza University, 700506 Iasi, Romania

*Corresponding Author, E-mail: pradipc@chem.iitkgp.ac.in

HRTEM images:

Figure S1: High-resolution TEM images of as-synthesized nanocrystals (compound 1, compound 2 and compound 3)

Figure S2: High-resolution TEM images of as-synthesized nanocrystals (compound 4, compound 5 and compound 6)

Figure S3: High-resolution TEM images of as-synthesized nano- and submicrocrystals (compound 7, compound 8 and compound 11

EDX Spectrum:

Figure S4. EDX spectrum of compound 3; effective composition [Fe_{0.37}Zn_{0.63}(pz)Pd(CN)₄]

Figure S5. EDX spectrum of compound 4; effective composition [Fe_{0.66}Zn_{0.34}(pz)Pd(CN)₄]

Figure S6. EDX spectrum of compound 5; effective composition [Fe_{0.32}Co_{0.68}(pz)Pd(CN)₄]

Figure S7. EDX spectrum of compound 6; effective composition [Fe_{0.54}Co_{0.46}(pz)Pd(CN)₄]

Figure S8. EDX spectrum of compound 7; effective composition [Fe_{0.36}Ni_{0.64}(pz)Pd(CN)₄]

Figure S9. EDX spectrum of compound 8; effective composition $[Fe_{0.62}Ni_{0.38}(pz)Pd(CN)_4]$

FTIR Spectrum:

Figure S10. FTIR spectra of the desired as-synthesized Hofmann-based nanoparticles along with the bulk compound with generic formula[$Fe_{1-x}M_x(pz)Pd(CN)_4$]; (a) Compounds 1-2; (b) Compounds 3-8; (c) Compounds 9-11

Bond Type	Wavenumber (cm ⁻¹)	Peak intensity
Fe-N (pz)	411	Broad
Fe-N (CN)	411	Broad
Pd-C (CN)	802	Strong
C=N (pz)	1419	Medium
C=C (pz)	1053	Strong
$C \equiv C (CN^{-})$	2166 (Characteristic peak)	Strong

 Table S1. Selected major peaks from the FTIR spectra of the as-synthesized nanoparticles.

Figure S11. PXRD Le Bail profile refinement of (a) pure $[Fe(pz)Pd(CN)_4]$ (~157 nm) (compound 1), (b) pure $[Fe(pz)Pd(CN)_4]$ (~55 nm) (compound 2), (c) 63% Zn (compound 3), (d) 34% Zn (compound 4), (e) 68% Co (compound 5), (f) 46% Co (compound 6), (g) 64% Ni (compound 7) and (h) 38% Ni (compound 8) at room temperature.

Compounds Name	FWHM for (110) peak (in degree)	
Bulk [Fe(pz)Pd(CN) ₄]	$0.08764 (\pm 0.00338)$	
Compound 1	$0.2832 (\pm 0.00523)$	
Compound 2	0.29949 (± 0.01595)	
Compound 3	0.21996 (± 0.00517)	
Compound 4	0.18322 (± 0.0168)	
Compound 5	$0.25468 (\pm 0.01077)$	
Compound 6	0.18043 (± 0.00409)	
Compound 7	0.29131 (± 0.00713)	
Compound 8	$0.31024 (\pm 0.0075)$	

Table S2. Variation in FWHM for (110) peak in compounds 1-8 compared to the bulk analog