Supporting Information for:

Dearomative C2-Borylation of Indoles

Ayesha Begum, Manjur O. Akram, and Caleb D. Martin*

Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco,

TX 76798, USA

Author to address correspondence: Caleb D. Martin (caleb_d_martin@baylor.edu)

Table of Contents

Table of Contents

1. Gen	eral Details	3
2. Exp	erimental Section	. 4
2.1	Synthesis of the Starting Materials	. 4
2.2	Representative Procedure for Borylation Reactions	5
2.3	Analytical Data of Products	5
2.4	Preparation of DB ^{Me} oCb ₂	11
2.5	Procedure for the Gram Scale Synthesis of 1 in Glovebox-free Conditions	12
2.6	Functionalization attempts	12
3. X-ra	ay Crystallographic Data	14
4. NM	R and IR Spectra	15
5. Refe	erences	38

1. General Details:

All manipulations were performed under an inert atmosphere in a nitrogen filled MBraun glove box or using standard Schlenk techniques unless specified. Chloroform-d and benzene-d₆ for NMR spectroscopy were purchased from Cambridge Isotope Laboratories, Inc., dried by stirring for 5 days over CaH₂, distilled, and stored over 4 Å molecular sieves. All other solvents were purchased from commercial sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with solvent-appropriate drying agents, and stored over 3 or 4 Å molecular sieves. Indole, 1-methyl-1*H*-indole, 1,2-Dimethyl-1*H*-indole, 1,3-Dimethyl-1*H*-indole, B(C₆F₅)₃, HBpin (pin = pinacol), HBcat (cat = catechol), and DSiEt₃ were purchased from commercial sources and used as received. Substituted indoles, BoCb₃, HB^{Me}oCb₂, and HB(C₆F₅)₂ were prepared according to literature procedures. Multinuclear NMR spectra (¹H, ¹H{¹¹B}, ¹³C{¹H}, ¹¹B, ¹¹B{¹H}, ²H) were recorded on a Bruker Avance III HD 400 MHz or 600 MHz instrument. High resolution mass spectra (HRMS) were obtained in the Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap Discovery spectrometer. Melting or decomposition points were determined with a Thomas Hoover Uni-melt capillary melting point apparatus and are uncorrected. FT-IR spectra were recorded on a Bruker Alpha ATR FT-IR spectrometer on solid samples. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and developed chromatograms were analyzed by a UV lamp (λ = 254 nm). Flash column chromatography was performed with silica gel (200–300 mesh). Single crystal X-ray diffraction data were collected on a Bruker Apex III-CCD detector using Mo-Kα radiation ($\lambda = 0.71073$ Å). Crystals were selected under paratone oil, mounted on MiTeGen micromounts, and immediately placed in a cold stream of N₂. Structures were solved and refined using SHELXTL and figures produced using OLEX2.¹

2. Experimental Section:

2.1 Synthesis of the Starting Materials: The compounds listed in Table S1 are known in the

literature and synthesized following literature known procedures.

Table S1: Synthesis of starting materials: substituted indoles and boranes used in this study

Entry	Reagent	Reference		
1	N Bn	S. Xu, X. Huang, X. Hong, and B. Xu, Org. Lett., 2012, 14, 4614-4617		
2	N ['] / _n Bu	H. Huo, C. Fu, K. Harms, and E. Meggers, <i>J. Am. Chem. Soc.</i> , 2014, 136 , 2990-2993		
3	Br N Me Me Me	EC. Elliott, J. L. Maggs, B. K. Park, P. M. O'Neill, and A. V. Stachulski, Org. Biomol. Chem., 2013, 11 , 8426-8434		
4	MeO N Me	M. P. Fortes, M. M. Bassaco, T. S. Kaufman, and C. C. Silveira, <i>RSC. Adv.</i> , 2014, 4 , 34519-34530		
5	Bpin N Me	A. D. Grosso, M. D. Helm, S. A. Soloman, D. C. Quintero, and M. J. Ingleson, <i>Chem. Commun.</i> , 2011, 47 , 12459-12461		
6	Me N Me Me Me Me	H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki, and K. Tatsumi, J. Am. Chem. Soc., 2011, 10, 3312-3315		
7	BoCb ₃ ; • = BH	M. O. Akram, J. R. Tidwell, J. L. Dutton, and C. D. Martin, <i>Angew. Chem. Int. Ed.</i> , 2022, 61 , e202212073		
8	$HB^{Me}oCb_2; \bullet = BH$	M. O. Akram, J. R. Tidwell, J. L. Dutton, and C. D. Martin, <i>Angew. Chem. Int. Ed.</i> , 2023, 62 , e202307040		
9	F F F F F F F F F F	D. J. Parks, R. E. von H. Spence, and W. E. Piers, <i>Angew. Chem. Int. Ed. Engl.</i> , 1995, 34 , 809–811		

2.2 Representative Procedure for Borylation Reactions: Quantities of the indole reagents, reaction times, and characterization details for each compound are discussed below.

A benzene solution (1 mL) of indole (0.100 mmol) was added to a stirred benzene (1 mL) solution of HB^{Me}oCb₂ (0.100 mmol, 32.6 mg). The reaction mixture was stirred at 23 °C and monitored by analyzing an aliquot via ¹H and ¹¹B NMR spectroscopy to determine completion. Upon reaction completion, the volatiles were removed under reduced pressure and the solids washed with *n*pentane (2 mL). Drying under vacuum gave pure borylated product. Single crystals for X-ray diffraction studies of **1** and **4** were grown from their dichloromethane solution by vapor diffusion into toluene.

2.3 Analytical Data of Products:

1: N-methyl indole: 13.1 mg, reaction time: 1 h; Yield: 97%, 44.0 mg; dp: 180 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.76–7.74 (m, 1H), 7.64–7.62 (m, 2H), 7.58–7.56 (m, 1H), 4.78 (s, 2H), 4.16 (s, 3H), 2.74–1.45 (m, 27H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): δ = 7.76–7.74 (m, 1H), 7.64–7.62 (m, 2H), 7.58–7.56 (m, 1H), 4.79 (s, 2H), 4.16 (s, 3H), 2.71–2.68 (m, 3H), 2.58 (s, 2H), 2.34–2.25 (m, 6H), 2.09–2.08 (m, 3H), 2.05 (s, 6H), 2.00–1.96 (m, 3H), 1.79 (s, 2H), 1.60 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 145.4, 134.0, 129.7, 129.0, 125.6, 114.2, 79.4, 49.2, 37.1, 26.1 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = –0.3 (s), –5.6 (s), –7.0 to –12.7 (m), –17.7 (s) ppm; ¹¹B NMR: δ = –0.3 (d, *J* = 154 Hz), –5.7 (d, *J* = 141 Hz), –7.1 to –12.8 (m), –17.8 (d, *J* = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2565 (2), 1468 (12), 1443 (5), 1381 (9), 1359 (11), 1214 (6), 1130 (3), 1092 (8), 1042 (15), 1020 (7), 943 (14), 793 (13), 755 (1), 669 (10), 417 (15); HRMS(–ESI): calcd 456.4863 for C₁₅H₃₆B₂₁N [M–H]⁻ found 456.4881.

2: N-butyl indole: 17.3 mg, reaction time: 7 h; Yield: 80%, 40.0 mg; dp: 182 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.75-7.73$ (m, 1H), 7.63–7.58 (m, 2H), 7.56–7.52 (m, 1H), 4.69 (s, 2H), 4.61 (t, 2H, J = 8 Hz), 2.69–1.51 (m, 31H), 1.04 (t, 3H, J = 8 Hz) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): $\delta = 7.75-7.73$ (m, 1H), 7.62–7.52 (m, 3H), 4.70 (s, 2H), 4.61 (t, 2H, J = 8 Hz), 2.69–2.66 (m, 2H), 2.58 (s, 2H), 2.34–2.24 (m, 6H), 2.06–2.01 (m, 10H), 2.00 (s, 2H), 1.90–1.82 (m, 3H), 1.68 (s, 3H), 1.59–1.53 (m, 3H), 1.04 (t, 3H, J = 4 Hz) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 144.5$, 134.6, 129.3, 128.9, 125.7, 114.8, 79.5, 50.4, 49.7, 31.3, 25.8, 20.6, 13.7 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = -0.2$ (s), -5.6 (m), -6.8 to -13.0 (m), -17.6 (s) ppm; ¹¹B NMR: $\delta = -0.2$ (d, J = 141 Hz), -5.7 (d, J = 141 Hz), -6.9 to -13.4 (m), -17.7 (d, J = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2956 (13), 2565 (15), 2548 (1), 1461 (5), 1381 (7), 1356 (11), 1131 (3), 1103 (9), 1021 (8), 933 (14), 807 (12), 757 (2), 722 (4), 666 (10), 418 (6); HRMS(–ESI): calcd 498.5333 for C₁₈H₄₁B₂₁N₁ [M-H]⁻ found 498.5344.

3: N-benzyl indole: 20.7 mg, reaction time: 6 h; Yield: 86%, 46.0 mg; dp: 178 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, 1H, *J* = 8 Hz), 7.53 (t, 1H, *J* = 8 Hz), 7.42–7.37 (m, 4H), 7.18 (d, 1H, *J* = 8 Hz), 7.05 (d, 2H, *J* = 8 Hz), 5.95 (s, 2H), 4.88 (s, 2H), 2.73–1.40 (m, 27H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): δ = 7.76 (d, 1H, *J* = 8 Hz), 7.53 (t, 1H, *J* = 8 Hz), 7.42–7.37 (m, 4H), 7.18 (d, 1H, *J* = 8 Hz), 7.05 (d, 2H, *J* = 8 Hz), 5.95 (s, 2H), 4.88 (s, 2H), 2.72 (s, 3H), 2.56 (s, 2H),

2.35 (s, 2H), 2.29 (s, 2H), 2.21 (s, 2H), 2.09– 2.04 (m, 6H), 1.85 (s, 6H), 1.84 –1.77 (m, 4H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 144.8, 134.3, 132.3, 129.8, 129.3, 129.1, 128.9, 128.5, 125.9, 125.5, 116.1, 79.7, 54.0, 50.0, 25.6 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = -0.2 (s), – 5.6 (m), -6.7 to -14.1 (m), -17.6 (s) ppm; ¹¹B NMR: δ = -0.3 (d, *J* = 141 Hz), -5.7 (d, *J* = 154 Hz), -6.7 to -13.9 (m), -17.7 (d, *J* = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2641 (15), 2580 (2), 1454 (6), 1382 (13), 1357 (11), 1135 (8), 1106 (3), 1028 (12), 805 (14), 754 (7), 718 (1), 691 (5), 571 (10), 455 (9), 418 (4); HRMS(–ESI): calcd 532.5176 for C₂₁H₃₉B₂₁N₁ [M–H]⁻ found 532.5196.

4: Indole: 11.7 mg, reaction time: 1 h; Yield: 90%, 40.0 mg; dp: 168 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.16 (s, 1H), 7.75 (t, 2H, *J* = 8 Hz), 7.63–7.57 (m, 2H), 4.31 (s, 2H), 3.24–1.44 (m, 26H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): δ = 9.16 (s, 1H), 7.75 (t, 2H, *J* = 8 Hz), 7.63–7.59 (m, 2H), 4.31 (s, 2H), 3.27 (s, 1H), 2.76 (s, 2H), 2.54 (s, 2H), 2.37–2.26 (m, 6H), 2.08–2.05 (m, 10H), 1.97 (s, 2H), 1.79 (s, 2H), 1.47 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 179.9, 148.0, 132.3, 129.8, 129.4, 125.7, 118.0, 79.3, 41.8, 26.1 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = -0.2 (s), -4.0 to -13.0 (m) ppm; ¹¹B NMR: δ = -0.3 (d, *J* = 141 Hz), -4.0 to -13.7 (m) ppm; FT-IR (ranked intensity, cm⁻¹): 2562 (1), 1454 (5), 1382 (9), 1352 (11), 1323 (7), 1117 (3), 1049 (15), 1020 (8), 937 (10), 730 (2), 683 (4), 609 (13), 494 (14), 422 (6), 413 (12); HRMS(–ESI): calcd 442.4707 for C₁₄H₃₃B₂₁N [M–H]⁻ found 442.4735.

5: 5-Bromo-N-methyl indole: 21.0 mg, reaction time: 5 h; Yield: 88%, 47.0 mg; dp: 120 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (s, 1H), 7.77 (dd, 1H, *J* = 8, 2 Hz), 7.44 (d, 1H, *J* = 8 Hz), 4.79 (s, 2H), 4.14 (s, 3H), 2.72–1.49 (m, 27H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): δ = 7.91 (s, 1H), 7.77 (d, 1H, *J* = 8Hz), 7.44 (d, 1H, *J* = 8 Hz), 4.79 (s, 2H), 4.14 (s, 3H), 2.66 (s, 3H), 2.57 (s, 2H), 2.35–2.29 (m, 7H), 2.24–2.07 (m, 4H), 2.05 (s, 6H), 2.01–1.98 (m, 2H), 1.74 (s, 2H), 1.58 (s, 1H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 135.9, 132.3, 129.1, 128.5, 124.4, 115.4, 79.4, 49.1, 37.2, 26.1 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = -0.2 (s), -5.6 (m), -6.9 to -12.3 (m), -17.7 (s) ppm; ¹¹B NMR: δ = -0.2 (d, *J* = 154 Hz), -5.7 (d, *J* = 141 Hz), -6.8 to -12.9 (m), -17.7 (d, *J* = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2580 (1), 1441 (8), 1381 (13), 1355 (9), 1214 (11), 1131 (7), 1102 (3), 1051 (12), 905 (10), 807 (4), 755 (2), 730 (6), 669 (14), 586 (15); HRMS(-ESI): calcd 535.3932 for C₁₅H₃₅B₂₁BrN [M–H]⁻ found 535.3971.

6: 6-Bromo-N-methyl indole: 21.0 mg, reaction time: 7 h; Yield: 82%, 44.0 mg; dp: 130 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.77-7.74$ (m, 2H), 7.63 (d, 1H, J = 8 Hz), 4.76 (s, 2H), 4.14 (s, 3H), 2.63–1.49 (m, 27H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): $\delta = 7.77-7.74$ (m, 2H), 7.63 (d, 1H, J = 8 Hz), 4.77 (s, 2H), 4.14 (s, 3H), 2.67 (s, 3H), 2.57 (s, 2H), 2.35–2.25 (m, 7H), 2.08–2.07 (m, 3H), 2.04 (s, 6H), 2.01–1.96 (m, 2H), 1.74 (s, 2H), 1.57 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 146.5$, 132.8, 128.5, 126.7, 122.7, 117.9, 79.4, 49.2, 37.3, 34.3, 26.1, 22.5, 14.2 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = -0.2$ (s), –5.6 (s), –6.7 to –12.0 (m), –17.7 (s) ppm; ¹¹B NMR: $\delta = -0.2$ (d, J = 141 Hz), –5.7 (d, J = 141 Hz), –6.9 to –13.3 (m), –17.7 (d, J = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2951 (13), 2576 (1), 1615 (11), 1467 (5), 1380 (12), 1261

(8), 1129 (3), 1102 (14), 1063 (7), 879 (9), 852 (10), 812 (4), 729 (13), 604 (15), 420 (6); HRMS(– ESI): calcd 535.4047 for C₁₅H₃₅B₂₁BrN [M–H]⁻ found 535.4009.

7: 4-Methyl-N-methyl indole: 14.5 mg, reaction time: 5 h; Yield: 93%, 44.0 mg; dp: 178 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.52$ (t, 1H, J = 8 Hz), 7.41–7.37 (m, 2H), 4.62 (s, 2H), 4.14 (s, 3H), 3.26–1.45 (m, 30H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): $\delta = 7.52$ (t, 1H, J = 8 Hz), 7.41–7.36 (m, 2H), 4.63 (s, 2H), 4.14 (s, 3H), 2.71–2.68 (m, 3H), 2.58–2.56 (m, 2H), 2.53 (s, 3H), 2.34–2.25 (m, 6H), 2.12–2.10 (m, 3H), 2.05 (s, 7H), 2.01–1.99 (m, 2H), 1.80 (s, 2H), 1.60 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 145.1$, 136.0, 132.8, 130.8, 129.2, 111.6, 79.5, 48.0, 37.3, 34.3, 26.1, 22.5, 18.9, 14.2 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = -0.3$ (s), -5.6 (s), -6.7 to -12.5 (m), -17.7 (s) ppm; ¹¹B NMR: $\delta = -0.4$ (d, J = 141 Hz), -5.7 (d, J = 154 Hz), -6.8 to -12.2 (m), -17.8 (d, J = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2945 (14), 2579 (1), 1442 (6), 1380 (9), 1132 (3), 1104 (8), 1064 (7), 774 (4), 729 (5), 715 (10), 677 (2), 617 (13), 541 (11), 490 (15), 458 (15); HRMS(–ESI): calcd 470.5020 for C₁₆H₃₇B₂₁N₁ [M–H]⁻ found 470.5043.

8: 7-Methyl-N-methyl indole: 14.5 mg, reaction time: 7 h; Yield: 98%, 46.0 mg; dp: 168 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.56–7.54 (m, 1H), 7.44 (t, 1H, *J* = 8 Hz), 7.34 (s, 1H), 4.72 (s, 2H), 4.33 (s, 3H), 2.87–1.65 (m, 30H) ppm; ¹H{¹¹B} NMR (400 MHz, CD₂Cl₂): δ = 7.57–7.55 (m, 1H), 7.44 (t, 1H, *J* = 8 Hz), 7.34 (s, 1H), 4.72 (s, 2H), 4.33 (s, 3H), 2.83 (s, 3H), 2.67–2.65 (m, 1H), 7.44 (t, 1H, *J* = 8 Hz), 7.34 (s, 1H), 4.72 (s, 2H), 4.33 (s, 3H), 2.83 (s, 3H), 2.67–2.65 (m, 1H)

2H), 2.58 (s, 2H), 2.52 (s, 1H), 2.28–2.23 (m, 6H), 2.11– 2.09 (m, 2H), 2.06 (s, 6H), 2.03–1.99 (m, 4H), 1.83 (s, 2H), 1.67 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): $\delta = 144.3$, 135.4, 133.4, 129.6, 128.7, 126.5, 123.7, 80.3, 49.3, 41.5, 26.3, 20.9 ppm; ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): $\delta = -0.6$ (s), -5.9 (s), -7.2 to -12.5 (m), -17.8 (s) ppm; ¹¹B NMR: $\delta = -0.6$ (d, J = 155 Hz), -5.9 (d, J = 154 Hz), -7.1 to -13.3 (m), -17.8 (d, J = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2948 (13), 2577 (2), 1442 (6), 1379 (10), 1355 (8), 1257 (12), 1133 (11), 1105 (8), 1072 (7), 1028 (9), 942 (14), 773 (3), 730 (5), 673 (14), 617 (15); HRMS(–ESI): calcd 470.5030 for C₁₆H₃₇B₂₁N₁ [M–H]⁻ found 470.5031.

9: 5-Methoxy-N-methyl indole: 16.1 mg, reaction time: 3 h; Yield: 90%, 44.0 mg; dp: 166 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, 1H, *J* = 12 Hz), 7.24 (s, 1H), 7.10 (dd, 1H, *J* = 12, 4 Hz), 4.69 (s, 2H), 4.10 (s, 3H), 3.92 (s, 3H), 3.03–1.38 (m, 27H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): δ = 7.46 (d, 1H, *J* = 12 Hz), 7.28–7.26 (m, 1H), 7.12 (d, 1H, *J* = 12 Hz), 4.72 (s, 2H), 4.12 (s, 3H), 3.94 (s, 3H), 2.70–2.59 (m, 5H), 2.36 (s, 2H), 2.30–2.26 (m, 4H), 2.10–2.09 (m, 4H), 2.07 (s, 6H), 2.03–2.00 (m, 2H), 1.81 (s, 2H), 1.63 (s, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 160.5, 138.9, 135.0, 115.5, 114.9, 110.3, 79.4, 56.2, 48.9, 37.0, 34.3, 26.1, 22.5, 14.2 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = -0.3 (s), -5.7 (s), -7.0 to -12.4 (m), -17.8 (s) ppm; ¹¹B NMR: δ = -0.3 (d, *J* = 141 Hz), -5.7 (d, *J* = 154 Hz), -7.1 to -13.0 (m), -17.8 (d, *J* = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2575 (1), 1608 (8), 1485 (5), 1443 (14), 1273 (3), 1163 (11), 1133 (4), 1108 (15), 1026 (6), 906 (12), 841 (10), 806 (7), 729 (2), 452 (9), 423 (13); HRMS(-ESI): calcd 486.4969 for C₁₆H₃₇B₂₁NO [M–H]⁻ found 486.4973.

10: 5-BPin-N-methyl indole: 25.7 mg, reaction time: 10 h; Yield: 75%, 44.0 mg; dp: 178 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18$ (s, 1H), 8.04 (d, 1H, J = 8 Hz), 7.55 (d, 1H, J = 8 Hz), 4.77 (s, 2H), 4.16 (s, 3H), 2.85–1.62 (m, 27H), 1.37 (s, 12H) ppm; ¹H{¹¹B} NMR (400 MHz, CDCl₃): $\delta = 8.18$ (s, 1H), 8.04 (d, 1H, J = 8 Hz), 7.55 (d, 1H, J = 8 Hz), 4.77 (s, 2H), 4.16 (s, 3H), 2.68 (s, 3H), 2.57 (s, 2H), 2.34 (s, 3H), 2.28–2.24 (m, 4H), 2.10–2.08 (m, 3H), 2.05 (s, 6H), 1.99 (s, 2H), 1.76 (s, 2H), 1.59 (s, 2H), 1.37 (s, 12H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 147.3$, 135.4, 133.2, 131.8, 113.4, 84.8, 79.4, 49.1, 37.1, 26.1, 25.1 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = 30.8$ (br. s), -0.2 (s), -5.6 (s), -6.9 to -13.4 (m), -17.7 (s) ppm; ¹¹B NMR: $\delta = 31.7$ (br), -0.2 (d, J = 128 Hz), -5.6 (d, J = 192 Hz), -7.0 to -13.7 (m), -17.7 (d, J = 90 Hz) ppm; FT-IR (ranked intensity, cm⁻¹): 2584 (3), 2045 (15), 1978 (12), 1430 (11), 1360 (1), 1202 (14), 1143 (4), 1105 (6), 962 (10), 856 (7), 821 (9), 729 (8), 671 (5), 475 (13), 417 (2); HRMS(–ESI): calcd 582.5716 for C₂₁H₄₆B₂₂NO₂ [M–H]⁻ found 582.5734.

2.4 Preparation of DB^{Me}oCb₂:

The compound for the mechanistic studies were synthesized based on literature procedures.² A comparison of the ${}^{1}H{}^{11}B{}$ NMR spectra with HB^{Me}oCb₂ is shown in the Figure S66.

To a stirred solution of BrB^{Me}oCb₂ (40.5 mg, 0.10 mmol) in benzene (2 mL) taken in a vial, DSiEt₃ (97%-D, 0.11 mmol, 17.7 μ L) was added at 23 °C and the reaction mixture stirred for 1 h. After completion of the reaction as monitored by ¹H and ¹¹B NMR spectroscopy, the volatiles removed under vacuum to afford a white solid, which was washed with cold *n*-pentane (1 mL). The residue was dried under vacuum to give pure DB^{Me}oCb₂ as white solid in 90% yield (29.5 mg). The product was >90% enriched with deuterium at the central boron position, as determined by ¹H {¹¹B} NMR spectrum.

2.5 Procedure for the Gram Scale Synthesis of 1 in Glovebox-free Conditions:

Compound HB^{Me}oCb₂ (1.60 g, 5.00 mmol) was added to a two-necked flask under nitrogen, which is equipped with a rubber septum and a stopcock connected to a Schlenk line. Then anhydrous C₆H₆ (20 mL) was added, followed by 1-methyl-1*H*-indole (0.656 g, 5.00 mmol) dissolved in C₆D₆ (10 mL) via syringe through the rubber septum. The reaction mixture was allowed to stir for 1 h at 23 °C. After completion of the reaction, as monitored by the ¹H NMR spectroscopy; The benzene was removed under vacuum and then cold *n*-pentane (20 mL) was added to the mixture and the white slurry was filtered via a fret. The solid was washed with cold *n*-pentane (3 × 5 mL). The residue was concentrated in vacuo and pure C2 borylated indole was obtained quantitatively as a pale white solid (2.25 g, 97%).

2.6 Functionalization attempts:

To a stirred solution of **1** (45.7 mg, 0.10 mmol) in THF (2 mL), the base in THF (0.12 mmol base, 1 mL THF) was added. The reactions were monitored by ¹H spectroscopy (Figure S71-S73).

3. X-ray Crystallographic Data:

	1	4
CCDC	2419319	2419318
Empirical Formula	$C_{31}H_{74}B_{42}N_2Cl_2$	$C_{14}H_{34}B_{21}N_1$
FW (g/mol)	999.84	443.43
Crystal System	orthorhombic	monoclinic
Space Group	Pbca	C 2/c
a (Å)	15.5145(5)	32.8033(13)
b (Å)	18.9095(6)	7.9130(3)
c (Å)	38.3552(12)	22.6862(10)
α (deg)	90	90
$\boldsymbol{\beta}$ (deg)	90	119.452(1)
γ (deg)	90	90
$V(Å^3)$	11252.3(6)	5127.7(4)
Z	8	8
$D_{c} (g cm^{-3})$	1.180	1.149
Radiation λ (Å)	0.71073	0.71073
Temp (K)	150	150
R1 [I>2($\boldsymbol{\sigma}$)I] ^a	0.0537	0.0419
$wR2 (F^2)^a$	0.1543	0.1112
$GOF(S)^a$	1.092	1.069

Table S2: X-ray crystallographic details for 1 and 4

 ${}^{a}R1(F[I > 2(I)]) = \sum ||Fo| - |Fc|| \sum |Fo|; wR2(F^{2} [all data]) = \{[w(Fo^{2} - Fc^{2})2]/[w(Fo^{2})^{2}]\}^{1/2}; S(all data) = [w(Fo^{2} - Fc^{2})^{2}/(n - p)]^{1/2} (n = no. of data; p = no. of parameters varied; w = 1/\sigma^{2} (Fo^{2}) + (aP)^{2} + bP]$ where $P = (Fo^{2} + 2Fc^{2})/3$ and a and b are constants suggested by the refinement program.

4. NMR and IR Spectra:

Figure S1: ¹H NMR (400 MHz) spectrum of 1 in CDCl₃

Figure S4: ¹¹B{¹H} NMR (128 MHz) spectrum of 1 in CDCl₃

Figure S5: ¹¹B NMR (128 MHz) spectrum of 1 in CDCl₃

Figure S7: ¹H NMR (400 MHz) spectrum of 2 in CDCl₃

Figure S8: ¹H{¹¹B} NMR (400 MHz) spectrum of 2 in CDCl₃

Figure S9: ¹³C{¹H} NMR (101 MHz) spectrum of 2 in CDCl₃

Figure S10: ¹¹B{¹H} NMR (128 MHz) spectrum of 2 in CDCl₃

Figure S11: ¹¹B NMR (128 MHz) spectrum of 2 in CDCl₃

Figure S12: FT-IR spectrum of 2

Figure S13: ¹H NMR (400 MHz) spectrum of 3 in CDCl₃

Figure S14: ¹H{¹¹B} NMR (400 MHz) spectrum of 3 in CDCl₃

Figure S16: ¹¹B{¹H} NMR (128 MHz) spectrum of 3 in CDCl₃

Figure S17: ¹¹B NMR (128 MHz) spectrum of **3** in CDCl₃

-0.28 -0.75 -5.10 -5.10 -6.31 -6.36 -8.94 -13.92

Figure S19: ¹H NMR (400 MHz) spectrum of 4 in CDCl₃

Figure S20: ¹H{¹¹B} NMR (400 MHz) spectrum of 4 in CDCl₃

Figure S21: ¹³C{¹H} NMR (101 MHz) spectrum of 4 in CDCl₃

Figure S22: ¹¹B{¹H} NMR (128 MHz) spectrum of 4 in CDCl₃

Figure S23: ¹¹B NMR (128 MHz) spectrum of 4 in CDCl₃

-0.26 -0.76 -0.76 -0.76 -0.55 -0.55 -0.41 -0.41

Figure S24: FT-IR spectrum of 4

Figure S25: ¹H NMR (400 MHz) spectrum of 5 in CDCl₃ (* denotes residual C₆H₆)

Figure S26: ¹H{¹¹B} NMR (400 MHz) spectrum of 5 in CDCl₃

Figure S28: ${}^{11}B{}^{1}H{}$ NMR (128 MHz) spectrum of 5 in CDCl₃

		· ·			· · ·		· ·	· ·	· ·	· ·				· ·	· · ·	· ·	· ·						' '
0	55	50	45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55
												(ppm)											

Figure S29: ¹¹B NMR (128 MHz) spectrum of 5 in CDCl₃

	1		· · ·										1			· · ·							· · · ·
0	55	50	45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55
												(ppm)											

Figure S31: ¹H NMR (400 MHz) spectrum of 6 in CDCl₃

Figure S32: ¹H{¹¹B} NMR (400 MHz) spectrum of 6 in CDCl₃

Figure S33: ¹³C{¹H} NMR (101 MHz) spectrum of 6 in CDCl₃

Figure S34: ¹¹B{¹H} NMR (128 MHz) spectrum of 6 in CDCl₃

Figure S35: ¹¹B NMR (128 MHz) spectrum of 6 in CDCl₃

Figure S36: FT-IR spectrum of 6

Figure S37: ¹H NMR (400 MHz) spectrum of 7 in CDCl₃ (*denotes residual C₆H₆)

Figure S38: ¹H{¹¹B} NMR (400 MHz) spectrum of 7 in CDCl₃

Figure S40: ¹¹B{¹H} NMR (128 MHz) spectrum of 7 in CDCl₃

Figure S41: ¹¹B NMR (128 MHz) spectrum of 7 in CDCl₃

Figure S42: FT-IR spectrum of 7

Figure S43: ¹H NMR (400 MHz) spectrum of 8 in CD₂Cl₂ (* denotes residual C₆H₆)

Figure S44: ${}^{1}H{}^{11}B$ NMR (400 MHz) spectrum of 8 in CD₂Cl₂

Figure S45: ¹³C{¹H} NMR (101 MHz) spectrum of 8 in CD₂Cl₂ (* denotes residual C₆H₆)

Figure S46: ¹¹B{¹H} NMR (128 MHz) spectrum of 8 in CD₂Cl₂

Figure S47: ¹¹B NMR (128 MHz) spectrum of 8 in CD₂Cl₂

Figure S48: FT-IR spectrum of 8

Figure S49: ¹H NMR (400 MHz) spectrum of 9 in CDCl₃

Figure S52: ¹¹B{¹H} NMR (128 MHz) spectrum of 9 in CDCl₃

Figure S53: ¹¹B NMR (128 MHz) spectrum of 9 in CDCl₃

Figure S54: FT-IR spectrum of 9

Figure S55: ¹H NMR (400 MHz) spectrum of **10** in CDCl₃

Figure S56: ¹H{¹¹B} NMR (400 MHz) spectrum of 10 in CDCl₃

Figure S58: ¹¹B{¹H} NMR (128 MHz) spectrum of 10 in CDCl₃

Figure S59: ¹¹B NMR (128 MHz) spectrum of 10 in CDCl₃

Figure S62: ¹H{¹¹B} NMR (400 MHz) spectrum of DB^{Me}oCb₂ in C₆D₆

Figure S63:¹¹B{¹H} NMR (128 MHz) spectrum of $DB^{Me}oCb_2$ in C_6D_6

Figure S64: ¹¹B NMR (128 MHz) spectrum of DB^{Me}oCb₂ in C₆D₆

Figure S65: ²H NMR (600 MHz) spectrum of DB^{Me}oCb₂ in C₆H₆

Figure S66: Stacked ¹H{¹¹B} NMR (400 MHz) spectrum of HB^{Me}oCb₂ and DB^{Me}oCb₂ in C₆D₆

Figure S67: ¹H NMR (400 MHz) spectrum of 1-d in CDCl₃ (* denotes C₆H₆)

Figure S69: ¹¹B NMR spectrum of 1-d in CDCl₃ (128 MHz)

-0.26 -0.89 -5.06 -6.17 -6.17 -6.17 -6.12 -12.73 -12.73

Figure S70: Low temperature ${}^{1}H{}^{11}B{}$ NMR (400 MHz) spectrum for the synthesis of 1 in CDC1₃

Figure S71: ¹H NMR spectrum of **1** and Pyridine in CDCl₃ (400 MHz) (* denotes peaks for 1-methyl-1*H*-indole)

Figure S72: ¹H NMR spectrum of **1** and 2,6-lutidine in CDCl₃ (400 MHz) (* denotes peaks for 1-methyl-1*H*-indole)

Figure S73: ¹H NMR spectrum of 1 and NEt₃ in CDCl₃ (400 MHz) (* denotes peaks for 1-methyl-1H-indole)

5. References:

- 1. (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341; (b) G. M. Sheldrick, *Acta Crystallogr.*, 2008, **64**, 112-122.
- 2. M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, *Angew. Chem. Int. Ed.*, 2023, **62**, e202307040.