Supporting Information

Та	Table of content			
1.	General methods	2		
	Synthesis and characterization of compound 1	3		
	Synthesis and characterization of compound $Me_3N \rightarrow BD_3$	13		
	Synthesis and characterization of compound A-BD ₃	15		
	Synthesis and characterization of compound 1-BD ₃	21		
	Synthesis and characterization of compound 2	26		
	Synthesis and characterization of compound 3	33		
	DOSY experiments on compounds A , 2 and 3	39		
2.	X-ray analyses and structural figures of complexes 1-3	40		
3.	DFT investigations	42		
	Computational Details4			
	Natural Bond Orbital Analysis (NBO) for compound 2 and 3 43			
	Frontier Orbitals of compound 1 45			
	Cartesian coordinates46			
4.	References	58		

1. General methods

The experiments were performed following standard Schlenk line and glove box techniques using Argon as the inert gas. Solvents were dried using a MBraun SPS column. Deuterated solvents were degassed via Argon bubbling and stored under Ar over 4 Å molecular sieves. NMR spectra were collected on Bruker machine AV400. Chemical shifts for ¹H and ¹³C analyses are relative to TMS. Chemical shifts for ¹¹B, ³¹P and ¹⁹F analyses are relative to F₃B.Et₂O, 85% H₃PO₄ and CCl₃F respectively. Chemical shifts are reported in ppm (δ) and coupling constants in Hertz (Hz). The following abbreviations were used, s – singlet, d – doublet, t – triplet, quart – quartet, br- broad and m – multiplet. Elemental analyses were performed in the facility available in Laboratoire de Chimie de Coordination du CNRS using PerkinElmer 2400 Series Analyzer. Infrared spectra were recorded in a nitrogen-filled glove box on an Agilent Cary 630 FT-IR spectrophotometer equipped with ATR module. Compounds **A** and RuH₂(H₂)₂P(Cy₃)₂ were synthesized following reported procedures.¹

Figure S1 – Compounds synthesized in the present work

Synthesis and characterization of compound 1

A mixture of **A** (100 mg, 0.223 mmol) and $[Cu(CH_3CN)_4BF_4]$ (140 mg, 0.446 mmol) was dissolved at - 30°C in dichloromethane (7 mL). The solution was then allowed to reach room temperature stirred during 45 minutes to reach completion, protected from light exposure. The crude mixture was filtrated over a filtrating cannula and the volatiles were evacuated under vacuum. The residue was washed with a mixture of dichloromethane/pentane (3 x 1/3 mL) then with pentane (2 x 2 mL) and dried under dynamic vacuum, affording **1** as white powder (153 mg, 0.169 mmol, 73%). Colorless crystals suitable for X-ray analysis were obtained from pentane diffusion into a concentrated dichloromethane solution at room temperature, after one day, protected from light exposure.

¹**H** NMR (400 MHz, CD₂Cl₂, 298 K) δ 7.83 (AA'BB' system, ³ J_{AB} = 8.5 Hz, ³ $J_{BB'}$ = 6.6 Hz, ⁴ $J_{AB'}$ = 1.3 Hz, ⁵ $J_{AA'}$ = 0.0 Hz, 2H, H_A and H_{A'}), 7.67 (AA'BB' system, ³ J_{AB} = 8.5 Hz, ³ $J_{BB'}$ = 6.6 Hz, ⁴ $J_{AB'}$ = 1.3 Hz, ⁵ $J_{AA'}$ = 0.0 Hz, 2H, H_B and H_{B'}), 4.79 (d, ² J_{P-H} = 2.2 Hz, 4H, NCH₂P), 2.80 (br. quart, 3H, BH₃), 2.37 (s, 9H, CH₃CN), 1.27 (d, ³ J_{P-H} = 14.2 Hz, 36H, P(C(CH₃)₃). ¹**H**{¹¹**B**} NMR (400 MHz, CD₂Cl₂, 298 K) δ 2.80 (t, ³ J_{P-H} = 11.4 Hz, 3H). ¹³C{¹**H**} NMR (101 MHz, CD₂Cl₂, 298 K) δ 168.0 (C_{quat} . C-B) 133.1 (s, C_{quat} . Ar), 127.0 (s, CHAr_{B/B'}), 120.1 (s, C_{quat} . CH₃CN), 112.6 (s, CHAr_{A/A'}), 39.6 (d, ¹ J_{P-C} = 10.5 Hz, NCH₂P), 34.3 (d, ¹ J_{P-C} = 10.3 Hz, PC(CH₃)₃), 29.5 (d, ² J_{P-C} = 7.2 Hz, PC(CH₃)₃), 2.8 (s, CH₃CN). Carbenic carbon is detected through the coupling with methylene protons in HMBC ¹³C{¹H}/¹H spectrum. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) δ 30.7 (s, P^{t} Bu₂). ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ -1.1 (s, *B*F₄), -33.1 (quart, ¹ J_{B-H} = 85 Hz, *B*H₃). ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ -152.0 (BF₄) Elemental analysis calcd. for C₃₁H₅₆B₃Cu₂F₈N₅P₂ (871.28 g.mol⁻¹) C, 42.69; H, 6.47; N, 8.03; found: C, 41.51; H, 6.56; N, 7.73. Despite several attempts, better elemental analyses could not be obtained. We suspect that the amount of coordinated acetonitrile does not remain strictly to three. ATR-FTIR (cm⁻¹) 2943, 2901, 2873, 2423, 2317, 2277, 1470, 1446, 1399, 1372, 1283, 1270, 1180, 1049, 1021, 811, 781, 749.

 CD_2Cl_2 (D1 = 30 sec for each spectrum)

7.92 7.91 7.90 7.89 7.88 7.87 7.86 7.85 7.84 7.83 7.82 7.81 7.80 7.79 7.78 7.77 7.76 7.75 7.74 7.73 7.72 7.71 7.70 7.69 7.68 7.67 7.66 7.65 7.64 7.63 7.62 7.61 7.60 7.59

Figure S4 – Stacked ¹H NMR spectrum of **1** at 298 K in CD_2Cl_2 (top) and simulation of AA'BB' system (bottom). Zoom of the aromatic region

Figure S5 – COSY $^{1}H/^{1}H$ NMR spectrum of **1** at 298 K in CD₂Cl₂

Figure $S7 - {}^{13}C{}^{1}H$ NMR spectrum of **1** at 298 K in CD_2Cl_2

Figure S9 – HMBC $^{13}C{^{1}H}/^{1}H$ NMR spectrum of **1** at 298 K in CD₂Cl₂

12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 Figure $S11 - {}^{11}B$ NMR spectrum of **1** at 298 K in CD_2Cl_2

 $\frac{1}{124} - 126 - 128 - 130 - 132 - 134 - 136 - 138 - 140 - 142 - 144 - 146 - 148 - 150 - 152 - 154 - 156 - 158 - 160 - 162 - 164 - 166 - 168 - 170 - 172 - 174 - 176$ Figure S13 - ¹⁹F NMR spectrum of **1** at 298 K in CD₂Cl₂

Summary of variable temperature analyses conducted on complex 1 (Figure S15-S17).

A J. Young NMR tube containing a CD_2CI_2 solution of complex **1** was placed in a 400 MHz NMR apparatus. The sample was stabilized for 10 minutes at a given temperature, the NMR spectra were recorded every 20 °C steps (from 183 K to 283 K, then at 298 K).

¹H NMR analysis

Lowering the temperature led to the coalescence of the BH₃ signal in ¹H NMR spectra, from a quartet to a singlet (Figure S15). This is assigned to a quadrupole-induced thermal decoupling between hydrogen and boron. Such behavior has been described in NHC-BH₃ tungsten or copper borate complexes at low temperatures.^{6–8 2}

¹H{¹¹B} NMR analysis

At 298 K, the ¹H{¹¹B} NMR shows a ² J_{P-H} coupling constant of 11.3 Hz corresponding to the coupling of the hydrides with the two Cu-P fragments. Lowering the temperature led to a broadening of the triplet into a unique large singlet (Figure S16).

¹H{¹¹B}{³¹P} NMR analysis

Starting at 183 K, the hydride signal appears as a broad singlet at 2.60 ppm in ${}^{1}H{{}^{11}B}{{}^{31}P}$ NMR spectrum (Figure S17). At this temperature, the fluxional behavior is not slow enough to observe distinct chemical shift for terminal and bridging BH. By increasing the temperature up to 298 K, the signal sharpens into a singlet.

Figure S15 – Stack of ¹H NMR spectra of **1** at different temperatures in CD_2Cl_2 (D1 = 30 sec)

Figure S16 – Stack of ${}^{1}H{}^{11}B$ NMR spectra of **1** at different temperatures in CD₂Cl₂ (D1 = 30 sec)

sec)

Synthesis and characterization of compound $Me_3N \rightarrow BD_3$

A mixture of Me₃N \rightarrow BH₃ (30 mg, 0.411 mmol) and RuH₂(H₂)₂P(Cy₃)₂ (13 mg, 0.019 mmol) was dissolved in THF (1 mL) in a J. Young tube. The head-space was purged at room temperature before adding 1 atm of D₂. The conversion into Me₃N \rightarrow BD₃ was monitored by ¹¹B{¹H} NMR spectroscopy. The head-space was renewed seven times by fresh D₂ over a period of nine days. The crude mixture was filtrated over a Celite pad and rinsed with 2 mL of THF. THF was removed using trap-to-trap technic and the residue dried under dynamic vacuum in an ice bath to prevent the loss of Me₃N \rightarrow BD₃. 25 mg of white-off powder were isolated (Y < 79%).

¹**H NMR** (400 MHz, Tol- d_8 , 289 K) δ 2.00 (s, 9H, Me_3). ¹¹**B**{¹**H**} **NMR** (128 MHz, Tol- d_8 , 289 K) δ -7.5 (m). The level of deuterium incorporation was estimated at 83% from ¹H NMR integration of one of the four signals of the BH₃ fragment versus NMe₃ signal. However, the relaxation time and some overlapping signals impact the accuracy of this calculation. A consistent estimation (82%, *vide infra*) was deduced in the next step for the formation of **A-BD**₃.

In addition to Me₃N \rightarrow BD₃ and Me₃N \rightarrow BH₃ signals, adduct of Me₃N \rightarrow BD₃ with Ru complexes are detected in ¹H NMR spectrum between 1.05 to 1.88 ppm and in ¹¹B{¹H} NMR spectrum at -43.0 ppm.

Figure S18 – ¹H NMR spectrum of $Me_3N \rightarrow BD_3$ at 298 K in Tol-d₈ (D1 = 10 sec) * corresponds to $Me_3N \rightarrow BH_3$, ° corresponds to $Me_3N \rightarrow BH_3$ ruthenium adduct.

Figure S19 – ¹¹B NMR spectrum of $Me_3N \rightarrow BD_3$ at 298 K in Tol-d₈, ° corresponds to a $Me_3N \rightarrow BH_3$ ruthenium adduct

Synthesis and characterization of compound A-BD₃

A mixture of the **bis(phosphine)NHC** (219 mg, 0.505 mmol) and **Me₃N** \rightarrow **BD**₃ (50 mg, 0.660 mmol) in toluene (6 mL) was stirred for 45 min at 90 °C. The solution was then cooled to room temperature and the crude concentrated to half of the initial volume. The crude mixture was filtrated over a pad of silica, washed with toluene (4x5 mL) and the volatiles removed under vacuum to give a brown oil. The toluene was co-evaporated with 3 x 3 mL of pentane. Two successive crystallizations in cold pentane afforded compound **A-BD**₃ (50 mg, 0.119 mmol, < 23%). The ¹H NMR spectrum shows trace amount of **Me₃N** \rightarrow **BH**₃ ruthenium adduct. **A** is also observed as a singlet at 2.32 ppm in ¹H{¹¹B} NMR spectrum. The ratio between CH₂ and BH₃ signal in ¹H NMR analysis indicates a deuterium incorporation of 82%.

¹H{¹¹B} NMR (400 MHz, C₆D₆, 298 K) δ 8.09 (m, 2H, H_A), 7.07 (m, 2H, H_B), 4.87 (d, ²J_{P-H} = 1.8 Hz, 4H, NCH₂P), 1.11 (d, ³J_{P-H} = 11.1 Hz, 36H, P(C(CH₃)₃). ²H NMR (61 MHz, None, 298 K) δ 2.29 (br. s). ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K) δ 16.6 (s). ¹¹B NMR (128 MHz, C₆D₆, 298 K) δ -34.3 (br.). Elemental Analysis. Calcd. For C₂₅H₄₅D₃BN₂P₂, (452.36 g.mol⁻¹) C, 66.37; H, 11.36; N, 6.19; found C, 66.35; H, 10.44; N, 5.70. ATR-FTIR (cm⁻¹) 2987, 2938, 2898, 2862, 2368, 2346, 2319, 2287, 1776, 1731, 1610, 1469, 1428, 1397, 1368, 1256, 1174, 1017, 932, 811, 786, 735.

Figure S20 – ¹H{¹¹B} NMR spectrum of **A-BD**₃ at 298 K in C_6D_6 (D1 = 30 sec) * corresponds to **A-BH**₃, ° corresponds to a **Me**₃**N** \rightarrow **BH**₃ ruthenium adduct

gure S21 – Stack of a) ¹H and b) ¹H{¹¹B} NMR spectra of **A-BD**₃ at 298 K in C₆D₆ (D1 = 30 sec), corresponds to **A-BH**₃

ruthenium adduct)

Figure S27 – ATR-FTIR spectrum of A-BD₃

Figure S28 – Superimposed ATR-FTIR spectra of **A** (blue curve), **A-BD**₃ (orange curve).

Synthesis and characterization of compound 1-BD₃

A mixture of **A-BD₃** (25 mg, 0.055 mmol) and $[Cu(CH_3CN)_4BF_4]$ (35 mg, 0.110 mmol) was dissolved at room temperature in CD₂Cl₂ (1 mL) in a J. Young NMR tube. The solution was shaken by hand and protected from light exposure. Completion of the reaction was reached after 45 minutes. Compound **1-BD₃** was characterized by NMR and IR spectroscopy without further purification.

¹**H** NMR (400 MHz, CD₂Cl₂, 298 K) δ 7.87 (AA'BB' system, ³J_{AB} = 8.20 Hz, ³J_{BB'} = 7.03 Hz, ⁴J_{AB'} = 1.08 Hz, ⁵J_{AA'} = 0.00 Hz, 2H, H_A and H_{A'}), 7.65 (AA'BB' system, ³J_{AB} = 8.20 Hz, ³J_{BB'} = 7.03 Hz, ⁴J_{AB'} = 1.08 Hz, ⁵J_{AA'} = 0.00 Hz, 2H, H_B and H_{B'}), 4.82 (d, ²J_{P-H} = 2.6 Hz, 4H, NCH₂P), 2.11 (s, 27H, CH₃CN and traces of [Cu(CH₃CN)₄BF₄]), 1.27 (d, ³J_{P-H} = 13.9 Hz, 36H, P(C(CH₃)₃). ²H{¹¹B} NMR (61 MHz, CH₂Cl₂, 298 K) δ 2.60 (br. s). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) δ 31.5 (s). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 298 K) δ -1.1 (*B*F₄), -34.0 (*B*D₃). ATR-FTIR (cm⁻¹) 2997, 2941, 2904, 2870, 2415, 2315, 2281, 1808, 1722, 1610, 1467, 1446, 1398, 1372, 1264, 1182, 1047, 1021, 935, 808, 760, 745.

ruthenium adduct

Figure S31 – Stacked ¹H NMR spectrum of **1-BD**₃ at 298 K in CD₂Cl₂ (top) and simulation of AA'BB' system (bottom). Zoom of the aromatic region

⁴⁰ ³⁵ ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁰ ⁵ ⁰ ⁻⁵ ⁻¹⁰ ⁻¹⁵ ⁻²⁰ ⁻²⁵ ⁻³⁰ ⁻³⁵ ⁻⁴⁰ ⁻⁴⁵ ⁻⁵⁰ ⁻⁵⁵ ⁻⁶⁰ ⁻⁶⁵ Figure S35 – ¹¹B{¹H} NMR spectrum of **1-BD**₃ at 298 K in CD₂Cl₂ (o corresponds to a ruthenium adduct)

Figure S37 – Superimposed ATR-FTIR spectra of complexes **1** (blue curve) and **1-BD**₃ (orange curve)

Synthesis and characterization of compound 2

A mixture of **A** (200 mg, 0.446 mmol) and CuCl (133 mg, 1.339 mmol) in dichloromethane (10 mL) was stirred for 2.5 hours at room temperature, protected from light. At the initial stage, fine powder of CuCl is barely soluble in CH₂Cl₂. The suspension evolves to a clear solution within 1 h, leaving only small amount of insoluble residue. At the end of the reaction, the residue was cannulated off and the filtrate concentrated under vacuum. After one night at -25 °C, a white precipitate formed, which was washed with dichloromethane at -35 °C (0.5 mL) then dried at room temperature. The residue was washed with a mixture of pentane/dichloromethane (3 x 2/1mL), then dried. Elemental analysis showed that the obtained white powder (247 mg, 0.178 mmol, < 40 %) is not pure complex **2** and presumably contain excess of CuCl. Adding one equivalent of CuCl to the elemental analysis calculation afford more accurate data. Colorless crystals suitable for X-Ray analysis were obtained from a concentrated dichloromethane solution layered by Et₂O, after one day at room temperature, protected from light exposure.

¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ 7.66 (AA'BB' system, ³J_{AB} = 8.3 Hz, ³J_{BB'} = 7.4 Hz, ⁴J_{AB'} = 1.0 Hz, ⁵J_{AA'} = 0.0 Hz, 4H, H_A and H_{A'}), 7.57 (AA'BB' system, ³J_{AB} = 8.3 Hz, ³J_{BB'} = 7.4 Hz, ⁴J_{AB'} = 1.0 Hz, ⁵J_{AA'} = 0.0 Hz, 4H, H_B and H_{B'}), 4.71 (br. s, 8H, NCH₂P), 2.59 (br., 6H, BH₃), 1.30 (br. s, 72H, P(C(CH₃)₃). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298 K) δ 173.8 (br., *C*-B), 133.2 (s, *C_{quat}*.Ar), 125.7 (s, *C*HAr_{B/B'}), 112.3 (s, CHAr_{A/A'}), 39.1 (d, ¹J_{P-C} = 7.6 Hz, NCH₂P), 34.6 (m, PC(CH₃)₃), 29.4 (d, ²J_{P-C} = 7.3 Hz, PC(CH₃)₃). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) δ 30.1 (br., P^tBu₂). ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ -33.9 (br., *B*H₃). Elemental Analysis. Calcd. For C₅₀H₈₈B₂Cl₅Cu₅N₄P₄, (1386.15 g.mol⁻¹) C, 43.15; H, 6.81; N, 4.03 Exp. C, 40.62; H, 6.98 N, 3.50 Calcd. with 1 eq of CuCl: For C₅₀H₈₈B₂Cl₆Cu₆N₄P₄, C, 40.28; H, 6.36; N, 3.76. ATR-FTIR (cm⁻¹) 2960, 2945, 2900, 2866, 2397, 2318, 1470, 1442, 1394, 1369, 1260, 1177, 1085, 1018, 932, 798, 743.

4.5

4.0

3.5

3.0

2.5

2.0

1.5

5.0

5.0 5.5 6.0 6.5 - 7.0 7.5

8.0

1.0

1

7.5

7.0

6.5

6.0

5.5

8.0

 $a ca K1818.7. ser - {\tt NHCBH3} ({\tt CuCl2.5}) - {\tt NIGHT_2D_H1_NOESY\ CD2Cl2\ /x/av400hd/data/eq_n/nmr\ a. camyn\ 11}$

Figure S43 – ${}^{13}C{}^{1}H$ NMR spectrum of **2** at 298 K in CD₂Cl₂

 $a ca K1818.8.ser - {\tt NHCBH3} ({\tt CuCl2.5}) - {\tt NIGHT_2D_C13_HSQC\ CD2Cl2\ /x/av400 hd/data/eq_n/nmr\ a.camyn\ 11}$

acaK1818.9.ser — NHCBH3(CuCl2.5) — NIGHT_2D_C13_HMBC CD2Cl2 /x/av400hd/data/eq_n/nmr a.camyn 11

Figure S45 – HMBC ${}^{13}C{}^{1}H{}^{/1}H$ NMR spectrum of **2** at 298 K in CD₂Cl₂

Figure S49 – ATR-FTIR spectrum of complex 2

Synthesis and characterization of compound 3

To a solution of **2** (316 mg, 0.228 mmol) in acetonitrile (10 mL) was added potassium graphite (92 mg, 0.680 mmol) at room temperature. The reaction mixture was stirred for 40 min, protected from light. The suspension turned dark brown within one minute. The crude mixture was filtrated through a glass frit, rinsed with 3 x 5 mL of acetonitrile. The pale-yellow filtrate was dried under dynamic vacuum, yielding **3** as off-white powder (180 mg, 0.139 mmol, 61%). Pentane diffusion to a concentrated acetonitrile solution over two days yielded tiny pale-yellow crystals of **3** suitable for X-Ray analysis.

¹**H** NMR (400 MHz, CD₃CN, 298 K) δ 7.93 (AA'BB' system, ${}^{3}J_{AB} = 8.1$ Hz, ${}^{3}J_{BB'} = 6.9$ Hz, ${}^{4}J_{AB'} = 1.1$ Hz, ${}^{5}J_{AA'} = 0.0$ Hz, 4H, H_A and H_{A'}), 7.49 (AA'BB' system, ${}^{3}J_{AB} = 8.1$ Hz, ${}^{3}J_{BB'} = 6.9$ Hz, ${}^{4}J_{AB'} = 1.1$ Hz, ${}^{5}J_{AA'} = 0.0$ Hz, 4H, H_B and H_{B'}), 4.79 (br. d, 8H, NCH₂P), 2.16 (br. quart, 6H, BH₃), 1.25 (d, ${}^{2}J_{P-H} = 12.7$ Hz, 72H, P(C(CH₃)₃). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CD₃CN, 298 K) δ 133.9 (s, C_{quat} .Ar), 125.5 (s, CHAr_{B/B'}), 113.5 (s, CHAr_{A/A'}), 40.1 (d, ${}^{1}J_{P-C} = 5.6$ Hz, NCH₂P), 34.6 (d, ${}^{1}J_{P-C} = 6.4$ Hz, PC(CH₃)₃), 29.5 (d, ${}^{2}J_{P-C} = 7.8$ Hz, PC(CH₃)₃). *Carbenic carbon is not observed*. ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CD₃CN, 298 K) δ 27.1 (br., P^tBu₂). ${}^{11}B$ NMR (128 MHz, CD₃CN, 298 K) δ -33.1 (quart, ${}^{1}J_{B-H} = 88$ Hz, BH₃). Elemental analysis calcd. For C₅₀H₉₄B₂Cl₄Cu₄N₄P₄ (1288 g.mol⁻¹) C, 46.45; H, 7.33; N, 4.33; found C, 46.36; H, 7.41; N, 4.50. ATR-FTIR (cm⁻¹) 2942, 2899, 2866, 2379, 2321, 2291, 1470, 1438, 1393, 1370, 1264, 1177, 1084, 1020, 931, 810, 778, 739.

7.94 7.92 7.90 7.88 7.86 7.84 7.82 7.80 7.78 7.76 7.74 7.72 7.70 7.68 7.66 7.64 7.62 7.60 7.58 7.56 7.54 7.52 7.50 7.48 7.46 7.44 7.42 7.4

Figure S54 – NOESY ¹H/¹H NMR spectrum of **3** at 298 K in CD₃CN (Mixing time = 1 s)

acaK0972.2.fid — Caract 5ba Cu reduced — C13_DECOUPLE_H1 CD3CN /x/av400hd/data/eq_n/nmr a.camyn 6

Figure $S55 - {}^{13}C{}^{1}H$ NMR spectrum of **3** at 298 K in CD₃CN

Figure S57 – HMBC ${}^{13}C{}^{1}H{}^{/1}H$ NMR spectrum of **3** at 298 K in CD₃CN

S38

Figure S60 – ATR-FTIR spectrum of complex 3

DOSY experiments on compounds A, 2 and 3

Diffusion NMR experiments were carried out on a Bruker Avance NEO 600 MHz instrument. The ¹H DOSY spectra were recorded at 300 K with bipolar gradient (STEBPGP) 1s pulse program from Bruker topspin software. All spectra were recorded with 16 K time domain data point in the t2 dimension and 16 t1 increments. The gradients strength was linearly incremented in 16 steps from 2% up to 95% of the maximum gradient strength. All measurements were performed with a compromise diffusion delay Δ of 100 ms and a gradient pulse length δ of 2.2 ms. The ligand **A**, complexes **2** and **3** samples were prepared in concentrations of 50 mM to reduce the effect of viscosity and intermolecular interactions. The diffusion coefficients were determined by regression analysis by fitting the peak areas to the Stejskal-Tanner equation from T1/T2 analysis in Topspin 4.4.1. The uncertainty of the diffusion constants obtained from T1/T2 analysis is D±0.1.

Compounds	Diffusion coefficient (10 ⁻¹⁰ m ₂ .s ⁻¹)
Α	9.3
2	6.3
3	6.0

Table S1 – Diffusion coefficients of compounds A, 2 and 3

2. X-ray analyses and structural figures of complexes 1-3

Data were collected at low temperature (100 or 150 K) either on an Oxford Diffraction Gemini using a Cu-K α radiation (λ = 1.54184 Å), or on a Bruker Kappa Apex II diffractometer using a Mo-K α radiation (λ = 0.71073 Å) micro-source, both equipped with an Oxford Instrument or Oxford Cryosystems, Cooler Device.

The structures have been solved using the new dual-space algorithm program SHELXT,³ or SUPERFLIP,⁴ and refined by means of least-squares procedures using either SHELXL-2018³ program included in the software package WinGX ⁵ version 1.639, or with the aid of the program CRYSTALS.⁶ The Atomic Scattering Factors were taken from International Tables for X-Ray Crystallography.⁷ Hydrogen atoms were placed geometrically and refined using a riding model. All non-hydrogen atoms were anisotropically refined, except for BH₃ fragments.

Moreover, it was not possible to resolve diffuse electron-density residuals (enclosed solvent molecule) for the structure ACN170122 (**2**, CCDC number 2429979). Treatment with the 'SQUEEZE facility from PLATON⁸ resulted in a smooth refinement. Since a few low order reflections are missing from the data set, the electron count will be underestimated. Thus, the values given for D(calc), F(000) and the molecular weight are only valid for the ordered part of the structure.ms were anisotropically refined.

Ellipsoid plots in the figures of the crystallography section were generated using the software ORTEP-35.⁹ The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 2429977-2429979 for ACN160421 (**3**), ACN250522 (**1**) and ACN170122 (**2**) respectively.

Figure S61 - Structure of compound **1**. Thermal ellipsoids drawn at 30% probability (for clarity cocrystalized CD₂Cl₂, two BF₄ anions and hydrogens are omitted except BH₃). Hydrides were located in the difference Fourier map and refined freely without any constraint. Important elements are drawn with ellipsoid tool. Selected bond lengths [Å] and angles [°]: C1-B1 1.599(8), B1-H100 1.10(6), B1-H101 1.29(6), B1-H102 1.12(6), Cu1-H101 1.88(6), Cu2-H101 1.83(6), Cu2-H102 1.93(6), Cu1-Cu2 3.504(1), P1-Cu1 2.2081(15), P2-Cu2 2.2156(15), B1-H101-Cu1 125(4), B1-H101-Cu2 91(3), B1-H102-Cu2 92(4)

Figure S62 - a) Fragment of **2** constituting the asymmetric unit, b) Structure of compound **2**. Thermal ellipsoids drawn at 30% probability (For clarity, hydrogens are omitted except hydrides on boron and methylenes). Hydrides were located in the difference Fourier map and refined freely without any constraint. Important elements are drawn with ellipsoid tool. Yellow dashed lines correspond to [C-H···H-B] interactions. Selected bond lengths [Å] and angles [°]: B1-C1 1.586(4), C1-N1 1.355(3), C1-N2 1.352(3), B1-H1 1.06(4), B1-H3 1.08(4), B1-H4 1.23(4), H3 ··H172 2.27, H1···H81 2.31, H4-Cu1 1.95(4), H4-Cu2 1.90(4), Cu1-P19 2.2085(7), Cu2-P6 2.2155(8), Cu1-Cu2 2.9174(6), Cu1-Cl1 2.2764(7), Cu1-Cl2 2.4259(8), Cu2-Cl2 2.4113(9), Cu3-Cl3 2.0846(8), N1-C1-N2 107.0(2), C17-H172-H3 112, B1-H3-H172 113, C8-H81-H1 111, B1-H1-H81 114, B1-H4-Cu1 121(3), B1-H4-Cu2 124(3)

Figure S63 - Structure of compound **3**. Thermal ellipsoids drawn at 30% probability (for clarity cocrystalized CD_3CN and hydrogens are omitted except BH_3). Hydrides were located in the difference Fourier map and refined freely without any constraint. Important elements are drawn with ellipsoid tool. Selected bond lengths [Å] and angles [°]: C2-B1 1.592(6), C51-B2 1.584(6), B1-H101 1.16(4), B1-H102 1.14(4), B1-H103 1.20(4), B2-H201 1.12(4), B2-H202 1.17(4), B2-H203 1.12(4), Cu1-H101 1.80(4), Cu3-H202 2.01(4), Cu4-H202 1.98(4), Cu3-Cu4 2.9617(7), P1-Cu1 2.1921(12), P2-Cu2 2.2036(12), P3-Cu3 2.1964(11), P4-Cu4 2.1967(11), B1-H101-Cu1 117(3), B2-H202-Cu3 125(3), B2-H202-Cu4 120(3)

3. DFT investigations

Computational Details

Geometry optimizations of the complexes were performed without symmetry constraints using the Gaussian 03^{10} optimizer together with Turbomole 7.1¹¹ energies and gradients at the BP86¹²/def2-TZVP¹³ level of theory using the D3 dispersion correction suggested by Grimme et al.¹⁴ and the resolution-of-identity (RI) approximation.¹¹ This level is denoted RI-BP86D3/def2-TZVP. Vibrational analysis was performed to ensure that the optimized geometry corresponds to an energy minimum. With this analysis, IR spectra were simulated (*see IR_ESI.ppt*) by plotting the different vibrational modes in red and applying Lorentzian functions to plot the spectral line profile in blue. A scale factor of 0.9953 associated with the method used was also applied to all frequencies.¹⁵ Wiberg Bond Indices were computed by means of the NBO6.0¹⁶ method at the BP86-D3/def2-TZVP level.

All AIM results described in this work correspond to calculations performed at the BP86-D3/def2-TZVP&WTBS (for copper atoms) level on the optimized geometries obtained at the RI-BP86-D3/def2-TZVP level. The WTBS (well-tempered basis sets)¹⁷ have been recommended for AIM calculations involving transition metals.¹⁸ The topology of the electron density was conducted using the AIMAII program package.¹⁹

Natural Bond Orbital Analysis (NBO) for compound 2 and 3

2

Stabilization energy (kcal.mol⁻¹)

Interaction		Donation	Back-donation
Interaction	VV BI	$\sigma(B-H) \rightarrow s(Cu)$	$d(Cu) \rightarrow \sigma^*(B-H)$
a / a'	0.9402		
b / b'	0.7887		
c / c'	0.9395		
d / d'	0.0550	-13.5	-2.7
e / e'	0.0584	-12.9	-2.6

Table S2 – WBI and NBO data of **2** around σ -BH interactions

Donor	Acceptor	Stabilization energy (kcal.mol ⁻¹)
3d(Cu 32 or Cu 112)	s(Cu 33 or Cu 113)	-0.44
3d(Cu 33 or Cu 113)	s(Cu 32 or Cu 112)	-0.49

Table S3 – NBO data of **2** for the BH₃...Cu₂ moiety

Stabilization energy (kcal.mol⁻¹)

Interaction		Donation	Back-donation
Interaction	VV DI	$\sigma(B-H) \rightarrow s(Cu)$	$d(Cu) \rightarrow \sigma^*(B-H)$
а	0.9413		
a'	0.9438		
b	0.8104		
b'	0.8417		
С	0.9355		
c'	0.9311		
d	0.0524	-11.9	-2.5
e	0.0445	-9.6	-2.1
f	0.0786	-20.5	-3.5

Table S4 – NBO data of **3** for the $BH_3...Cu_2$ moiety

Frontier Orbitals of compound 1

The five higher occupied molecular orbitals (HOMO – 4 to HOMO) and lower unoccupied molecular orbitals (LUMO + 4 to LUMO) are represented in Figure S68. HOMOs were mostly located on both Cu(3d) and on the different B-H bonds (σ_{B-H}). The LUMO are located on the π^* system involving the aromatic ring, both nitrogen atoms, the p vacant orbital of the carbene and σ^*_{B-H} . The rest of the selected LUMOs are mostly located on the acetonitrile ligands.

Figure S64 – Frontier orbitals of compound 1 (HOMO - 4 to LUMO + 4)

Cartesian coordinates

Cartesian coordinates (in Å) and Hartree-Fock energies (in a.u.) of all the stationary points described in the text (RI-BP86-D3/def2-TZVP).

Compound 1

С	0.081424000	-1.222956000	-1.366515000
С	2.555072000	-1.724022000	-1.216589000
Н	2.818746000	-1.415413000	-2.237284000
Н	3.118462000	-2.635220000	-0.991011000
С	-2.410478000	-1.489708000	-1.410631000
Н	-3.075478000	-2.359673000	-1.426726000
Н	-2.476555000	-1.002695000	-2.390556000
С	-2.241514000	4.287284000	-0.383068000
С	-2.735681000	5.605867000	-0.723398000
Н	-2.326992000	6.357443000	-0.033919000
Н	-3.832603000	5.621749000	-0.653495000
Н	-2.443722000	5.863237000	-1.751124000
С	-0.273536000	1.414154000	3.214511000
С	0.187438000	1.432294000	4.586795000
Н	0.306753000	0.404110000	4.955758000
Н	-0.542910000	1.954299000	5.221108000
Н	1.153690000	1.950673000	4.655065000
С	2.481109000	4.373477000	-0.771605000
С	2.930077000	5.744673000	-0.894140000
Н	2.574222000	6.175870000	-1.840476000
Н	4.028634000	5.783171000	-0.878061000
Н	2.543716000	6.345237000	-0.058758000
С	-3.551006000	-1.215192000	1.363631000
С	-3.969869000	-0.208271000	2.454124000
Н	-4.099511000	-0.747786000	3.404554000
Н	-4.918072000	0.291321000	2.229442000
Н	-3.201699000	0.564167000	2.603439000
С	-4.662731000	-2.248911000	1.145322000
Н	-4.771282000	-2.860220000	2.054059000
Н	-4.446229000	-2.938401000	0.316796000
Н	-5.633437000	-1.775239000	0.955641000
С	-2.264239000	-1.921677000	1.840154000
Н	-1.416284000	-1.224380000	1.893368000
Н	-1.982136000	-2.764957000	1.199279000
Н	-2.434588000	-2.326574000	2.849124000
С	-4.518876000	0.444409000	-1.165872000
С	-5.337445000	1.356990000	-0.235604000
н	-6.053886000	1.935452000	-0.837774000
н	-4.694944000	2.067702000	0.305767000
н	-5.919029000	0.783558000	0.496583000

С	-3.918978000	1.306274000	-2.297815000
Н	-4.742606000	1.799907000	-2.835352000
Н	-3.363753000	0.716247000	-3.039370000
Н	-3.245078000	2.079305000	-1.910297000
С	-5.427873000	-0.630801000	-1.786295000
Н	-5.896387000	-1.277929000	-1.037714000
Н	-4.900245000	-1.263548000	-2.512989000
Н	-6.238367000	-0.129447000	-2.336930000
С	2.953885000	-0.942363000	1.670422000
С	1.496238000	-1.425308000	1.830504000
н	1.329629000	-2.412190000	1.382748000
н	0.780187000	-0.712886000	1.395519000
Н	1.268322000	-1.518240000	2.903570000
С	3.148545000	0.283850000	2.585308000
н	2.927764000	-0.008620000	3.623670000
н	2.466540000	1.098291000	2.295943000
н	4.171770000	0.674478000	2.566071000
С	3.920705000	-2.068919000	2.053938000
н	4.966265000	-1.737039000	2.058300000
н	3.832234000	-2.936053000	1.384006000
н	3.685526000	-2.420484000	3.070382000
С	4.898956000	-0.118423000	-0.704603000
С	4.802116000	0.638963000	-2.047285000
Н	5.818328000	0.815869000	-2.430537000
н	4.310237000	1.615158000	-1.926308000
Н	4.259758000	0.076766000	-2.820216000
C	5.644837000	0.772970000	0.303670000
н	5.856903000	0.250200000	1,245033000
н	5.082808000	1,692048000	0.526709000
н	6.612173000	1.068679000	-0.128924000
c	5 660019000	-1 438743000	-0 914762000
н	6 693703000	-1 206522000	-1 212044000
н	5 231120000	-2 046540000	-1 723169000
н	5 712499000	-2.050292000	-0.006736000
C	-0 721581000	-3 307196000	-0.968182000
c	-1 506550000	-4 445403000	-0 769674000
ц	-2 59/303000	-4.445405000	-0.8121/0000
C	-0.835663000	-5 639196000	-0 511/70000
ц	-0.853005000	-6.550072000	-0.353553000
C II	-1.412033000	-0.530072000	-0.3535555000
с u	1.0570203000	-2.092820000	0.450018000
п С	1.057254000	-0.049383000	-0.233897000
с u	1.333/42000	-4.302007000	
п С		-4.023/29000	-0.032/89000
	0.081345000	-3.303324000	-0.923744000
IN NI	-1.048389000	-1.9/4//1000	-1.230906000
IN	1.136683000	-2.066560000	-1.1/2139000

Ν	-1.865609000	3.221548000	-0.117988000
Ν	-0.649918000	1.390670000	2.116414000
Ν	2.136118000	3.268585000	-0.678523000
Р	-3.045979000	-0.228074000	-0.171554000
Р	3.112608000	-0.322224000	-0.105476000
Cu	-1.539951000	1.340250000	0.359512000
Cu	1.809776000	1.398388000	-0.646348000
В	0.105754000	0.336044000	-1.672884000
Н	1.146456000	0.685839000	-2.261185000
Н	-0.843614000	0.706100000	-2.316348000
Н	0.058529000	0.962809000	-0.537034000

Compound 1-BD₃

E = -5478.5234747

С	0.081431000	-1.222959000	-1.366593000
С	2.555182000	-1.723744000	-1.216889000
Н	2.818697000	-1.414977000	-2.237584000
Н	3.118697000	-2.634911000	-0.991502000
С	-2.410491000	-1.489976000	-1.410302000
Н	-3.075393000	-2.360020000	-1.426292000
Н	-2.476708000	-1.003051000	-2.390271000
С	-2.241116000	4.287445000	-0.382256000
С	-2.735247000	5.606087000	-0.722383000
Н	-2.330746000	6.356826000	-0.029537000
Н	-3.832498000	5.620477000	-0.657663000
Н	-2.438734000	5.865769000	-1.748211000
С	-0.273639000	1.414356000	3.214714000
С	0.187250000	1.433060000	4.587007000
Н	0.309127000	0.405014000	4.955444000
Н	-0.544428000	1.952913000	5.221533000
Н	1.152200000	1.953815000	4.655524000
С	2.480585000	4.373608000	-0.772282000
С	2.929260000	5.744859000	-0.895292000
Н	2.577733000	6.174033000	-1.844160000
Н	4.027704000	5.784067000	-0.873975000
Н	2.538515000	6.346738000	-0.062908000
С	-3.551264000	-1.215189000	1.363925000
С	-3.969956000	-0.208172000	2.454416000
Н	-4.100198000	-0.747738000	3.404731000
Н	-4.917822000	0.291949000	2.229497000
Н	-3.201427000	0.563856000	2.604071000
С	-4.663195000	-2.248686000	1.145609000
Н	-4.771585000	-2.860228000	2.054207000
Н	-4.446984000	-2.937955000	0.316826000
Н	-5.633887000	-1.774822000	0.956310000

С	-2.264679000	-1.921934000	1.840585000
Н	-1.416536000	-1.224848000	1.893613000
Н	-1.982807000	-2.765433000	1.199898000
Н	-2.435089000	-2.326548000	2.849655000
С	-4.518837000	0.444121000	-1.165789000
С	-5.337644000	1.356663000	-0.235696000
Н	-6.054399000	1.934636000	-0.837958000
н	-4.695370000	2.067813000	0.305374000
н	-5.918906000	0.783220000	0.496730000
С	-3.918771000	1.306007000	-2.297649000
Н	-4.742286000	1.799771000	-2.835233000
н	-3.363515000	0.715946000	-3.039162000
н	-3.244834000	2.078972000	-1.910007000
С	-5.427715000	-0.631146000	-1.786305000
н	-5.896599000	-1.278008000	-1.037714000
Н	-4.899913000	-1.264157000	-2.512646000
Н	-6.237941000	-0.129786000	-2.337336000
С	2.953816000	-0.942391000	1.670090000
С	1.496160000	-1.425400000	1.829936000
Н	1.329682000	-2.412347000	1.382271000
Н	0.780165000	-0.713085000	1.394645000
Н	1.268002000	-1.518158000	2.902960000
С	3.148446000	0.283755000	2.585067000
Н	2.927285000	-0.008669000	3.623355000
н	2.466705000	1.098345000	2.295485000
Н	4.171757000	0.674184000	2.566135000
С	3.920664000	-2.068990000	2.053473000
н	4.966216000	-1.737099000	2.057921000
н	3.832233000	-2.936005000	1.383384000
н	3.685419000	-2.420720000	3.069840000
С	4.899030000	-0.118239000	-0.704465000
С	4.802420000	0.639171000	-2.047180000
н	5.818683000	0.815924000	-2.430360000
н	4.310657000	1.615427000	-1.926227000
Н	4.260019000	0.077060000	-2.820153000
С	5.644748000	0.773096000	0.303984000
Н	5.856836000	0.250211000	1.245276000
н	5.082600000	1.692069000	0.527142000
Н	6.612056000	1.068990000	-0.128543000
С	5.660060000	-1.438607000	-0.914456000
Н	6.693740000	-1.206432000	-1.211781000
Н	5.231115000	-2.046506000	-1.722766000
Н	5.712522000	-2.050025000	-0.006339000
С	-0.721281000	-3.307305000	-0.968281000
С	-1.506080000	-4.445633000	-0.769809000
Н	-2.593840000	-4.414433000	-0.812044000

С	-0.835022000	-5.639321000	-0.511597000
Н	-1.411266000	-6.550264000	-0.353637000
С	0.570747000	-5.695793000	-0.456961000
Н	1.058019000	-6.649287000	-0.256337000
С	1.354225000	-4.561974000	-0.664918000
Н	2.441166000	-4.623531000	-0.633611000
С	0.681659000	-3.365291000	-0.924116000
Ν	-1.048295000	-1.974893000	-1.230804000
Ν	1.136824000	-2.066435000	-1.172338000
Ν	-1.865378000	3.221531000	-0.117641000
Ν	-0.649973000	1.390650000	2.116605000
Ν	2.135748000	3.268694000	-0.678818000
Р	-3.046052000	-0.228256000	-0.171295000
Р	3.112652000	-0.322031000	-0.105641000
Cu	-1.539982000	1.339982000	0.359552000
Cu	1.809700000	1.398436000	-0.646405000
В	0.105538000	0.336107000	-1.672765000
Н	1.146133000	0.686188000	-2.261130000
Н	-0.843977000	0.706251000	-2.315999000
Н	0.058546000	0.962514000	-0.536686000

Compound **2**

E = -11541.7822291

С	4.310779000	0.477327000	1.397729000
С	6.336287000	0.167897000	0.420230000
С	6.062590000	-0.957993000	1.218241000
С	6.970094000	-2.013697000	1.323469000
С	8.157874000	-1.907653000	0.599642000
С	8.430650000	-0.783289000	-0.200470000
С	7.526180000	0.273847000	-0.302388000
С	5.109339000	2.304262000	-0.116349000
С	3.539805000	4.370176000	-1.362645000
С	4.867093000	5.077652000	-1.682680000
С	3.038981000	4.847284000	0.018263000
С	2.473633000	4.727947000	-2.413303000
С	4.175790000	1.668187000	-2.897731000
С	4.518460000	0.209959000	-2.527280000
С	5.370922000	2.315914000	-3.606545000
С	4.105994000	-1.677577000	2.641767000
С	2.973894000	-3.674403000	0.714375000
С	3.842944000	-2.977770000	-0.353272000
С	3.722798000	-4.869140000	1.313799000
С	1.684266000	-4.138194000	0.017114000
С	1.684323000	-2.967169000	3.530597000
С	2.618527000	-3.791656000	4.431665000

С	0.444531000	-3.793270000	3.150463000
С	1.205950000	-1.713326000	4.295240000
С	2.949507000	1.644851000	-3.832239000
Ν	5.236520000	1.015043000	0.546911000
Ν	4.807952000	-0.738352000	1.782908000
Cl	-0.000004000	2.868003000	0.000078000
Cl	1.015124000	-0.517984000	-1.410910000
Р	2.481775000	-2.313571000	1.936659000
Р	3.633381000	2.474330000	-1.271069000
Cu	1.814569000	1.555954000	-0.437862000
Cu	1.319352000	-0.713987000	0.981473000
В	3.005147000	1.173838000	1.957750000
Н	6.766101000	-2.887901000	1.940369000
Н	8.891102000	-2.711394000	0.659311000
Н	9.370649000	-0.733752000	-0.749207000
Н	7.746795000	1.141473000	-0.922661000
Н	4.976000000	3.077394000	0.649854000
н	6.046931000	2.507276000	-0.645035000
Н	5.258067000	4.823567000	-2.673734000
н	5.647418000	4.866578000	-0.937659000
н	4 699096000	6 166069000	-1 665862000
н	2 101446000	4 356939000	0 307552000
н	3 773059000	4.683143000	0.819035000
н	2 857803000	5 932075000	-0.035293000
н	2.837865000	1 166718000	-0.033253000
и Ц	2.240208000	5 801163000	-2.244405000
н ц	2.240208000	4 540241000	2 425047000
н ц	2.825517000	4.340241000	1 905220000
п	5.750064000	-0.234442000	-1.093320000
п u	5.465225000	0.122205000	-2.015506000
	4.363627000	-0.586514000	-5.446900000
	5.114042000	3.294702000	-4.030714000
	0.239350000	2.443057000	-2.943420000
	5.090309000	1.671592000	-4.440962000
н	4.785498000	-2.504838000	2.8/3/26000
н	3.849995000	-1.170423000	3.580122000
н	3.3/3/66000	-2.045488000	-0.6994/1000
н	3.940068000	-3.645332000	-1.223064000
Н	4.855923000	-2.757565000	0.000140000
Н	3.080019000	-5.467658000	1.972172000
Н	4.065784000	-5.529194000	0.501484000
Н	4.614070000	-4.566242000	1.882329000
Н	1.024202000	-4.705216000	0.681395000
Н	1.944516000	-4.788462000	-0.832656000
Н	1.126077000	-3.275126000	-0.373095000
Н	3.473520000	-3.206606000	4.797732000
Н	2.056651000	-4.120681000	5.319933000

Н	3.002094000	-4.690483000	3.935300000
н	0.504651000	-1.118642000	3.694717000
н	0.689086000	-2.036144000	5.212532000
н	2.030576000	-1.054179000	4.598336000
Н	2.671379000	2.643948000	-4.186112000
н	2.077754000	1.199394000	-3.333409000
н	3.187721000	1.032228000	-4.715900000
н	-0.142675000	-3.996814000	4.059224000
н	0.710344000	-4.761512000	2.706894000
н	-0.200191000	-3.243193000	2.450487000
н	3.105112000	2.379335000	1.923676000
н	2.730031000	0.750643000	3.059281000
н	1.934370000	0.926423000	1.248665000
С	-4.310780000	0.477286000	-1.397731000
С	-6.336318000	0.167524000	-0.420392000
С	-6.062512000	-0.958183000	-1.218631000
С	-6.969929000	-2.013938000	-1.324104000
С	-8.157738000	-1.908139000	-0.600284000
С	-8.430616000	-0.783966000	0.200069000
С	-7.526242000	0.273233000	0.302212000
С	-5.109583000	2.303920000	0.116582000
С	-3.540618000	4.369972000	1.362790000
С	-4.868777000	5.076878000	1.680517000
С	-3.037842000	4.847211000	-0.017344000
С	-2.476292000	4.728171000	2.415149000
С	-4.175501000	1.667906000	2.897910000
C	-4.518171000	0.209672000	2.527493000
C	-5.370506000	2.315481000	3.607062000
C	-4.105697000	-1.677464000	-2.642017000
C	-2.973764000	-3.674314000	-0.714346000
C	-3.842965000	-2.977716000	0.353197000
C	-3.722489000	-4.869151000	-1.313786000
C	-1.684177000	-4.137929000	-0.016917000
C	-1.684056000	-2.967053000	-3.530582000
C	-2.618323000	-3.791157000	-4.431941000
C	-0.444498000	-3.793501000	-3.150458000
C	-1.205293000	-1.713172000	-4.294926000
C	-2.949030000	1,644739000	3,832182000
N	-5 236616000	1 014784000	-0 546880000
N	-4 807837000	-0 738367000	-1 783150000
CI	-1 014938000	-0 517794000	1 411072000
P	-2 481595000	-2 313506000	-1 936681000
' P	-3 633492000	2.313300000	1 27110200
' Cu	-1 81/628000	1 555810000	0 437771000
Cu	-1 319752000	-0 713870000	-0 981/170000
R	-3.002160000	1 172001000	-0.551470000
5	-2.002102000	1.1/3331000	-1.337304000

Н	-6.765855000	-2.887992000	-1.941191000
н	-8.890889000	-2.711941000	-0.660110000
н	-9.370641000	-0.734612000	0.748782000
н	-7.746946000	1.140714000	0.922664000
н	-4.976523000	3.077190000	-0.649541000
н	-6.047113000	2.506736000	0.645459000
н	-5.264207000	4.818780000	2.668761000
н	-5.645986000	4.869353000	0.931244000
н	-4.700138000	6.165260000	1.668897000
н	-2.098023000	4.359550000	-0.303678000
н	-3.769255000	4.679770000	-0.819865000
н	-2.860313000	5.932651000	0.035512000
н	-1.545549000	4.166163000	2.248707000
н	-2.242007000	5.801151000	2.339006000
н	-2.830288000	4.541744000	3.437305000
н	-3.736440000	-0.234686000	1.895452000
н	-5.482980000	0.121954000	2.013593000
н	-4.583440000	-0.388621000	3.449172000
н	-5.114258000	3.294295000	4.031229000
н	-6.239118000	2.442480000	2.944141000
н	-5.689678000	1.671054000	4.441508000
н	-4.785141000	-2.504704000	-2.874225000
н	-3.849547000	-1.170161000	-3.580253000
н	-3.373693000	-2.045592000	0.699696000
н	-3.940427000	-3.645415000	1.222845000
н	-4.855810000	-2.757269000	-0.000433000
н	-3.079844000	-5.467118000	-1.972791000
н	-4.064713000	-5.529675000	-0.501539000
н	-4.614209000	-4.566400000	-1.881697000
н	-1.023869000	-4 704738000	-0.681139000
н	-1 944450000	-4 788345000	0.832732000
н	-1 126226000	-3 274792000	0 373487000
н	-3 473061000	-3 205800000	-4 798118000
н	-2 056361000	-4 120247000	-5 320129000
н	-3 002268000	-4 689931000	-3 935765000
н	-0 503613000	-1 118985000	-3 69/353000
н	-0.505015000	-2.035923000	-5 212/20000
 ц	-2.020602000	-1.053568000	-4 597650000
н	-2.023032000	-1.00000000	4.337030000
н ц	-2.071537000	2.043797000	4.180070000
н ц	2.077000000	1.200181000	J.JJ2J38000
п u	-3.180094000	2.007065000	4.713487000
n u	0.142104000	-2.22/202000	-4.03332000
n u	-0.710082000	-4./01308000	-2.700113000
п 11		-3.2432/0000	-2.451138000
п	-3.105151000	2.3/94/2000	-1.923283000
н	-2.730134000	0.751036000	-3.059235000

Compound **3**

E = -12002.2455437

С	4.726277000	-2.138248000	-0.175436000
С	2.970207000	-2.708443000	-1.496338000
С	3.812050000	-1.866386000	-2.241749000
С	3.500927000	-1.515163000	-3.555994000
н	4.142471000	-0.859518000	-4.143840000
С	2.317110000	-2.029555000	-4.090205000
н	2.031119000	-1.754986000	-5.105307000
С	1.490177000	-2.891821000	-3.353123000
н	0.565013000	-3.264520000	-3.789732000
С	1.806151000	-3.255436000	-2.042118000
н	1.183671000	-3.957935000	-1.491408000
С	7.990361000	1.249243000	-0.839543000
С	8.518103000	1.161332000	-2.281349000
н	9.591744000	1.410126000	-2.285076000
н	8.015878000	1.860697000	-2.959603000
н	8.424308000	0.149060000	-2.699375000
С	8.235122000	2.655487000	-0.265315000
н	7.790826000	2.759698000	0.735652000
н	7.832612000	3.444392000	-0.913956000
н	9.320204000	2.822783000	-0.175661000
С	8.748314000	0.236405000	0.043735000
н	9.826781000	0.457531000	-0.003615000
Н	8.604067000	-0.803006000	-0.279533000
Н	8.426031000	0.302111000	1.092998000
С	5.030173000	2.162110000	-1.393820000
С	5.465982000	2.690735000	-2.765528000
Н	4.690366000	3.370905000	-3.153271000
Н	5.587841000	1.884412000	-3.504518000
Н	6.404031000	3.258945000	-2.714299000
С	3.641036000	1.512078000	-1.512983000
Н	3.301952000	1.076648000	-0.564247000
н	3.590617000	0.731114000	-2.279395000
н	2.904730000	2.276257000	-1.799194000
С	4.925840000	3.313641000	-0.372807000
н	4.126963000	3.999346000	-0.694310000
н	5.850724000	3.896212000	-0.293596000
н	4.679755000	2.936227000	0.631526000
С	1.923410000	-1.296549000	2.673837000
С	2.350814000	-0.118467000	1.774609000
Н	2.807783000	0.669132000	2.392315000
н	1.498719000	0.287964000	1.212205000

Н	3.111010000	-0.422844000	1.038942000
С	3.096599000	-1.729767000	3.564350000
Н	3.978487000	-2.032147000	2.990406000
Н	2.823017000	-2.543129000	4.248669000
Н	3.417458000	-0.863534000	4.163471000
С	0.761700000	-0.820739000	3.560584000
Н	1.090264000	0.080958000	4.101066000
Н	0.481629000	-1.570966000	4.312838000
Н	-0.126876000	-0.560414000	2.971209000
С	0.357358000	-4.025768000	2.278663000
С	1.020118000	-4.561578000	3.554294000
Н	1.037546000	-3.808000000	4.351886000
Н	2.052734000	-4.896549000	3.377722000
Н	0.449391000	-5.427027000	3.929207000
С	-1.064633000	-3.504799000	2.570134000
Н	-1.671197000	-4.332668000	2.972228000
Н	-1.540882000	-3.139604000	1.649236000
Н	-1.081996000	-2.688973000	3.299674000
С	0.207936000	-5.158181000	1.241018000
Н	1.145178000	-5.700005000	1.052780000
Н	-0.191801000	-4.772692000	0.291251000
Н	-0.513783000	-5.894838000	1.627609000
С	5.987175000	-0.665770000	-1.755891000
Н	5.880317000	-0.385283000	-2.810010000
Н	6.922820000	-1.228219000	-1.641905000
С	2.894221000	-3.491246000	0.886056000
Н	3.624397000	-3.580069000	1.696696000
Н	2.607283000	-4.498741000	0.563452000
С	-5.709562000	-2.824515000	-1.875177000
С	-7.206687000	-2.842015000	-2.226099000
Н	-7.383298000	-3.612789000	-2.993758000
Н	-7.548443000	-1.887555000	-2.651319000
Н	-7.842576000	-3.083082000	-1.366831000
С	-4.891717000	-2.524461000	-3.149896000
Н	-3.813194000	-2.516622000	-2.941758000
Н	-5.153436000	-1.559726000	-3.606005000
Н	-5.098500000	-3.309547000	-3.894975000
С	-5.269191000	-4.198273000	-1.339640000
Н	-5.377657000	-4.947283000	-2.139966000
Н	-5.885063000	-4.529850000	-0.492828000
Н	-4.212869000	-4.182700000	-1.032349000
С	-5.904742000	-1.833432000	1.115351000
С	-7.361553000	-2.310152000	1.146434000
Н	-7.709643000	-2.346254000	2.191540000
Н	-7.476058000	-3.318749000	0.728250000
н	-8.035842000	-1.631581000	0.602256000

С	-4.985952000	-2.858778000	1.811855000
Н	-3.949334000	-2.494924000	1.844550000
Н	-4.990157000	-3.838525000	1.320619000
Н	-5.331443000	-2.999444000	2.848692000
С	-5.779604000	-0.500675000	1.880823000
Н	-5.939462000	-0.691077000	2.953794000
Н	-6.532753000	0.231808000	1.567613000
Н	-4.778253000	-0.061032000	1.766191000
С	-6.123294000	-0.026629000	-1.274030000
Н	-6.058134000	-0.098726000	-2.367035000
Н	-7.181309000	-0.067250000	-0.990425000
С	-6.304621000	2.221740000	-0.137915000
С	-5.446910000	3.328781000	0.008182000
С	-5.856229000	4.478544000	0.685808000
Н	-5.200442000	5.340983000	0.798330000
С	-7.146579000	4.485166000	1.217405000
Н	-7.496579000	5.366747000	1.753994000
С	-8.004117000	3.381203000	1.069012000
Н	-9.007836000	3.422216000	1.491548000
С	-7.598557000	2.233586000	0.386110000
Н	-8.271391000	1.384826000	0.269943000
С	-3.102552000	3.871059000	-0.757422000
Н	-3.360023000	4.837305000	-0.309401000
Н	-2.892154000	4.030924000	-1.822454000
С	-0.244352000	4.228336000	-0.967960000
С	-0.169881000	3.638903000	-2.392445000
Н	0.615623000	4.171770000	-2.952632000
Н	-1.109082000	3.757210000	-2.950599000
Н	0.077478000	2.569541000	-2.375622000
С	1.119851000	4.017740000	-0.291464000
Н	1.905316000	4.446266000	-0.933153000
Н	1.338882000	2.948352000	-0.159012000
Н	1.188198000	4.516403000	0.683714000
С	-0.566386000	5.729471000	-1.064068000
Н	-0.617873000	6.219561000	-0.085855000
н	-1.508159000	5.921879000	-1.597570000
н	0.231395000	6.226657000	-1.639430000
С	-1.568948000	3.616345000	1.817207000
C	-2.918934000	3.080524000	2.336202000
Н	-3.102792000	2.049386000	2.003730000
Н	-3.760327000	3.714701000	2.030530000
Н	-2.898745000	3.075844000	3.437226000
C	-1.454665000	5.107564000	2.156577000
H	-2.208030000	5.715547000	1,633063000
н	-0.460555000	5.511891000	1,926483000
н	-1.620119000	5,243794000	3 237579000
		0.2.070.0000	2.23, 3, 3000

С	-0.438830000	2.821710000	2.504546000
Н	-0.518827000	2.956381000	3.594906000
Н	0.561394000	3.151766000	2.202145000
Н	-0.525735000	1.749157000	2.287540000
С	-4.360596000	1.753783000	-1.215051000
Ν	4.874977000	-1.535879000	-1.398393000
Ν	3.544228000	-2.824597000	-0.232915000
Ν	-5.597513000	1.272264000	-0.871417000
Ν	-4.263720000	2.997028000	-0.646697000
Р	6.147238000	0.839220000	-0.633282000
Р	1.310389000	-2.611107000	1.439805000
Р	-5.177019000	-1.512734000	-0.606995000
Р	-1.512096000	3.172825000	-0.026098000
Cu	5.645312000	0.322332000	1.430870000
Cu	0.244955000	-1.823753000	-0.301256000
Cu	-3.009966000	-1.229603000	-0.513153000
Cu	-1.344111000	1.009309000	-0.391668000
Cl	5.329729000	1.498275000	3.238077000
Cl	-1.604884000	-2.890200000	-1.270200000
Cl	-2.134377000	-0.297494000	1.437153000
Cl	0.549957000	0.157204000	-1.399925000
В	5.784919000	-2.161776000	1.004135000
Н	5.668450000	-3.200687000	1.631459000
Н	6.905237000	-2.037755000	0.554157000
Н	5.548681000	-1.317832000	1.919670000
В	-3.323444000	1.076601000	-2.193415000
Н	-3.896650000	0.351666000	-2.978356000
Н	-2.636616000	1.910566000	-2.741547000
Н	-2.529605000	0.267605000	-1.569293000

4. References

- (a) A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa and Y. Nishibayashi, *Nat. Commun.*, 2017, **8**, 14874; (b) A. Camy, L. Vendier, C. Bijani, I. Fernández and S. Bontemps, *Inorg. Chem.*, 2023, **62**, 9035–9043; (c) S. Bontemps, L. Vendier and S. Sabo-Etienne, *Angew. Chem. Int. Ed.*, 2012, **51**, 1671-1674.
- (a) J. C. Bommer and K. W. Morse, *Inorg. Chem.*, 1978, **17**, 3708-3710; (b) J. C. Bommer and K. W. Morse, *Inorg. Chem.*, 1980, **19**, 587-593; (c) P. Bissinger, H. Braunschweig, T. Kupfer and K. Radacki, *Organometallics*, 2010, **29**, 3987-3990.
- 3. G. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 4. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 5. L. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837-838.
- 6. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Crystallogr., 2003, **36**, 1487.
- 7. W. Schmitz, *Kristall und Technik*, 1975, **10**, K120-K120.
- 8. P. van der Sluis and A. L. Spek, *Acta Crystallographica Section A*, 1990, **46**, 194-201.
- 9. L. Farrugia, J. Appl. Crystallogr., 1997, **30**, 565.
- Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- 11. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165-169.
- 12. (a) A. D. Becke, *Physical review*. *A*, *General physics*, 1988, **38**, 3098-3100; (b) J. P. Perdew, *Physical review*. *B*, *Condensed matter*, 1986, **33**, 8822-8824.
- 13. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **242**, 652-660.
- 14. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132.
- 15. M. K. Kesharwani, B. Brauer and J. M. L. Martin, J. Phys. Chem. A, 2015, 119, 1701-1714.
- 16. E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.
- 17. (a) S. Huzinaga and B. Miguel, *Chem. Phys. Lett.*, 1990, **175**, 289-291; (b) S. Huzinaga and M. Klobukowski, *Chem. Phys. Lett.*, 1993, **212**, 260-264.
- 18. J. A. Cabeza, J. F. van der Maelen, S. García-Granda, Organometallics 2009, 28, 3666-3672 and references therein.
- 19. T. A. Keith, AIMAII, 2010, <u>http://tkgristmill.com</u>.