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Section 1 Additional Experimental Section: 

1. Chemicals and materials 

All chemicals are used directly without further purification. Nickel chloride 

hydrate (NiCl2·6H2O,99.9%), cobalt chloride hexahydrate(CoCl2·6H2O,99.9%), 

ammonium paramolybdate tetrahydrate ((NH4)6Mo7O24·24H2O,99.9%), ethanol 

(CH3CH2OH), anhydrous ethanol, sodium nitroferricyanide 

(Na2[Fe(CN)5(NO)]·2H2O), acetone (C3H6O), polyethyleneimine (C2H5N), phosphoric 

acid (H3PO4,85%) were purchased from Tianjin Fu Yu Fine Chemical Co., Ltd. Sulfuric 

acid (H2SO4), salicylic acid (C7H6O3), sodium nitrate (NaNO3), sodium nitrite (NaNO2), 

potassium bromide (KBr), p-aminobenzenesulfonic acid (C6H7NO3S), isopropanol 

(C3H8O,99.5%) were purchased from Shanghai Macklin Company. 2-(4-(4-

carboxyphenyl) phenyl) imidazo (4,5-f) (1,10) phenanthroline (HNCP) was purchased 

from Jinan Henghua Technology Co., Ltd. Academic Translation: Nafion and sodium 

citrate (C6H5Na3O7) were purchased from SIGMA-ALDRICH. Argon gas (Ar, high 

purity, 99.9999%) was purchased from Qinghua Gas Company. The carbon cloth (CC) 

was purchased from CeTech company. The sample was pretreated in HNO3, and then 

ultrasonically treated several times in acetone, water and ethanol to remove surface 

impurities. 15N2 isotope (99% N enrichment) was obtained from Shanghai Institute of 

Chemical Technology Co, Ltd. Deionized water was used in all experiments.  

2. Preparation of modified electrodes 

The carbon cloth (CC) was used as the electrode substrate, and the impurities were 

removed by acetone solution, anhydrous ethanol and deionized water in turn. CC was 

put into the reactor, and CC was completely immersed in concentrated nitric acid, and 

the reaction was carried out at 120 °C for 2 h. The treated carbon cloth was taken out, 

rinsed with deionized water to neutral pH, dried and cut into 1 cm×1 cm size for later 

use. 

The 0.2 g sample material was fully ground with 0.2 g acetylene black. The ground 

sample (3 mg), 125 μL isopropanol, 10 μL Nafion solution and 365 μL H2O were placed 

in a 10 mL centrifuge tube and mixed ultrasonically for 2 h. The working electrode was 

obtained by dropping 25 μL of mixed suspension on a 1 cm×1 cm carbon cloth and 
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standing for 10 h to dry naturally. 

3. Electrochemical measurements 

The electrochemical measurements were carried out on a CHI 760E 

electrochemical workstation in an H-type double electrolytic cell divided by Nafion 211 

membrane. The catalyst/CC was used as the working electrode, the Ag/AgCl electrode 

was used as the reference electrode, and the platinum electrode was used as the counter 

electrode. All potential values were converted according to the Nernst equation (E vs. 

RHE) = E (vs. Ag/AgCl)+0.197+0.059×pH). Before the e-NO3RR experiment, in order 

to ensure the accuracy of the experiment, it is necessary to purge the argon gas in the 

cathode chamber of the H-type electrode groove to avoid the influence of N2 on the 

experimental results. For the e-NO3RR experiment, the LSV curve test of the catalyst 

was carried out under two electrolyte conditions of 0.1 M NaNO3+0.05 M H2SO4 (with 

NO3–) and 0.05 M H2SO4 (without NO3–) at room temperature and pressure, and the 

corresponding chronoamperometric (j−t) test was carried out in 0.1 MNaNO3+0.1 M 

Na2SO4 electrolyte. In order to estimate the electrochemically active surface area 

(ESCA) of the catalyst, the double-layer capacitance (Cdl) was measured by cyclic 

voltammetry (CV) at a scan rate of 5-100 mV s–1 in the voltage range of −0.4 V vs. 

RHE to −0.5 V vs. RHE. Electrochemical impedance spectroscopy (EIS) measurements 

were carried out from 0.1 Hz to 1000 kHz with an amplitude of 10 mV at the open-

circuit voltage. 

4. Determination of NH3 

Ammonia production was analyzed by indophenol blue spectrophotometry, and 

standard ammonia solutions with concentrations of 1, 3, 6, 9 and 12 μg L–1 were 

prepared by dissolving ammonium chloride (NH4Cl) in the corresponding electrolyte. 

Each 2.0 mL of the corresponding concentration of ammonia standard solution was 

added to 2.0 mL of salicylic acid and sodium citrate dihydrate in 5% 1M NaOH solution, 

respectively, and then 1.0 mL of 0.05 M sodium hypochlorite (NaClO) solution and 1% 

sodium nitroferricyanide solution were mixed evenly. The solution was placed in the 

dark for color development for 2 h. After the color development was completed, the 

absorbance (characteristic absorption peak 655 nm) was measured by ultraviolet 
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spectrophotometer to obtain the absorbance curve and draw the standard curve. In 

neutral electrolyte and acidic electrolyte, the linear equation obtained by ammonia 

standard curve fittings are Y=0.227X+0.0904 (neutral electrolyte) (Figure S5) and 

Y=0.223X−0.00418 (acidic electrolyte) (Figure S6). 

5. Determination of by-product nitrite 

In order to further explain the performance of the catalyst, the nitrite yield was 

analyzed by hydrochloric acid naphthalene ethylenediamine spectrophotometry. 

Similar to the preparation of ammonia standard solution, 0.5, 1, 1.5, 2.5 and 3.5 μg L–1 

concentrations of nitrite standard solution were prepared. The color reagent and 

deionized water were mixed in a ratio of 4:1 to obtain a standard color solution. The 1 

mL standard solution was added with 9 mL standard color solution, shaken well and 

allowed to stand in the dark for 15 min. The test was performed using an ultraviolet 

spectrophotometer (characteristic absorption peak 540 nm). The absorbance curve was 

obtained and the standard curve was drawn. In neutral electrolyte, the linear relationship 

is Y=0.089X+0.0159 (Figure S7). In acidic electrolyte, the linear relationship is 

Y=0.0435X−0.0015 (Figure S8). 

6. Determination of FE and NH3 yield rate 

The performance of the catalyst was evaluated by indicators such as ammonia 

production and Faraday efficiency. The Faraday efficiency in the e-NO3RR process was 

calculated by the following equation: 

Faraday efficiency (
3NHFE )=(8F×C (NH3)×V)/(17Q) 

The amount of ammonia produced in the e-NO3RR process passes the following 

equation: 

NH3 yield=(C (NH3)×V)/(mcat.×t) 

The by-products in the e-NO3RR process are detected, in which the nitrite 

production and Faraday efficiency are determined by the following equation: 

FENO
- 

2=2F×C(NO2–)×V/(46Q) 

NO2– yield=C(NH3)×V/(t×mcat.) 

Where F is Faraday constant, Q is the amount of charge for several hours of 
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electrolysis, V is Volume of electrolyte in cathode chamber, C(NH3) is ammonia 

concentration in solution, C(NO2–) is nitrite concentration in solution, mcat. is catalyst 

loading. 

7. The control experiments of the 15N2 isotopic measurements to prove the nitrogen 

source 

The 15N isotopic measurements were performed using the 15N2 isotope with the 
15N (enrichment of ＞99%) to clarify the nitrogen origination of ammonia. Before the 

electrochemical reduction procedure, the electrolyte (pH 3.5, 1.0 mol L–1 of K+) was 

purged with high-purity Ar to remove the 14N from solution and thenwas pre-saturated 

with 15N2 for 30 min with a flow rate of 10 mL min–1 (a low-velocity gas flow was 

adopted due to the limited supply and expense of 15N2). The cathode electrolyte is 0.5 

M Na15NO3 (15N≥99% atom) + 0.1M Na2SO4. After 1 h electrolysis at –1.1 V vs. RHE, 

the 10 mL of the electrolyte was taken out and used for 1H NMR detection. (1H NMR, 

Bruker Avance NEO 600). 
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Section 2 Supplementary Figures and Tables: 

 
Figure S1. (a−b) TEM of Co-P4Mo6/GO. (c−f) Element mapping of images of Co-

P4Mo6/GO.  
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Figure S2. (a) SEM of Ni-P4Mo6/GO. (b–f) Element mapping of images of Ni-

P4Mo6/GO. 
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Figure S3. (a) SEM of Co-P4Mo6/GO. (b–f) Element mapping of images of Co-

P4Mo6/GO. 
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Figure S4. XPS elemental spectra of (a) Co 2p (b) Mo 3d (c) C 1s (d) O 1s (e) N 1s 

(f) P 2p in Co-P4Mo6/GO. 
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Figure S5. (a) UV-vis absorption spectra of different NH4Cl concentrations measured 

in 0.1 mol L–1 Na2SO4 electrolyte. (b) Corresponding standard curve of NH4Cl. 
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Figure S6. (a) UV-vis absorption spectra of different NH4Cl concentrations measured 

in 0.05 mol L–1 H2SO4 electrolyte. (b) Corresponding standard curve of NH4Cl. 
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Figure S7. (a) UV-vis absorption spectra of different NO2– concentrations measured in 

0.1 mol L–1 Na2SO4 electrolyte. (b) Corresponding standard curve of NO2– 
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Figure S8. (a) UV-vis absorption spectra of different NO2– concentrations measured in 

0.05 mol L–1 H2SO4electrolyte. (b) Corresponding standard curve of NO2– 
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Figure S9. (a) LSV curves of Ni-P4Mo6/GO and Co-P4Mo6/GO. (b–c) Corresponding 

chronoamperometric (j−t) curves at various potentials of Ni-P4Mo6/GO and Co-

P4Mo6/GO. (d-e) UV-vis absorption spectra of Ni-P4Mo6/GO and Co-P4Mo6/GO. 
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Figure S10. (a–b) Corresponding chronoamperometric (j−t) curves at various 

potentials. (c–d) UV-vis absorption spectra. 
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Figure S11. The LSV curves of Ni-P4Mo6/GO in different concentrations of NO3–

electrolytes. 
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Figure S12. UV-vis absorption spectra of NO2– 
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Figure S13. Bode plots of Ni-P4Mo6/GO, Co-P4Mo6/GO and GO.   
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Figure S14. A series of CV tests were carried out in the voltage range of–0.4 V vs. RHE 

to –0.5 V vs. RHE at a scan rate of 5~100 mV s–1. The electric double layer capacitance 

(Cdl) was calculated and its electrochemical active area (ECSA) was obtained: (a–b) the 

current density-scan rate plots. (c–d) The cyclic voltammetry curves. 
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Figure S15 Structural analysis of Ni-P4Mo6/GO catalyst after reaction: (a) XPS survey 

spectra of Ni-P4Mo6/GO. (b) Ni 2p (c) Mo 3d (d) N 1s (e) C 1s (f) P 2p. 
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Table S1. Crystal data and structure refinements for Ni-P4Mo6 and Co-P4Mo6 

 Ni-P4Mo6 Co-P4Mo6 

formula C40H44Mo12N8Ni3O74P8 C40H44Mo12N8Co3O74P8 

Formula weight 3396.00 3396.66 

Crystal system Triclinic Triclinic 

space group Pī Pī 

a (Å) 13.238(3) 13.344(11) 

b (Å) 14.079(4) 14.170(12) 

c (Å) 14.549(4) 14.594(12) 

α (°) 71.048(3) 71.113(10) 

β (°) 80.242(4) 80.013(10) 

γ (°) 75.906(4) 75.607(10) 

V (Å3) 2475.4(11) 2515.9(4) 

Z 1 1 

Dc (g cm-3) 2.278 2.242 

μ (mm-1) 2.264 2.161 

F(000) 1640.0 1637.0 

R1a[I > 2σ(I)] 0.0256 0.0251 

wR2b(all data) 0.0753 0.0722 

GOF on F2 1.043 1.056 

CCDC 2426711 2426712 

aR1 = ∑|Fo| - |Fc| / |Fo|. bwR2 = {∑[w(Fo2-Fc2)2] / ∑[w(Fo2)2]}1/2  
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Table S2. Catalytic performance of Ni-P4Mo6/GO in different concentrations of nitrate 

electrolytes 

Nitrate concentration 

(M) 

NH3 Yield 

(mg h–1 mg–1cat.) 

Corresponding 

voltage (V vs. RHE) 

FE 

 (%) 

Corresponding 

voltage (V vs. RHE) 

0.01 

0.1 

1.05 

4.52 

–1.2 

–1.3 

45.2 

73.2 

–0.9 

–0.9 

0.2 4.45 –1.3 75.5 –1.1 

0.3 8.51 –1.3 82.5 –0.9 

0.4 8.74 –1.3 83.7 –1.0 

0.5 11.59 –1.3 88.45 –1.1 

0.6 10.42 –1.3 82.1 –1.0 
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Table S3. Comparison of electrochemical Performance of Ni-P4Mo6/GO with Reported 

Electrocatalysts 

Catalysts NH3 Yield FE(%) 
Applied Potential 

vs RHE 
Ref 

Ni-P4Mo6/GO 11.6 mg h–1 mg–1cat. 88.4 –1.3 This work 

Co-P4Mo6/GO 11.1 mg h–1 mg–1cat. 78.5 –1.1 This work 

Cu-BTC-Cu 4.00 mg h−1 cm−2cat. 83.8 –1.0 [1] 

Fe(TCNQ)2 11. 35 mg h−1 cm−2 85.2 –1.1 [2] 

Pd(111) 2.74 mmol h−1 mg−1 79.9 –0.7 [3] 

PP-Co/CP 1.1 mmol h−1 mg−1cat. 90.1 –0.7 [4] 

IrNTs 921 μg h−1 mg−1cat. 84.7 –0.06 [5] 

Pd/TiO2 1.12 mg cm−2 h−1 92.1 –0.8 [6] 

Cu/Pd/CuOx 1510.33 µg h−1mg−1 84.04 –1.3 [7] 

Co3O4/Co 4.43 mg h−1 cm−2 88.7 –0.8 [8] 

La2Cu0.8Co0.24 0.07mmol h−1 mg–1 75.3 –0.68 [9] 

Cu@C 469.5μg h−1 cm−2 72.0 –0.9 [10] 

Co/NC-800 1352.5μg h−1mg−1 81.2 –1.7 [11] 

CoNi-Vp-x 0.098 mmol h−1 cm−2 84.27 –1.7 [12] 
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