Supporting Information

Novel specific binding of copper ions to naturally modified base

pairs involving 5-fluorouracil in duplex DNA

Hidetaka Torigoe,*^a Kei Hirabayashi,^a Saki Adachi,^a Jiro Kondo^b

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan,

^bDepartment of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

*Corresponding author. Tel.: +81-3-5228-8259; Fax: +81-3-5261-4631;

E-mail address: htorigoe@rs.tus.ac.jp (Hidetaka Torigoe)

Table S1. Melting temperature (T_m) of 1 μ M duplex DNA, F25A:R25FdU, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	74.1±0.5	73.9±0.4	-0.2
$Cd(NO_3)_2$	74.1±0.5	74.1±0.2	0
Fe(NO ₃) ₃	74.1±0.5	72.9±0.6	-1.2
$Co(NO_3)_2$	74.1±0.5	72.6±0.5	-1.5
Ni(NO ₃) ₂	74.1±0.5	72.9±0.5	-1.2
Pb(NO ₃) ₂	74.1±0.5	72.1±0.0	-2.0
CrCl ₃	74.1±0.5	73.0±0.4	-1.1
MnCl ₂	74.1±0.5	72.8±0.5	-1.3
TINO ₃	74.1±0.5	72.1±0.2	-2.0

Table S2. Melting temperature (T_m) of 1 μ M duplex DNA, F25C:R25FdU, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	66.4±0.4	67.9±0.1	1.5
$Cd(NO_3)_2$	66.4±0.4	68.0±0.3	1.6
Fe(NO ₃) ₃	66.4±0.4	66.8±0.4	0.4
$Co(NO_3)_2$	66.4±0.4	66.9±0.4	0.5
Ni(NO ₃) ₂	66.4±0.4	67.0±0.5	0.6
Pb(NO ₃) ₂	66.4±0.4	66.6±0.2	0.2
CrCl ₃	66.4±0.4	67.2±0.4	0.8
MnCl ₂	66.4±0.4	67.1±0.4	0.7
TINO ₃	66.4±0.4	66.5±0.6	0.1

Table S3. Melting temperature (T_m) of 1 μ M duplex DNA, F25G:R25FdU, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	70.9±0.3	71.7±0.3	0.8
Cd(NO ₃) ₂	70.9±0.3	72.3±0.3	1.4
Fe(NO ₃) ₃	70.9±0.3	71.6±0.4	0.7
$Co(NO_3)_2$	70.9±0.3	71.1±0.5	0.2
Ni(NO ₃) ₂	70.9±0.3	70.6±0.4	-0.3
Pb(NO ₃) ₂	70.9±0.3	70.4±0.2	-0.5
CrCl ₃	70.9±0.3	71.4±0.6	0.5
MnCl ₂	70.9±0.3	71.1±0.5	0.2
T1NO3	70.9±0.3	$70.8 {\pm} 0.4$	-0.1

Table S4. Melting temperature (T_m) of 1 μ M duplex DNA, F25T:R25FdU, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	67.3±0.3	68.2±0.2	0.9
Cd(NO ₃) ₂	67.3±0.3	68.5±0.3	1.2
Fe(NO ₃) ₃	67.3±0.3	67.1±0.4	-0.2
$Co(NO_3)_2$	67.3±0.3	66.9±0.4	-0.4
Ni(NO ₃) ₂	67.3±0.3	67.2±0.4	-0.1
Pb(NO ₃) ₂	67.3±0.3	66.8±0.5	-0.5
CrCl ₃	67.3±0.3	67.4±0.4	0.1
MnCl ₂	67.3±0.3	67.6±0.5	0.3
TINO ₃	67.3±0.3	66.8±0.3	-0.5

Table S5. Melting temperature (T_m) of 1 μ M duplex DNA, F25FdU:R25A, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	72.4±0.4	72.3±0.2	-0.1
$Cd(NO_3)_2$	72.4±0.4	72.5±0.5	0.1
Fe(NO ₃) ₃	72.4±0.4	71.3±0.4	-1.1
Co(NO ₃) ₂	72.4±0.4	71.0±0.0	-1.4
Ni(NO ₃) ₂	72.4±0.4	71.3±0.5	-1.1
Pb(NO ₃) ₂	72.4±0.4	70.5±0.5	-1.9
CrCl ₃	72.4±0.4	71.4±0.6	-1.0
$MnCl_2$	72.4±0.4	71.2±0.2	-1.2
TINO ₃	72.4±0.4	70.5±0.4	-1.9

Table S6. Melting temperature (T_m) of 1 μ M duplex DNA, F25FdU:R25C, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	66.5±0.2	68.3±0.6	1.8
Cd(NO ₃) ₂	66.5±0.2	68.4±0.4	1.9
Fe(NO ₃) ₃	66.5±0.2	67.2±0.4	0.7
Co(NO ₃) ₂	66.5±0.2	67.3±0.2	0.8
Ni(NO ₃) ₂	66.5±0.2	67.4±0.5	0.9
Pb(NO ₃) ₂	66.5±0.2	67.0±0.4	0.5
CrCl ₃	66.5±0.2	67.6±0.4	1.1
MnCl ₂	66.5±0.2	67.5±0.3	1.0
T1NO ₃	66.5±0.2	66.9±0.1	0.4

Table S7. Melting temperature (T_m) of 1 μ M duplex DNA, F25FdU:R25G, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	70.3±0.4	70.9±0.4	0.6
$Cd(NO_3)_2$	70.3±0.4	71.5±0.5	1.2
Fe(NO ₃) ₃	70.3±0.4	70.8±0.6	0.5
Co(NO ₃) ₂	70.3±0.4	70.3±0.2	0
Ni(NO ₃) ₂	70.3±0.4	69.8±0.4	-0.5
Pb(NO ₃) ₂	70.3±0.4	69.6±0.5	-0.7
CrCl ₃	70.3±0.4	70.6±0.4	0.3
MnCl ₂	70.3±0.4	70.3±0.3	0
TINO3	70.3±0.4	70.0±0.3	-0.3

Table S8. Melting temperature (T_m) of 1 μ M duplex DNA, F25FdU:R25T, in 10 mM sodium cacodylate-cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without or with each of 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂, and TlNO₃ obtained from by UV melting.

Metal	$T_{\rm m}$ (-Metal)(°C)	$T_{\rm m}$ (+2Metal)(°C)	$\Delta T_{\rm m}$ (+2Metal)(°C) ^{<i>a</i>}
Zn(NO ₃) ₂	68.2±0.3	69.4±0.3	1.2
Cd(NO ₃) ₂	68.2±0.3	69.7±0.5	1.5
Fe(NO ₃) ₃	68.2±0.3	68.3±0.4	0.1
$Co(NO_3)_2$	68.2±0.3	68.1±0.5	-0.1
Ni(NO ₃) ₂	68.2±0.3	68.4±0.4	0.2
Pb(NO ₃) ₂	68.2±0.3	68.0±0.4	-0.2
CrCl ₃	68.2±0.3	68.6±0.4	0.4
MnCl ₂	68.2±0.3	68.8±0.3	0.6
TINO3	68.2±0.3	68.0±0.2	-0.2

P41212
a = b = 39.5, c = 74.8
2.50 (2.65 - 2.50)
53,355
3,924
4.7 (38.5)
29.7 (5.1)
99.8 (99.3)
99.9 (100)
13.6 (14.0)
27.96 - 2.50
2,277
19.7/21.0
88.4
0.003
0.532

Table S9. Crystal data, statistics of data collection and structural refinements.

Values in parentheses correspond to the highest resolution shell.

^a $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl).$

 ${}^{b}CC_{1/2}$ is the percentage of correlation between intensities from random half-datasets.

 ${}^{c}R_{\text{work}} = \sum_{hkl} ||F_{o}(hkl)| - |F_{c}(hkl)|| / \sum_{hkl} |F_{o}(hkl)|.$

 ${}^{d}R_{\text{free}}$ is the R_{work} calculated for 5% of the data set not included in refinements.

Figure S1. CD spectra of the duplex DNA, (a) F25A–R25FdU, (b) F25C–R25FdU, (c) F25G– R25FdU, (d) F25T–R25FdU, (e) F25FdU–R25A, (f) F25FdU–R25C, (g) F25FdU–R25G, and (h) F25FdU–R25T, with or without Cu(NO₃)₂. Duplex DNA (1 μ M) at 25 °C in 10 mM sodium cacodylate–cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) without (solid line) or with 1 (dotted line) or 2 (dashed-dotted line) μ M Cu(NO₃)₂ was measured at 250–350 nm. Path length was 1 cm.

Experimental Section

Oligonucleotide preparation

Α pair of 25-mer complementary DNA oligonucleotides. F25X: 5'd(GCCCTGCCTGTCXCCCAGATCACTG)-3' (X=A, C, G, T, and 5-fluorouracil (FdU)) (Figure 1) and R25Y:5'-d(CAGTGATCTGGGYGACAGGCAGGGC)-3' (Y=A, C, G, T, and FdU) (Figure 1), and a 12-mer self-complementary DNA oligonucleotide, C5FdU:5'd[GGACCC(FdU)GGTCC]-3' (Figure 1), were purchased from Japan Bio Service Co., Ltd. (Saitama, Japan). The concentrations of all purchased single-stranded oligonucleotides were determined by UV absorbance considering the molar extinction coefficient of the individual nucleobases within each single-stranded oligonucleotide. Pairs of the complementary strands, F25X (X=A, C, G, and T) and R25Y (Y=FdU), F25X (X=FdU) and R25Y (Y=A, C, G, and T), as well as the self-complementary strand, C5FdU (Figure 1), were annealed by heating to 90 °C, followed by gradual cooling to room temperature. The annealed samples were applied to a hydroxyapatite column (BIORAD Inc.) to remove the unpaired single strands. The concentrations of the prepared duplex DNA, F25X:R25Y [X-Y=A-FdU, C-FdU, G-FdU, T-FdU, FdU–A, FdU–C, FdU–G, and FdU–T] and (C5FdU)₂ (Figure 1), were determined by UV absorption considering the DNA concentration ratio of (Absorbance of 1 at 260 nm) = 50µg/mL. When we change into molar concentration, we use the molecular weight of the individual nucleobases within duplex DNA.

UV melting

UV melting experiments were performed on a DU-640 spectrophotometer (Beckman Inc.) equipped with a Peltier-type cell holder. The cell path length is 1 cm. The UV melting profiles were measured in 10 mM sodium cacodylate–cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) with or without 1 or 2 μ M Cu(NO₃)₂ or 2 μ M Zn(NO₃)₂, Cd(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₂, Pb(NO₃)₂, CrCl₃, MnCl₂ and TlNO₃ at 0.2 °C/min with detection at 260

nm. The first derivative was calculated using the UV melting profile. The peak temperatures in the derivative curve are designated as $T_{\rm m}$. The concentration of the duplex DNA used was 1 μ M.

CD spectroscopy

CD spectra were recorded at 25 °C in 10 mM sodium cacodylate–cacodylic acid (pH 6.8) and 100 mM NaNO₃ (buffer A) with or without 1 or 2 μ M Cu(NO₃)₂ on a JASCO J-725 spectropolarimeter interfaced with a microcomputer. The cell path length is 1 cm. The concentration of the duplex DNA used was 1 μ M.

X-ray crystallography

To reveal the detailed structure of the complex between C-FdU or FdU-C base pair in duplex DNA and copper ion, we crystallized a duplex DNA, $(C5FdU)_2$ (Figure 1), with a selfcomplementary sequence involving consecutive C-FdU and FdU-C base pairs in the center by the hanging-drop vapor diffusion method under conditions containing Cu(NO₃)₂. Crystallization was performed at 20°C by mixing 1.0 µL of a sample solution containing 2 mM (C5FdU)₂ and 4 mM Cu(NO₃)₂ solutions and 1.0 µL of crystallization solution containing 50 mM 3-(*N*-morpholino) propanesulfonic acid (MOPS) (pH 7.0), 10% 2-methyl-2,4-pentanediol (MPD), 10 mM Sr(NO₃)₂, and 10 mM spermine. Single crystals were scooped from droplets using CryoLoop (Hampton Research) and frozen immediately in liquid nitrogen.

X-ray diffraction datasets were collected at the X06SA (PXI) of the Swiss Light Source. Experimental phase of the (C5FdU)₂ duplex DNA with Cu²⁺ was obtained by the singlewavelength anomalous difference (SAD) method using the copper anomalous signal with the *AutoSol* program¹ in the *Phenix* suite.² Molecular structures were constructed and manipulated using *Coot*.³ The atomic parameters of the (C5FdU)₂ duplex DNA in complex with Cu²⁺ were refined using *phenix.refine* from the *Phenix* suite.² Observations and molecular drawings of the structures were made using the *PyMOL* software. The data collection and structure refinement statistics are summarized in Table 2. The atomic coordinates and experimental data of the $(C5FdU)_2$ duplex DNA in complex with Cu^{2+} were deposited in the Protein Data Bank with ID code, 9KCC.

- T. C. Terwilliger, P. D. Adams, R. J. Read, A. J. McCoy, N. W. Moriarty, R. W. Grosse-Kunstleve, P. V. Afonine, P. H. Zwart and L. W. Hung, *Acta Crystallogr D Biol Crystallogr*, 2009, 65, 582-601.
- 2 P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart and P. D. Adams, *Acta Crystallogr D Biol Crystallogr*, 2012, 68, 352-367.
- 3 (a) P. Emsley and K. Cowtan, *Acta Crystallogr D Biol Crystallogr*, 2004, 60, 2126-2132; (b)
 P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, *Acta Crystallogr D Biol Crystallogr*, 2010, 66, 486-501.