Supporting Information for:

Identifying Charge-Transfer and Trip-Multiplet States in Co(I), Co(II), and Co(III)

phthalocyanines using (magneto)optical spectroscopy and (TD)DFT calculations.

Breanna E. Muldowney,^a Dustin E. Nevonen,^{a,b} Towhidi Illius Jeaydi,^c Christopher J. Ziegler,^{*c} Brendon J. McNicholas,^{*a} and Victor N. Nemykin,^{*a}

^a Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States ^b Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS 67260, United States

^c Department of Chemistry, University of Akron, Akron, Ohio 44325, United States

Table of contents

Additional UV-Vis and MCD spectra of cobalt phthalocyanines	.83-84
DFT-predicted frontier orbitals of cobalt phthalocyanines	S5-S7
DFT-predicted spin densities of cobalt(II) phthalocyanines	S11
TDDFT-predicted energies, oscillator strengths, and contributions for the excited s cobalt	states of
phthalocyanines	S12-S22
Additional discussion on the DFT-predicted EPR parameters in cobalt(II)	
phthalocyanines	S23-S24
Coordinates for optimized cobalt phthalocyanines	S25-S34

Figure S1. UV-Vis and MCD spectra of $[Pc(2-)Co^{I}]^{-}$ in DMF.

Figure S2. UV-Vis and MCD spectra of $[Pc^{tBu}(2-)Co^{I}]^{-}$ in DMF.

Figure S3. UV-Vis and MCD spectra of Pc(2-)Co^{II}Py₂ in pyridine.

Figure S4. UV-Vis and MCD spectra of $Pc(2-)Co^{II}(nBuNH_2)_2$ in DMF/*n*BuNH₂ (97.5/2.5% v/v).

Figure S5. Possible overlap between MCD spectra of Q_{0-0} -band of monomeric $[Pc(2-)Co^I]^-$ (blue) and its H-aggregate (red). The grey oval is the area of destructive interference between the H-aggregate's negative component and the monomer's positive component.

Figure S6. DFT-predicted frontier orbitals of [Pc(2-)Co^{III}Br₂]⁻.

Figure S7. DFT-predicted frontier orbitals of [Pc(2-)Co^{III}(CN)₂]⁻.

Figure S8. α - and β -sets of the DFT-predicted frontier orbitals of Pc(2-)Co^{II}.

Figure S9. α - and β -sets of the DFT-predicted frontier orbitals of Pc(2-)Co^{II}Py₂.

Figure S10. α - and β -sets of the DFT-predicted frontier orbitals of Pc(2-)Co^{II}(nBuNH₂)₂.

Figure S11. DFT-predicted frontier orbitals of [Pc(2-)Co^I]⁻.

Figure S12. DFT-predicted total spin densities in $Pc(2-)Co^{II}(a)$, $Pc(2-)Co^{II}Py_2(b)$, and $Pc(2-)Co^{II}(nBuNH_2)_2(c)$.

Excited	Energy	Wavelength	Osc.	Band	Contributions ^b
State	(cm^{-1})	(nm)	Strength	Assignment	
				[Pc($2-)Co^{III}(Br)_2]^{-}$
4, 5	15100	662	0.8010	Q	$88.3\% \text{ HOMO} \rightarrow \text{L+1};$
					$88.3\% \text{ HOMO} \rightarrow \text{L+2}$
9	20954	477	0.1570	LMCT	95.6% H-1 \rightarrow LUMO
11, 12	22454	445	0.0462	LMCT	49.8% H-7 \rightarrow LUMO, 40.2% H-1 \rightarrow L+2;
					49.8% H-6 \rightarrow LUMO, 40.2% H-1 \rightarrow L+1
18, 19	23030	434	0.1020	B1/LMCT	29.8% H-1 \rightarrow L+1, 26.7% H-6 \rightarrow LUMO, 20.5% H-1 \rightarrow L+2,
					18.4% H-7 \rightarrow LUMO;
					29.8% H-1 → L+2, 26.7% H-7 → LUMO, 20.5% H-1 → L+1,
					$18.4\% \text{ H-6} \rightarrow \text{LUMO}$
30	25356	394	0.0211	ILCT	$46.0\% \text{ H-6} \rightarrow \text{L+1}, 46.0\% \text{ H-7} \rightarrow \text{L+2}$
31	25762	388	0.0123	LMCT	93.3% H-10 \rightarrow LUMO
35, 36	26706	374	0.0098	B2	91.5% H-8 \rightarrow L+2
42, 43	28065	356	0.8220	$\pi \rightarrow \pi^*$	73.2% H-10 \rightarrow L+1, 12.4% H-10 \rightarrow L+2;
					73.2% H-10 \rightarrow L+2, 12.4% H-10 \rightarrow L+1
45, 46	28664	349	0.0032	B3	74.9% H-13 \rightarrow L+1, 12.1% HOMO \rightarrow L+8;
					74.9% H-13 \rightarrow L+2, 12.1% HOMO \rightarrow L+7
51, 52	29416	340	0.0379	L	$79.3\% \text{ HOMO} \rightarrow \text{L+7};$
			0.0001		$79.3\% \text{ HOMO} \rightarrow L+8$
56, 57	30432	329	0.0201	LMCT	51.4% H-15 \rightarrow LUMO, 47.3% H-16 \rightarrow LUMO; 51.4% H 16 \rightarrow LUMO, 47.3% H 15 \rightarrow LUMO
61 62	31685	316	0 0479	LMCT	$95.5\% \text{ H-6} \rightarrow \text{L+3}$
51, 52	21000		5.0 .77	2000	$95.5\% \text{ H-7} \rightarrow \text{L+3}$
66	32032	312	0.0034	$\pi ightarrow \pi^*$	49.3% H-15 → L+2, 49.3% H-16 → L+1

Table S1. TDDFT predicted energies, oscillator strengths, and contributions for the major excited states of cobalt(III) complexes.^a

67, 68	33008	303	0.0373	$\pi ightarrow \pi^*$	52.1% H-14 \rightarrow L+1, 40.3% H-14 \rightarrow L+2; 52.1% H-14 \rightarrow L+2 40.3% H-14 \rightarrow L+1
80.81	35646	281	0.0310	MLCT1	$40.3\% \text{ H-5} \rightarrow \text{L+4}, 36.6\% \text{ H-4} \rightarrow \text{L+4}, 10.5\% \text{ H-2} \rightarrow \text{L+4};$
,					$40.3\% \text{ H-4} \rightarrow \text{L+4}, 36.6\% \text{ H-5} \rightarrow \text{L+4}, 10.5\% \text{ H-3} \rightarrow \text{L+4}$
86	36119	277	0.7680	LMCT	95.5% H-20 → LUMO
87, 88	36340	275	0.1060	ILCT	$51.2\% \text{ H-}2 \rightarrow \text{L+}5, 30.7\% \text{ H-}20 \rightarrow \text{L+}1, 15.7\% \text{ H-}5 \rightarrow \text{L+}5;$
					51.2% H-3 \rightarrow L+5, 30.7% H-20 \rightarrow L+2, 15.7% H-4 \rightarrow L+5
89, 90	36387	275	0.2580	$\pi \to \pi^*$	45.7% H-20 \rightarrow L+1, 16.5% H-5 \rightarrow L+5, 13.4% H-20 \rightarrow L+2, 11.3%
					$\text{H-2} \rightarrow \text{L+5}, 4.82\% \text{ H-4} \rightarrow \text{L+5}, 3.32\% \text{ H-3} \rightarrow \text{L+5}, 45.7\% \text{ H-20} \rightarrow$
					L+2, 16.5% H-4 \rightarrow L+5, 13.4% H-20 \rightarrow L+1, 11.3% H-3 \rightarrow L+5,
	05100	• • •	0.0000		$4.82\% \text{ H-5} \rightarrow \text{L+5}, 3.32\% \text{ H-2} \rightarrow \text{L+5}$
92, 93	3/132	269	0.3030	MLC12	$58.4\% \text{ H-4} \rightarrow \text{L+5}, 31.6\% \text{ H-3} \rightarrow \text{L+5}, 2.62\% \text{ HOMO} \rightarrow \text{L+11},$
100	20210	261	0.0021	*	58.4% H-5 \rightarrow L+5, 51.6% H-2 \rightarrow L+5, 2.62% HOMO \rightarrow L+12
100	30340	201	0.0021	$\pi \rightarrow \pi^{*}$	$96.5\% \text{ H}\text{-}9 \rightarrow \text{L}\text{+}4$
				[Po	$c(2-)Co^{III}(CN)_2]^-$
1, 2	14899	671	0.788	Q	$97.4\% \text{ HOMO} \rightarrow \text{LUMO};$
					$97.4\% \text{ HOMO} \rightarrow \text{L+1}$
4, 5	22553	443	0.1644	\mathbf{B}_1	93.8% H-1 \rightarrow L+1;
					93.8% H-1 \rightarrow LUMO
17, 18	26352	379	0.0104	B2	$96.5\% \text{ H-4} \rightarrow \text{L+1};$
					$96.5\% \text{ H-4} \rightarrow \text{LUMO}$
22, 23	27682	361	0.8872	π – π *	$83.6\% \text{ H-6} \rightarrow \text{L+1}, 13.4\% \text{ H-9} \rightarrow \text{LUMO};$
					$83.6\% \text{ H-6} \rightarrow \text{LUMO}, 13.4\% \text{ H-9} \rightarrow \text{L+1}$
25, 26	28283	354	0.0012	B3	$81.3\% \text{ H-9} \rightarrow \text{LUMO}, 11.2\% \text{ H-6} \rightarrow \text{L+1};$
25.26	20540	220	0.0406	T	$81.3\% \text{ H-9} \rightarrow \text{L+1}, 11.2\% \text{ H-6} \rightarrow \text{LUMO}$
33, 30	29540	339	0.0406	L	$94.2\% \text{ HOMO} \rightarrow L^+/;$
41	21260	210	0.0017	*	$94.2\% \text{ HOMO} \rightarrow L^+0$ $48.2\% \text{ H} 12 \rightarrow L^+1 48.2\% \text{ H} 14 \rightarrow L \text{ HMO}$
41	21307	219	0.0017	$\pi - \pi^*$	$40.2\% \Pi - 13 \rightarrow L^{\pm}1, 40.2\% \Pi - 14 \rightarrow L \cup \text{IVIO}$

42	32161	311	0.0228	LMCT	70.1% H-4 \rightarrow L+2, 28.2% H-1 \rightarrow L+3
43	32222	310	0.059	LMCT	66.2% H-1 \rightarrow L+3, 29.4% H-4 \rightarrow L+2
44, 45	32674	306	0.033	$\pi - \pi^*$	95.0% H-12 \rightarrow LUMO, 95.0% H-12 \rightarrow L+1
56	34465	290	0.0084	$\pi - \pi^*$	48.7% H-15 \rightarrow L+1, 48.7% H-16 \rightarrow LUMO
60, 61	35851	279	0.0352	MLCT1	97.8% H-3 \rightarrow L+4; 97.8% H-2 \rightarrow L+4
65, 66	36920	271	0.0243	$\pi - \pi^*$	85.0% H-18 \rightarrow L+1, 12.6% H-13 \rightarrow L+2; 85.0% H-18 \rightarrow LUMO 12.6% H-14 \rightarrow L+2
67, 68	37260	268	0.5824	MLCT2	83.0% H-2 \rightarrow L+5, 10.6% H-13 \rightarrow L+2; 83.0% H-3 \rightarrow L+5, 10.6% H-14 \rightarrow L+2
72	37671	265	0.0012	$\pi - \pi^*$	99.5% H-6 \rightarrow L+3
76,77	37892	264	0.1257	LMCT	$67.7\% \text{ H-13} \rightarrow \text{L+2}, 10.1\% \text{ H-2} \rightarrow \text{L+5};$ $67.7\% \text{ H-14} \rightarrow \text{L+2}, 10.1\% \text{ H-3} \rightarrow \text{L+5}$
81,82	38487	260	0.0676	$\pi - \pi^*$	88.9% H-1 \rightarrow L+6; 88.9% H-1 \rightarrow L+7
83	38665	259	0.0021	MLCT	98.4% H-5 \rightarrow L+4
91,92	39781	251	0.0318	MLCT3	52.4% H-2 \rightarrow L+8, 20.1% H-8 \rightarrow L+4, 17.1% HOMO \rightarrow L+12; 52.4% H-3 \rightarrow L+8, 20.1% H-7 \rightarrow L+4, 17.1% HOMO \rightarrow L+11
96,97	39991	250	0.0449	LMCT	93.2% H-15 \rightarrow L+2; 93.2% H-16 \rightarrow L+2
100	40363	248	0.0244	$\pi - \pi^*$	50.2% HOMO \rightarrow L+12, 44.3% H-8 \rightarrow L+4

^{a)} Only major excited states with relatively high oscillator strengths are shown. ^{b)} Only contributions with more than 10% are shown.

Excited	Energy	Wavelength	< S ² >	Osc.	Band	Contributions ^b
State	(cm^{-1})	(nm)		Strength	Assignment	
					Pc(2-)Co ^{II}	
3, 4	9967	1003	2.756	0.0004	t-m	52.2% HOMO(α) \rightarrow L+1(α), 47.8% HOMO(β) \rightarrow L+1(β);
						52.2% HOMO(α) \rightarrow LUMO(α), 47.8% HOMO(β) \rightarrow LUMO(β)
6, 7	15116	662	0.759	0.8380	Q	51.6% HOMO(β) \rightarrow L+1(β), 47.2% HOMO(α) \rightarrow L+1(α);
						51.6% HOMO(β) \rightarrow LUMO(β), 47.2% HOMO(α) \rightarrow LUMO(α)
37, 38	26372	379	0.775	0.0203	B2	54.1% H-4(β) \rightarrow L+1(β), 42.5% H-3(α) \rightarrow L+1(α); 54.1% H-4(β) \rightarrow LUMO(β), 42.5% H-3(α) \rightarrow
48, 49	27285	367	2.746	0.0026	B3	LUMO(α) 31.7% H-8(α) \rightarrow L+1(α), 23.9% H-8(β) \rightarrow L+1(β), 16.2% HOMO(α) \rightarrow L+7(α), 14.1% HOMO(β) \rightarrow
						L+8(β); 31.7% H-8(α) \rightarrow LUMO(α), 23.9% H-8(β) \rightarrow LUMO(β), 16.2% HOMO(α) \rightarrow L+6(α), 14.1%
50, 51	27787	360	0.768	0.6320	B1	$46.7\% \text{ H-5}(\beta) \rightarrow \text{LUMO}(\beta), 39.9\% \text{ H-5}(\alpha) \rightarrow \text{LUMO}(\alpha);$ $46.7\% \text{ H-5}(\beta) \rightarrow \text{L+1}(\beta), 39.9\% \text{ H-5}(\alpha) \rightarrow \text{L+1}(\alpha)$

Table S2. TDDFT predicted energies, oscillator strengths, and contributions for the excited states of cobalt(II) complexes.^a

55, 56	28318	353	0.763	0.0691	B3	47.9% H-8(β) \rightarrow L+1(β), 39.4% H-8(α) \rightarrow L+1(α); 47.9% H-8(β) \rightarrow LUMO(β), 39.4% H-8(α) \rightarrow LUMO(α)
67, 68	29616	338	0.762	0.0454	L	47.7% HOMO(β) \rightarrow L+8(β), 46.7% HOMO(α) \rightarrow L+7(α); 47.7% HOMO(β) \rightarrow L+7(β), 46.7% HOMO(α) \rightarrow
73, 74	30309	330	0.790	0.2970	π-π*	L+6(α) 40.8% H-9(α) \rightarrow LUMO(α), 36.0% H-9(β) \rightarrow LUMO(β); 40.8% H-9(α) \rightarrow L+1(α) 36.0% H-9(β) \rightarrow L+1(β)
75	30405	329	792	0.0024	LMCT	$65.6\% \text{ H-5}(\beta) \to \text{L+2}(\beta), 34.4\% \text{ H-9}(\beta) \to \text{L+2}(\beta)$
76, 77	30731	325	2.745	0.0034	π-π*	43.1% H-13(α) → L+1(α), 41.6% H-13(β) → L+1(β); 43.1% H-13(α) → LUMO(α), 41.6% H-13(β) → LUMO(β)
80, 81	30956	323	2.106	0.0531	MLCT1	85.6% H-2(β) \rightarrow L+3(β); 85.6% H-1(β) \rightarrow L+3(β)
89	31620	316	0.793	0.0037	LMCT	65.3% H-9(β) → L+2(β), 34.4% H-5(β) → L+2(β)
91, 92	31682	316	2.345	0.1370	MLCT2	78.9% H-2(β) \rightarrow L+4(β); 78.9% H-1(β) \rightarrow L+4(β)
93	31735	315	0.762	0.0042	$\pi - \pi^*$	24.6% H-14(β) → L+1(β), 24.6% H-15(β) → LUMO(β), 24.2% H-14(α) → L+1(α), 24.2% H- 15(α) → LUMO(α)
98, 99	32961	303	1.310	0.0115	$ \begin{array}{l} MLCT + \\ \pi - \pi^* \end{array} $	$46.1\% \text{ H-2}(\alpha) \rightarrow \text{L+3}(\alpha), 18.4\% \text{ H-13}(\alpha) \rightarrow \text{LUMO}(\alpha), 12.4\% \text{ H-13}(\beta) \rightarrow \text{LUMO}(\beta);$

100, 101	33088	302	1.033	0.2160	π–π* + MLCT	46.1% H-1(α) \rightarrow L+3(α), 18.4% H-13(α) \rightarrow L+1(α), 12.4% H-13(β) \rightarrow L+1(β) 32.7% H-13(β) \rightarrow L+1(β), 25.1% H-1(α) \rightarrow L+3(α), 23.0% H-13(α) \rightarrow L+1(α); 32.7% H-13(β) \rightarrow L(β), 25.1% H-2(α) \rightarrow L+3(α), 23.0% H-13(α) \rightarrow L(α)
					Pc(2-)Co ^{II} Py	/2
1, 2	10443	958	2.755	0.0013	t-m	53.9% HOMO(α) \rightarrow LUMO(α), 45.9% HOMO(β) \rightarrow LUMO(β); 53.9% HOMO(α) \rightarrow L+1(α), 45.9% HOMO(β) \rightarrow L+1(β)
13, 14	15405	649	0.765	0.7900	Q	53.1% HOMO(β) \rightarrow LUMO(β), 45.0% HOMO(α) \rightarrow LUMO(α); 53.1% HOMO(β) \rightarrow L+1(β), 45.0% HOMO(α) \rightarrow L+1(α)
39, 40	25727	389	0.839	0.0094	MLCT (Pc, Py)	25.9% H-2(α) \rightarrow L+2(α), 25.9% H-1(β) \rightarrow L+12(β), 16.3% H-1(β) \rightarrow L+10(β); 25.9% H-3(α) \rightarrow L+2(α), 25.9% H-2(β) \rightarrow L+12(β), 16.3% H-2(β) \rightarrow L+10(β)
42, 43	25943	385	1.115	0.0901	B1 + B3	25.0% H-6(α) \rightarrow L+1(α), 22.4% H-5(α) \rightarrow LUMO(α), 18.6% H-4(β) \rightarrow LUMO(β), 14.6% HOMO(β) \rightarrow L+3(β); 25.0% H-6(α) \rightarrow LUMO(α), 22.4% H-5(α) \rightarrow L+1(α), 18.6% H-4(β) \rightarrow L+1(β), 14.6% HOMO(β) \rightarrow L+4(β)
45, 46	26068	384	1.314	0.0542	ILCT	58.3% HOMO(β) \rightarrow L+3(β), 11.2% H-5(β) \rightarrow L+1(β);

						58.3% HOMO(β) \rightarrow L+4(β), 11.2% H-5(β) \rightarrow
						LUMO(β)
55, 56	27042	370	0.772	0.0218	B2	37.3% H-5(β) \rightarrow LUMO(β), 29.7% H-6(α) \rightarrow
						LUMO(α), 10.9% H-4(β) \rightarrow L+1(β), 10.1% H-5(α)
						\rightarrow L+1(α);
						37.3% H-5(β) \rightarrow L+1(β), 29.7% H-6(α) \rightarrow L+1(α),
						10.9% H-4(β) → LUMO(β), 10.1% H-5(α) →
						$LUMO(\alpha)$
62, 63	27923	358	1.879	0.0192	MLCT1	87.4% H-1(β) \rightarrow L+2(β);
						87.4% H-2(β) \rightarrow L+2(β)
67, 68	28367	353	0.927	0.5490	$\pi - \pi^*$	39.4% H-6(β) \rightarrow LUMO(β), 29.4% H-7(α) \rightarrow
						LUMO(α);
						39.4% H-6(β) \rightarrow L+1(β), 29.4% H-7(α) \rightarrow L+1(α)
69	28422	352	1.974	0.0196	MLCT (Py)	44.2% H-1(β) \rightarrow L+4(β), 44.2% H-2(β) \rightarrow L+3(β)
78, 79	28992	345	1.84	0.3070	MLCT2	67.2% H-1(β) \rightarrow L+5(β);
						$67.2\% \text{ H-2}(\beta) \rightarrow \text{L+5}(\beta)$
81, 82	29025	345	0.899	0.0361	B3	37.3% H-9(β) \rightarrow L+1(β), 21.6% H-10(α) \rightarrow
						L+1(α), 11.2% HOMO(β) \rightarrow L+7(β);
						37.3% H-9(β) → LUMO(β), 21.6% H-10(α) →
						LUMO(α), 11.2% HOMO(β) \rightarrow L+8(β)
85, 86	29480	339	2.247	0.0300	$\pi - \pi^*$	78.6% H-14(β) \rightarrow L+1(β), 10.2% H-18(α) \rightarrow
						$L+1(\alpha);$
						78.6% H-14(β) → LUMO(β), 10.2% H-18(α) →
						$LUMO(\alpha)$
88, 89	29555	338	0.904	0.0279	L	39.4% HOMO(β) \rightarrow L+7(β), 23.7% HOMO(α) \rightarrow
						$L+8(\alpha);$

						39.4% HOMO(β) \rightarrow L+8(β), 23.7% HOMO(α) \rightarrow
						$L+9(\alpha)$
92	29771	336	0.881	0.0038	MLCT	85.8% H-1(α) \rightarrow L+7(α)
				Po	$c(2-)Co^{II}(nBu$	1NH2)2
3, 4	10549	948	2.754	0.0017	t-m	53.8% H-1(α) \rightarrow LUMO(α), 45.2% HOMO(β) \rightarrow LUMO(β):
	10572	946	2.755	0.0017		53.8% H-1(α) \rightarrow L+1(α), 45.1% HOMO(β) \rightarrow L+1(β)
13, 14	15455	647	0.767	0.7920	Q	37.8% HOMO(β) \rightarrow LUMO(β), 33.1% H-1(α) \rightarrow LUMO(α), 15.7% HOMO(β) \rightarrow L+1(β), 11.3% H-1(α) \rightarrow L+1(α):
	15471	646	0.767	0.7910		$37.8\% \text{ HOMO}(\beta) \rightarrow L+1(\beta), 33.1\% \text{ H}-1(\alpha) \rightarrow$ L+1(α), 15.7% HOMO(β) \rightarrow LUMO(β), 11.3% H-1(α) \rightarrow LUMO(α)
23, 24	21274	470	2.733	0.0014	B1	51.4% H-4(β) \rightarrow L+1(β), 33.3% H-4(α) \rightarrow L+1(α);
	21288	470	2.732	0.0015		51.6% H-4(β) → LUMO(β), 33.1% H-4(α) → LUMO(α)
35, 36	24182	414	0.811	0.1490	B1	55.1% H-4(α) \rightarrow LUMO(α), 35.9% H-4(β) \rightarrow LUMO(β):
	24232	413	0.808	0.1450		54.8% H-4(α) \rightarrow L+1(α), 36.2% H-4(β) \rightarrow L+1(β)
52, 53	26965	371	1.292	0.0124	B2 + MLCT1	$30.8\% \text{ H-1}(\beta) \rightarrow \text{ L+2}(\beta), 27.2\% \text{ H-5}(\beta) \rightarrow \text{ L+1}(\beta), 21.5\% \text{ H-6}(\alpha) \rightarrow \text{ L+1}(\alpha);$
	26987	371	1.255	0.0131		

						30.7% H-5(β) → LUMO(β), 23.7% H-6(α) →
						LUMO(α), 20.0% H-2(β) \rightarrow L+2(β), 12.7% H-1(β)
						\rightarrow L+2(β)
54, 55	27082	369	1.320	0.0310	B2 +	40.0% H-1(β) \rightarrow L+2(β), 27.1% H-5(β) \rightarrow
					MLCT1	L+1(β), 17.4% H-6(α) \rightarrow L+1(α);
	27103	369	1.562	0.0394		58.4% H-2(β) \rightarrow L+2(β), 18.3% H-5(β) \rightarrow
						LUMO(β), 11.6% H-6(α) \rightarrow LUMO(α)
65, 67	28680	349	0.950	0.7950	$\pi - \pi^*$	38.3% H-7(α) → LUMO(α), 36.4% H-6(β) →
						LUMO(β);
	28699	348	0.931	0.8000		38.6% H-7(α) \rightarrow L+1(α), 37.3% H-6(β) \rightarrow
						$L+1(\beta)$
78, 79	29536	339	0.811	0.0247	B3	25.6% H-9(β) → LUMO(β), 20.7% H-10(α) →
						LUMO(α);
	29543	338	0.813	0.0250		25.9% H-9(β) \rightarrow L+1(β), 20.9% H-10(α) \rightarrow
						$L+1(\alpha)$
85, 86	29994	333	1.667	0.0851	MLCT1	88.1% H-2(α) \rightarrow L+3(α);
	30030	333	1.667	0.0860		88.0% H-3(α) \rightarrow L+3(α)
99, 100	31223	320	1.684	0.4502	MLCT2	63.1% H-2(α) \rightarrow L+4(α), 16.8% H-2(β) \rightarrow L+4(β);
	31239	320	1.718	0.4309		61.1% H-3(α) \rightarrow L+4(α), 13.7% H-1(β) \rightarrow L+4(β)

a) Only major excited states with relatively high oscillator strengths are shown. ^{b)} Only contributions with more than 10% are shown.

Excited	Energy	Wavelength	Osc.	Band	Contributions ^b
State	(cm^{-1})	(nm)	Strength	Assignment	
6, 7	16004	625	0.6870	Q	$97.8\% \text{ H-3} \rightarrow \text{L+1};$
					97.8% H-3 → LUMO
12, 13	22880	437	0.0655	MLCT1	$90.9\% \text{ H-1} \rightarrow \text{L+2};$
					$90.9\% \text{ HOMO} \rightarrow \text{L+2}$
18, 19	23825	420	0.4970	MLCT2	$89.1\% \text{ HOMO} \rightarrow \text{L+3};$
					$89.1\% \text{ H-1} \rightarrow \text{L+3}$
21	25253	396	0.0121	MLCT	$99.5\% \text{ H-2} \rightarrow \text{L+4}$
22, 23	25581	391	0.2780	MLCT3	$97.7\% \text{ HOMO} \rightarrow \text{L+4};$
					97.7% H-1 \rightarrow L+4
33, 34	28116	356	0.0091	B2	$86.5\% \text{ H-5} \rightarrow \text{L+1};$
					86.5% H-5 \rightarrow LUMO
35, 36	28697	348	0.0702	L	$89.0\% \text{ H-3} \rightarrow \text{L+5};$
					$89.0\% \text{ H-3} \rightarrow \text{L+6}$
37, 38	29972	334	0.7640	B1	76.8% H-6 \rightarrow L+1, 13.0% H-10 \rightarrow L+1;
					76.8% H-6 \rightarrow LUMO, 13.0% H-10 \rightarrow LUMO
45, 46	30815	325	0.2750	B3	75.0% H-9 \rightarrow LUMO, 22.6% H-10 \rightarrow L+1;
					$75.0\% \text{ H-9} \rightarrow \text{L+1}, 22.6\% \text{ H-10} \rightarrow \text{LUMO}$
49	31188	321	0.0011	MLCT	$95.1\% \text{ H-4} \rightarrow \text{L+2}$
50, 51	31350	319	0.2500	$\pi - \pi^*$	59.4% H-10 \rightarrow L+1, 17.6% H-9 \rightarrow LUMO, 14.0% H-6 \rightarrow L+1;
					59.4% H-10 \rightarrow LUMO, 17.6% H-9 \rightarrow L+1, 14.0% H-6 \rightarrow LUMO
59	32915	304	0.0033	$\pi - \pi^*$	47.4% H-14 \rightarrow L+1, 47.4% H-15 \rightarrow LUMO

Table S3. TDDFT predicted energies, oscillator strengths, and contributions for the excited states of $[Pc(2-)Co^{I}]^{-a}$

63, 64	34853	287	0.0543	$\pi - \pi^*$	93.2% H-16 \rightarrow LUMO;
					$93.2\% \text{ H-16} \rightarrow \text{L+1}$
70, 71	37289	268	0.0029	$\pi - \pi^*$	96.7% H-1 \rightarrow L+9;
					96.7% HOMO \rightarrow L+9
80	39420	254	0.2450	$d_{z2} \rightarrow 4p_z$	$99.0\% \text{ H-2} \rightarrow \text{L+13}$
83, 84	39741	252	0.0076	π – π *	$78.6\% \text{ H-3} \rightarrow \text{L+11};$
					$78.6\% \text{ H-3} \rightarrow \text{L+10}$
88, 89	40644	246	0.0098	$\pi - \pi^*$	71.5% H-8 \rightarrow L+2;
					71.5% H-7 \rightarrow L+2
94, 95	41522	241	0.0048	$\pi - \pi^*$	73.9% HOMO \rightarrow L+13, 19.2% HOMO \rightarrow L+12;
					73.9% H-1 \rightarrow L+13, 19.2% H-1 \rightarrow L+12
96, 97	41611	240	0.0344	$\pi - \pi^*$	83.9% H-12 \rightarrow L+2;
					83.9% H-11 \rightarrow L+2
98, 99	41716	240	0.4100	MLCT	$62.4\% \text{ HOMO} \rightarrow \text{L+}12, 17.0\% \text{ HOMO} \rightarrow \text{L+}13;$
					$62.4\% \text{ H-1} \rightarrow \text{L+12}, 17.0\% \text{ H-1} \rightarrow \text{L+13}$

^{a)} Only major excited states with relatively high oscillator strengths are shown. ^{b)} Only contributions with more than 10% are shown.

The DFT-predicted EPR parameters for cobalt(II) phthalocyanines are shown in **Tables 1** and S4. TPSSh, BP86, TPSS, wB97XD, and CAM-B3LYP exchange-correlation functionals give correct trends in g_{\perp} and A_{\perp} values. Although errors in DFT-predicted *g*-values are relatively small (except in some cases of M06 and MN12L), it seems that standard DFT protocols have trouble predicting the trends in g_{\parallel} values going from Pc(2-)Co^{II} to Pc(2)Co^{II}Py₂ and Pc(2-)Co^{II}(*n*BuNH₂)². When using the same exchange-correlation functional, it seems that a large basis set dependence is present for hyperfine values, while the influence of the basis set on the predicted *g*-values is smaller (Table S4). Overall, it seems that we need to develop a different computational protocol to accurately predict both *g*- and *A*-values observed in the EPR spectra of cobalt(II) phthalocyanines.

Compound, ECF	Basis set	gı	g_{\perp}	AI, cm^{-1}	A_{\perp}, cm^{-1}
Pc(2-)Co ^{II}					
Experiment		1.945	2.677	150	190
TPSSh	Wf/6-	2.004	2.314	195	31
	311G(d) ^a				
BP86	Wf/6-	1.999	2.395	225	55
	311G(d) ^a				
TPSS	Wf/6-	2.002	2.286	215	51
	311G(d) ^a				
wB97XD	Wf/6-	2.008	2.593	178	1
	311G(d) ^a				
CAM-B3LYP	Wf/6-	2.007	2.567	188	14
	311G(d) ^a				
LC-wHPBE	Wf/6-	2.004	2.447	195	24
	311G(d) ^a				
wB97 ^b	Wf/6-	2.004	2.836,	178	1,
	311G(d) ^a		2.763		2
MN12L	Wf/6-	2.012	2.278	14	169
	311G(d) ^a				
M06	Wf/6-	1.997	0.855	283	98
	311G(d) ^a				
TPSSh	def2-TZVP	2.004	2.307	303	127
TPSSh	def2-TZVPP	2.004	2.302	305	128
TPSSh	DGDZVP	2.010	2.310	280	100
TPSSh	cc-pVTZ	2.004	2.306	307	129
$\mathbf{Pc(2-)Co^{II}Py_2^{c}}$					
Experiment		2.013	2.250	85	

 Table S4. DFT-predicted EPR spectra of cobalt(II) systems.

TPSSh	Wf/6-	1.994	2.155	113	61
	311G(d) ^a			_	
BP86	Wf/6-	1.987	2.140	115	60
	311G(d) ^a				
TPSS	Wf/6-	1.992	2.124	119	54
	311G(d) ^a				
wB97XD	Wf/6-	2.000	2.253	107	84
	311G(d) ^a				
CAM-B3LYP	Wf/6-	2.000	2.236	117	72
	311G(d) ^a				
LC-wHPBE	Wf/6-	1.998	2.184	122	63
	311G(d) ^a				
wB97	Wf/6-	1.996	2.228	109	78
	311G(d) ^a				
MN12L	Wf/6-	2.009	2.132	228	60
	311G(d) ^a				
M06	Wf/6-	1.982	2.546	206	11
	311G(d) ^a				
$Pc(2-)Co^{II}(nBuNH_2)_2^d$					
Experiment		2.01	2.18		53
TPSSh	Wf/6-	1.991	2.136,	102	76,
	311G(d) ^a		2.135		76
BP86	Wf/6-	1.983	2.110,	101	73,
	311G(d) ^a		2.109		72
TPSS	Wf/6-	1.989	2.100,	106	66,
	311G(d) ^a		2.099		65
wB97XD	Wf/6-	1.999	2.221,	93	98,
	311G(d) ^a		2.222		100
CAM-B3LYP	Wf/6-	1.999	2.209,	103	86,
	311G(d) ^a		2.208		85
LC-wHPBE	Wf/6-	1.998	2.182,	109	78,
	311G(d) ^a		2.187		75
wB97	Wf/6-	1.998	2.206,	96	90,
	311G(d) ^a		2.201		92
MN12L	Wf/6-	2.008	2.106,	63	230,
	311G(d) ^a		2.105		229
M06	Wf/6-	1.980	2.484,	196	1,
	311G(d) ^a		2.483		0

^{a)} Wachter's full-electron basis set for cobalt and 6-311G(d) basis set for all other atoms. ^{b)} Wave function converged to Abelian symmetry (D_{2h}). ^{c)} D_{2d} point group was used for DFT calculations. ^{d)} Since this complex has C_i point group in DFT calculations, the DFT-predicted g_{\perp} and A_{\perp} split into two slightly non-equivalent components.

Optimized coordinates for [Pc(2-)Co^{III}Br₂]⁻:

Ν	-1.3741 -1.3741 0.
Ν	1.3741 -1.3741 0.
Ν	1.3741 1.3741 0.
С	-1.16 2.7386 0.
С	-3.43955 2.44196 0.
С	-2.7386 1.16 0.
С	-2.7386 -1.16 0.
С	-3.43955 -2.44196 0.
С	-2.44196 -3.43955 0.
С	-1.16 -2.7386 0.
С	1.16 -2.7386 0.
С	2.44196 -3.43955 0.
С	3.43955 -2.44196 0.
С	2.7386 -1.16 0.
С	2.7386 1.16 0.
С	3.43955 2.44196 0.
С	2.44196 3.43955 0.
С	1.16 2.7386 0.
С	-2.44196 3.43955 0.
Ν	-1.3741 1.3741 0.
Ν	0. 3.38494 0.
Ν	-3.38494 0. 0.
Ν	03.38494 0.
Ν	3.38494 0. 0.
С	4.80023 2.77563 0.
С	5.13559 4.13651 0.
Н	6.1886 4.43308 0.
С	4.13651 5.13559 0.
Н	4.43308 6.1886 0.
С	2.77563 4.80023 0.
Н	5.57146 2.00065 0.
Н	2.00065 5.57146 0.
С	-2.77563 4.80023 $0.$
С	-4.13651 5.13559 0.
Н	-4.43308 6.1886 0.
С	-4.80023 2.77563 0.
С	-5.13559 4.13651 0.
Н	-6.1886 4.43308 0.
С	-4.80023 -2.77563 0.
С	-5.13559 -4.13651 0.
Н	-6.1886 -4.43308 0.
С	-4.13651 -5.13559 0.
Н	-4.43308 -6.1886 0.
С	-2.77563 -4.80023 0.

Н	-2.00)065	-5.57146	0.
Н	-5.57	7146	-2.00065	0.
Н	-5.57	7146	2.00065	0.
Н	-2.00)065	5.57146	0.
С	2.77	563	-4.80023	0.
С	4.13	651	-5.13559	0.
Н	4.43	308	-6.1886	0.
С	5.13	559	-4.13651	0.
Н	6.18	- 886	-4.43308	0.
С	4.80	023	-2.77563	0.
Н	5.57	/146	-2.00065	0.
Н	2.00	065	-5.57146	0.
Co	0.	0.	0.	
Br	0.	0.	-2.479	908
Br	0.	0.	2.479	908

Optimized coordinates for [Pc(2-)Co^{III}(CN)₂]:

N	-1.38161	-1.38161	0.
Ν	1.38161	-1.38161	0.
Ν	1.38161	1.38161	0.
С	-1.16257	2.74376	0.
С	-3.44374	2.44528	0.
С	-2.74376	1.16257	0.
С	-2.74376	-1.16257	0.
С	-3.44374	-2.44528	0.
С	-2.44528	-3.44374	0.
С	-1.16257	-2.74376	0.
С	1.16257	-2.74376	0.
С	2.44528	-3.44374	0.
С	3.44374	-2.44528	0.
С	2.74376	-1.16257	0.
С	2.74376	1.16257	0.
С	3.44374	2.44528	0.
С	2.44528	3.44374	0.
С	1.16257	2.74376	0.
С	-2.44528	3.44374	0.
Ν	-1.38161	1.38161	0.
Ν	0. 3.	38827 0.	
Ν	-3.38827	0. 0.	
Ν	03.	38827 0.	
Ν	3.38827	0. 0.	
С	4.80425	2.77923	0.
С	5.13921	4.14013	0.
Н	6.19224	4.43673	0.
С	4.14013	5.13921	0.

Н	4.43	673	6.19224	0.
С	2.77	923	4.80425	0.
Н	5.57	521	2.00376	0.
Н	2.00	376	5.57521	0.
С	-2.77	923	4.80425	0.
С	-4.14	013	5.13921	0.
Н	-4.43	673	6.19224	0.
С	-4.80	425	2.77923	0.
С	-5.13	921	4.14013	0.
Н	-6.19	224	4.43673	0.
С	-4.80	425	-2.77923	0.
С	-5.13	921	-4.14013	0.
Н	-6.19	224	-4.43673	0.
С	-4.14	013	-5.13921	0.
Н	-4.43	673	-6.19224	0.
С	-2.77	923	-4.80425	0.
Н	-2.00	376	-5.57521	0.
Н	-5.57	521	-2.00376	0.
Н	-5.57	521	2.00376	0.
Н	-2.00	376	5.57521	0.
С	2.77	923	-4.80425	0.
С	4.14	013	-5.13921	0.
Н	4.43	673	-6.19224	0.
С	5.13	921	-4.14013	0.
Н	6.19	224	-4.43673	0.
С	4.804	425	-2.77923	0.
Н	5.57	521	-2.00376	0.
Н	2.00	376	-5.57521	0.
Ν	0.	0.	3.10	709
Ν	0.	0.	-3.10	709
С	0.	0.	1.930	071
С	0.	0.	-1.93	071
Co	0.	0.	0.	

Optimized coordinates for Pc(2-)Co^{II}:

N	0. 1.93189 0.
Ν	1.93189 0. 0.
Ν	01.93189 0.
С	-2.75658 -1.1173 0.
С	-4.15527 0.70534 0.
С	-2.75658 1.1173 0.
С	-1.1173 2.75658 0.
С	-0.70534 4.15527 0.
С	0.70534 4.15527 0.
С	1.1173 2.75658 0.

С	2.75658 1.1173 0	•
С	4.15527 0.70534 ().
С	4.15527 -0.70534 ().
С	2.75658 -1.1173 0	
С	1.1173 -2.75658 0	
С	0.70534 -4.15527 ().
С	-0.70534 -4.15527	0.
С	-1.1173 -2.75658 0).
С	-4.15527 -0.70534	0.
Ν	-1.93189 0. 0.	
Ν	-2.39338 -2.39338	0.
Ν	-2.39338 2.39338).
Ν	2.39338 2.39338 ().
Ν	2.39338 -2.39338).
С	1.4319 -5.35404 0	
С	0.70675 -6.55256 ().
Н	1.24124 -7.50694).
С	-0.70675 -6.55256	0.
Н	-1.24124 -7.50694	0.
С	-1.4319 -5.35404 0).
Н	2.52509 -5.35123).
Н	-2.52509 -5.35123	0.
С	-5.35404 -1.4319 0).
С	-6.55256 -0.70675	0.
Н	-7.50694 -1.24124	0.
С	-5.35404 1.4319 0	
С	-6.55256 0.70675 ().
Н	-7.50694 1.24124 0).
С	-1.4319 5.35404 0	
С	-0.70675 6.55256 ().
Н	-1.24124 7.50694).
С	0.70675 6.55256 ().
Н	1.24124 7.50694 ().
С	1.4319 5.35404 0	
Н	2.52509 5.35123 ().
Н	-2.52509 5.35123).
Н	-5.35123 2.52509).
Н	-5.35123 -2.52509	0.
С	5.35404 1.4319 0	
С	6.55256 0.70675 ().
Н	7.50694 1.24124 ().
С	6.55256 -0.70675 ().
Н	7.50694 -1.24124 (Э.
С	5.35404 -1.4319 0	
Н	5.35123 -2.52509	Э.
Н	5.35123 2.52509 ().

Co 0. 0. 0.

Optimized coordinates for [Pc(2-)Co^I]⁻:

N	0. 1.9	91276 0.	
Ν	1.91276	0. 0.	
Ν	01.	91276 0.	
С	-2.74971	-1.11553	0.
С	-4.14846	0.70565	0.
С	-2.74971	1.11553	0.
С	-1.11553	2.74971	0.
С	-0.70565	4.14846	0.
С	0.70565	4.14846	0.
С	1.11553	2.74971	0.
С	2.74971	1.11553	0.
С	4.14846	0.70565	0.
С	4.14846	-0.70565	0.
С	2.74971	-1.11553	0.
С	1.11553	-2.74971	0.
С	0.70565	-4.14846	0.
С	-0.70565	-4.14846	0.
С	-1.11553	-2.74971	0.
С	-4.14846	-0.70565	0.
Ν	-1.91276	0. 0.	
Ν	-2.39284	-2.39284	0.
Ν	-2.39284	2.39284	0.
Ν	2.39284	2.39284	0.
Ν	2.39284	-2.39284	0.
С	1.42996	-5.34992	0.
С	0.70694	-6.55047	0.
Н	1.24283	-7.50473	0.
С	-0.70694	-6.55047	0.
Н	-1.24283	-7.50473	0.
С	-1.42996	-5.34992	0.
Н	2.52392	-5.34787	0.
Н	-2.52392	-5.34787	0.
С	-5.34992	-1.42996	0.
С	-6.55047	-0.70694	0.
Н	-7.50473	-1.24283	0.
С	-5.34992	1.42996	0.
С	-6.55047	0.70694	0.
Н	-7.50473	1.24283	0.
С	-1.42996	5.34992	0.
С	-0.70694	6.55047	0.
Н	-1.24283	7.50473	0.
С	0.70694	6.55047	0.

Н	1.24283	7.50473	0.
С	1.42996	5.34992	0.
Н	2.52392	5.34787	0.
Н	-2.52392	5.34787	0.
Н	-5.34787	2.52392	0.
Н	-5.34787	-2.52392	0.
С	5.34992	1.42996	0.
С	6.55047	0.70694	0.
Н	7.50473	1.24283	0.
С	6.55047	-0.70694	0.
Н	7.50473	-1.24283	0.
С	5.34992	-1.42996	0.
Н	5.34787	-2.52392	0.
Н	5.34787	2.52392	0.
Co	0. 0.	. 0.	

Optimized coordinates for Pc(2-)Co^{II}(*n***BuNH**₂)₂:

Ν	1.9344 0.16301	0.04944
Ν	0.06352 -0.1580	7 -1.93391
Ν	-1.9344 -0.16301	-0.04944
С	-1.20206 0.1242	6 2.72269
С	0.56867 0.39322	2 4.16552
С	1.02249 0.3171	2.77873
С	2.71428 0.32376	5 1.18283
С	4.12428 0.4137	0.8093
С	4.1694 0.30494	-0.59803
С	2.78619 0.14969	9 -1.0427
С	1.20206 -0.1242	6 -2.72269
С	0.83775 -0.2703	8 -4.13038
С	-0.56867 -0.3932	2 -4.16552
С	-1.02249 -0.3171	-2.77873
С	-2.71428 -0.3237	6 -1.18283
С	-4.12428 -0.4137	-0.8093
С	-4.1694 -0.30494	0.59803
С	-2.78619 -0.1496	9 1.0427
С	-0.83775 0.2703	8 4.13038
Ν	-0.06352 0.1580	7 1.93391
Ν	-2.46302 -0.0195	4 2.32585
Ν	2.30773 0.3955	6 2.44689
Ν	2.46302 0.01954	4 -2.32585
Ν	-2.30773 -0.3955	6 -2.44689
С	-5.29612 -0.5755	4 -1.5611
С	-6.5143 -0.62502	2 -0.86943
Н	-7.4474 -0.75028	3 -1.42685
С	-6.55935 -0.5158	4 0.53855

Н	-7.52661 -0.55	834 1.04812
С	-5.38723 -0.354	1.29006
Н	-5.25981 -0.66	01 -2.65078
Н	-5.41948 -0.26	97 2.37989
С	-1.59707 0.302	22 5.30813
С	-0.91376 0.460	048 6.52174
Н	-1.47716 0.489	961 7.45919
С	1.25241 0.551	03 5.37874
С	0.49337 0.583	6.55671
Н	0.99628 0.705	574 7.52066
С	5.29612 0.575	54 1.5611
С	6.5143 0.625	02 0.86943
Н	7.4474 0.750	28 1.42685
С	6.55935 0.515	684 -0.53855
Н	7.52661 0.558	334 -1.04812
С	5.38723 0.354	43 -1.29006
Н	5.41948 0.269	97 -2.37989
Н	5.25981 0.660	01 2.65078
Н	2.34165 0.645	551 5.40318
Н	-2.68608 0.206	578 5.27962
С	1.59707 -0.302	22 -5.30813
С	0.91376 -0.460	048 -6.52174
Н	1.47716 -0.489	961 -7.45919
С	-0.49337 -0.583	344 -6.55671
Н	-0.99628 -0.703	574 -7.52066
С	-1.25241 -0.55	103 -5.37874
Н	-2.34165 -0.64	551 -5.40318
Н	2.68608 -0.200	578 -5.27962
Н	0.80068 2.667	72 0.10005
Н	-0.10295 2.492	285 -1.25093
Н	0.10295 -2.492	285 1.25093
Н	-0.80068 -2.66	772 -0.10005
Ν	0.10617 -2.326	592 0.23819
Ν	-0.10617 2.326	592 -0.23819
С	-1.19454 3.112	0.38847
Н	-2.14927 2.716	663 0.00356
Н	-1.17434 2.896	589 1.47005
С	1.19454 -3.112	205 -0.38847
Н	1.17434 -2.896	589 -1.47005
Н	2.14927 -2.716	663 -0.00356
С	-1.11835 4.628	328 0.15141
Н	-0.15088 5.008	821 0.53235
Н	-1.12275 4.826	679 -0.93767
С	1.11835 -4.628	328 -0.15141
Н	1.12275 -4.820	679 0.93767
Н	0.15088 -5.008	821 -0.53235

С	-2.27059	5.39782	0.81809
Н	-3.23485	5.01064	0.4393
Н	-2.26592	5.19218	1.90478
С	2.27059	-5.39782	-0.81809
Н	3.23485	-5.01064	-0.4393
Н	2.26592	-5.19218	-1.90478
С	2.19785	-6.91246	-0.5824
Н	3.03499	-7.43785	-1.07062
Н	2.23657	-7.1527	0.4938
Н	1.26074	-7.33558	-0.98264
С	-2.19785	6.91246	0.5824
Н	-3.03499	7.43785	1.07062
Н	-1.26074	7.33558	0.98264
Н	-2.23657	7.1527	-0.4938
Co	0. 0	. 0.	

Optimized coordinates for Pc(2-)Co^{II}Py₂:

N	1.37213 1.37213 0.
Ν	-1.37213 1.37213 0.
Ν	-1.37213 -1.37213 0.
С	1.16274 -2.73977 0.06064
С	3.44108 -2.44457 -0.04292
С	2.73977 -1.16274 -0.06064
С	2.73977 1.16274 -0.06064
С	3.44108 2.44457 -0.04292
С	2.44457 3.44108 0.04292
С	1.16274 2.73977 0.06064
С	-1.16274 2.73977 0.06064
С	-2.44457 3.44108 0.04292
С	-3.44108 2.44457 -0.04292
С	-2.73977 1.16274 -0.06064
С	-2.73977 -1.16274 -0.06064
С	-3.44108 -2.44457 -0.04292
С	-2.44457 -3.44108 0.04292
С	-1.16274 -2.73977 0.06064
С	2.44457 -3.44108 0.04292
Ν	1.37213 -1.37213 0.
Ν	03.38381 0.10239
Ν	3.38381 00.10239
Ν	0. 3.38381 0.10239
Ν	-3.38381 00.10239
Ν	0. 02.35236
С	01.15467 -3.05045
С	0. 1.15467 -3.05045
С	01.20334 -4.44845

Н	02.07503 -2.45981
С	0. 1.20334 -4.44845
Н	0. 2.07503 -2.45981
С	0. 05.16376
Н	02.16923 -4.95983
Н	0. 2.16923 -4.95983
Н	0. 06.25725
Ν	0. 0. 2.35236
С	1.15467 0. 3.05045
С	-1.15467 0. 3.05045
С	1.20334 0. 4.44845
Н	2.07503 0. 2.45981
С	-1.20334 0. 4.44845
Н	-2.07503 0. 2.45981
С	0. 0. 5.16376
Н	2.16923 0. 4.95983
Н	-2.16923 0. 4.95983
Н	0. 0. 6.25725
С	-4.80101 -2.7811 -0.08645
С	-5.13817 -4.1409 -0.04324
Н	-6.19065 -4.43783 -0.07607
С	-4.1409 -5.13817 0.04324
Н	-4.43783 -6.19065 0.07607
С	-2.7811 -4.80101 0.08645
Н	-5.57134 -2.00786 -0.15274
Н	-2.00786 -5.57134 0.15274
С	2.7811 -4.80101 0.08645
С	4.1409 -5.13817 0.04324
Н	4.43783 -6.19065 0.07607
С	4.80101 -2.7811 -0.08645
С	5.13817 -4.1409 -0.04324
Н	6.19065 -4.43783 -0.07607
С	4.80101 2.7811 -0.08645
С	5.13817 4.1409 -0.04324
Н	6.19065 4.43783 -0.07607
С	4.1409 5.13817 0.04324
Н	4.43783 6.19065 0.07607
С	2.7811 4.80101 0.08645
Н	2.00786 5.57134 0.15274
Н	5.57134 2.00786 -0.15274
Н	5.57134 -2.00786 -0.15274
H	2.00786 -5.57134 0.15274
C	-2.7811 4.80101 0.08645
С	-4.1409 5.13817 0.04324
Н	-4.43783 6.19065 0.07607
С	-5.13817 4.1409 -0.04324

Н	-6.190	65	4.43783	-0.07607
С	-4.801	01	2.7811	-0.08645
Н	-5.571	34	2.00786	-0.15274
Н	-2.007	86	5.57134	0.15274
Co	0.	0.	0.	