Supplementary Information

Dual Tuning of Nodes and Functional Guests of Polyoxometalate@Metal-Organic Frameworks for Enhanced Photocatalytic Oxidative Coupling

Zhiqiang Jiang, ^{a,+} Qixin Zhao, ^{a,+} Yang Zeng, ^a Tengfei Gong, ^b Zhenxuan Huang, ^a Zeyu Chen, ^a Jiefeng Shen, *^a and Weimin Xuan *^a

^a State Key Laboratory of Advanced Fiber Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China. *E*-mail: jiefeng@dhu.edu.cn, weiminxuan@dhu.edu.cn

^b Jiaxing Jiayuan Inspection Technology Service Co., Ltd, Building 2, No. 1403, Hongbo Road, Economic and Technological Development Zone, Jiaxing City, Zhejiang Province, P. R. China. *E*-mail: tengfeigong@126.com

⁺ These authors contributed equally to this work.

Contents

1. Materials
2. Instrumentation
3. Synthesis
3.1 Synthesis of AQ4
3.2 Synthesis of $PMo_{10}V_2$
3.3 Synthesis of $PW_{10}V_2$
3.4 Synthesis of POMOF 1 7
3.5 Synthesis of POMOF 2 7
3.6 Synthesis of POMOF 3
4. Crystallographic data and crystal structures of POMOF 1-3 10
5. Additional Characterizational Figures of POMOF 1-3 15
5.1 PXRD spectra of POMOF 2-3 15
5.2 TGA curve of POMOF 2-3
5.3 FT-IR spectra of POMOF 1-3 17
5.4 Stability test of POMOF 1
5.5 Dye adsorption by POMOF 1-3 19
5.6 XPS survey spectra of POMOF 1-3
5.7 Estimated energy band gaps of POMOF 1-3 23
5.8 Mott–Schottky plots of POMOF 1-3 25
6. General procedures for Photocatalytic Oxidation of Benzylamines27
7. ¹ H NMR spectrum of photocatalytic oxidation products
8. References

1. Materials

All chemicals were purchased commercially and used without further purification.

2. Instrumentation

Crystallography: Suitable single crystals were selected and mounted onto a rubber loop using Fomblin oil. Single crystal X-ray diffraction data of **POMOF 1 - POMOF 3** were recorded on a Bruker/ARINAX MD2 diffractometer equipped with a MarCCD-300 detector at beam line station BL17B of Shanghai Synchrotron Radiation Facility (SSRF) at 150 K. The structures were solved by the direct methods and refined with OLEX 2-1.5. All non-hydrogen atoms are anisotropic refined by the least square method, and the hydrogen atoms are determined by the ideal geometry by the theoretical hydrogenation method. CCDC-2431828 (**POMOF 1**), CCDC-2431829 (**POMOF 2**), CCDC-2431830 (**POMOF 3**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Element Analyses: Element analyses C, N and H content were determined by VARIDEL III Elemental Analyzer.

Thermogravimetric Analysis (TGA): Thermogravimetric analysis was performed on a METTLER TOLEDO TG8000 Thermogravimetric Analyzer under nitrogen flow at a typical heating rate of 10 °C·min⁻¹.

Powder X-ray Diffraction (PXRD): Powder XRD was recorded on a Haoyuan DX-2700B diffractometer equipped with monochromatized Cu-K α ($\lambda = 1.5418$ Å) radiation in the range of 3° $\leq 2\theta \leq 50^{\circ}$, with a scanning rate of 0.02° s⁻¹.

Fourier-transform infrared (FT-IR) spectroscopy: The samples were prepared as a KBr pellet and the FT-IR spectrum was collected in transmission mode in the range of 600-4000 cm⁻¹ using a NEXUS-670 spectrometer. Wavenumbers are given in cm⁻¹. Intensities are denoted as w = weak, m = medium, s = strong, vs = very strong, br = broad.

Solid-state UV-Vis absorption spectroscopy: All compounds were prepared into powders, which were tested in wavelength mode by integrating sphere attachment in UV3600 UV-Vis spectrometer.

Mott-Schottky: Mott-Schottky plot was conducted on an electrochemical workstation CHI 760D. Firstly, the lapping sample (5 mg) was dispersed in ethanol (1 mL), and Nafion (100 μ L) was added to the sample for ultrasonic mixing. Appropriate suspension droplets were taken on the fluoride-tin oxide (FTO) glass plate (1 × 2 cm², 50 Ω /cm²) as the working electrode, Pt wire as the counter electrode. Ag/AgCl was used as the reference electrode and 0.5 mol/L Na₂SO₄ solution was used as the electrolyte. Under a certain pressure range, frequencies of 1000 Hz, 1500 Hz and 2000 Hz were selected for testing.

3. Synthesis

3.1 Synthesis of AQ

Figure S1. The synthesis procedure of AQ.

2,6-di (4H-1,2,4-triazol-4-yl) anthracene-9,10-dione (AQ) was synthesized according to the literature.¹ A mixture of 1.4 g 2,6-Diaminoanthraquinone (5.9 mmol), 5.2 g N,N-dimethylformamide azine (36.5 mmol) in DMF (20 mL) and pyridine (25 mL) was heated at 130 °C for 72 h. The reaction mixture was cooled to room temperature and the brown precipitate was collected by filtration and washed with CH₃CN. Yield: 1.1 g (55%).

Figure S2. The ¹H NMR (400 MHz, CF₃COOD, ppm) spectrum of AQ.

Figure S3. The ¹³C NMR (400 MHz, CF₃COOD, ppm) spectrum of AQ.

3.2 Synthesis of $PMo_{10}V_2$

The synthesis of $H_5[PMo_{10}V_2O_{40}] \cdot 32H_2O$ (PMo₁₀V₂) is based on the previously reported literature.² The specific synthesis process is as follows: The NaVO₃ (30.0 g), 85% H₃PO₄ (3.4 mL), and MoO₃ (74.0 g) were added to 800 mL of water and refluxed for 8 h. Afterwards, the mixture was acidified using 145 mL of 12M HCl, and the resulting acid was extracted with 200 mL of diethyl ether. Finally, the diethyl ether was removed, and the product was obtained by recrystallization from water. ICP (%) calcd for PMo₁₀V₂O₇₂H₆₉: Mo 41.46, V 4.40; found: Mo 41.89, V 4.48.

Element	Мо	V
Calculated value (%)	41.46	4.40
Actual value (%)	41.89	4.48

3.3 Synthesis of $PW_{10}V_2$

 $H_5[PW_{10}V_2O_{40}] \cdot 30H_2O (PW_{10}V_2)$ was synthesized according to the method previously reported in

the literature.³ Typically, sodium metavanadate (NaVO₃, 12.2 g, 100 mmol) was dissolved in 50 mL of boiling water and mixed with disodium hydrogen phosphate (Na₂HPO₄, 3.55 g, 25 mmol), already dissolved in 50 mL of water. After the resulting solution was cooled to room temperature, concentrated sulfuric acid (5 mL, 17 mol/L, 85 mmol) was added to the mixture to give a red solution. Sodium tungstate dihydrate (Na₂WO₄·2H₂O, 82.5 g, 250 mmol) was dissolved in 100 mL of water and added to the red solution with vigorous stirring, followed by the slow addition of concentrated sulfuric acid (42 mL, 17 mol/L, 714 mmol). Extraction of the solution with diethyl ether (500 mL), followed by evaporation in air, produced PW₁₀V₂ as a crystalline, orange-red solid (yield, 74 %). ICP (%) calcd for PW₁₀V₂O₇₀H₆₅: W 58.24, V 3.23; found: W 60.07, V 3.41.

Table S2. ICP Analysis of $PW_{10}V_2$.

Figure S4. ³¹P-NMR spectra of (a) $PMo_{10}V_2$ and (b) $PW_{10}V_2$.

3.4 Synthesis of POMOF 1

 $H_3[Cd_2Br(H_2O)_4(CH_3CN)(C_{18}H_{10}N_6O_2)_2(PMo_{10}V_2O_{40})]\cdot 7H_2O$ (**POMOF 1**) was synthesized by self-assembly method under hydrothermal conditions. $H_5[PMo_{10}V_2O_{40}] \cdot 32H_2O$ (22.8 mg, 0.01 mmol), $CdBr_2 \cdot 4H_2O$ (13.8 mg, 0.04 mmol), **AQ** (6.8 mg, 0.02 mmol) were dissolved in a mixed solution of water and acetonitrile ($V_1 / V_2 = 1:3$). After stirring at 800 r / min for 1 h, the mixture is transferred to a 10 mL bottle containing a high temperature resistant plastic lid and a rubber inner

plug, and then heated in an oven at 120 °C for 24 h. The orange long crystals were collected by filtration, washed with acetonitrile, and dried in an air atmosphere (based on $H_5[PMo_{10}V_2O_{40}]$ ·32H₂O, yield 51 %). EA and ICP (%) calcd for $C_{38}H_{48}BrCd_2Mo_{10}N_{13}O_{55}PV_2$: Cd 7.58, Mo 32.37, V 3.43, C 15.40, H 1.63, N 6.14, P 1.04, Br 2.70; found: Cd 8.05, Mo 33.89, V 3.61, C 16.45, H 1.66, N 6.51, P 1.08, Br 2.61.

3.5 Synthesis of POMOF 2

H₃[Cd₂I(H₂O)₄(CH₃CN)(C₁₈H₁₀N₆O₂)₂(PMo₁₀V₂O₄₀)]·12H₂O (**POMOF 2**) was synthesized by self-assembly method under hydrothermal conditions. H₅[PMo₁₀V₂O₄₀] ·32H₂O (22.8 mg, 0.01 mmol), CdI₂ (14.6 mg, 0.04 mmol), **AQ** (6.8 mg, 0.02 mmol) were dissolved in a mixed solution of water and acetonitrile (V₁ / V₂ = 1:3). After stirring at 800 r / min for 1 h, the mixture is transferred to a 10 mL bottle containing a high temperature resistant plastic lid and a rubber inner plug, and then heated in an oven at 120 °C for 24 h. Yellow needle-like crystals were collected by filtration, washed with acetonitrile, and dried in an air atmosphere (based on H₅[PMo₁₀V₂O₄₀] ·32H₂O, yield 43 %). EA and ICP (%) calcd for C₃₈H₅₈Cd₂IMo₁₀N₁₃O₆₀PV₂: Cd 7.25, Mo 30.94, V 3.29, C 14.72, H 1.88, N 5.87, P 1.00, I 4.09; found: Cd 7.83, Mo 32.45, V 3.60, C 14.07, H 1.65, N 5.32, P 1.06, I 4.38.

3.6 Synthesis of POMOF 3

H₃[Cd₂Br(H₂O)₄(CH₃CN)(C₁₈H₁₀N₆O₂)₂(PW₁₀V₂O₄₀)]·14H₂O (**POMOF 3**) was synthesized by self-assembly method under hydrothermal conditions. H₅[PW₁₀V₂O₄₀] ·30H₂O (12.5 mg, 0.004 mmol), CdBr₂·4H₂O (13.8 mg, 0.04 mmol), **AQ** (6.8 mg, 0.02 mmol) were dissolved in a mixed solution of water and acetonitrile (V₁ / V₂ = 1:3). After stirring at 800 r / min for 1 h, the mixture is transferred to a 10 mL bottle containing a high temperature resistant plastic lid and a rubber inner plug, and then heated in an oven at 120 °C for 36 h. The orange long crystals were collected by filtration, washed with acetonitrile, and dried in an air atmosphere (based on H₅[PW₁₀V₂O₄₀] ·30H₂O, yield 31 %). EA and ICP (%) calcd for C₃₈H₆₂BrCd₂N₁₃O₆₂PV₂W₁₀: Cd 5.66, W 46.32, V 2.57, C 11.49, H 1.57, N 4.58, P 0.78, Br 2.01; found: Cd 6.14, W 48.96, V 2.76, C 11.56, H 1.46, N 4.27, P 0.76, Br 2.21.

	Calapilated	(0/)	Actual value (%)			
	Calculated v	/alue (76) —	1st Test	2nd Test	3rd Test	
DOMOE 1	Мо	32.37	33.89	33.97	34.15	
POMOF 1	V	3.43	3.61	3.67	3.74	
DOMOE 3	Мо	30.94	32.45	32.57	29.11	
POMOF 2	V	3.29	3.60	3.41	3.39	
DOMOE 2	W	46.32	48.96	49.11	49.02	
POMOF 3	V	2.57	2.76	2.78	2.85	

Table S3. ICP Analysis of Mox W and V in **POMOF 1–POMOF 3**.

4. Crystallographic data and crystal structures of POMOF 1-3

Compound	POMOF 1
Empirical formula	$BrC_{38.27}Cd_2H_{58.86}Mo_{10}N_{13.14}O_{61.73}PV_2$
Formula weight	3087.62
Crystal system	monoclinic
Space group	<i>I</i> 2/a
a /Å	15.2326(11) Å
b /Å	21.4831(18) Å
c /Å	25.4527(18) Å
$\alpha /^{\circ}$	90°
β/°	97.523(4)°
$\gamma/^{\circ}$	90°
$V/Å^3$	8257.5(11) Å ³
Z	4
ρ calc /g·cm ⁻³	2.484 Mg/m ³
$\mu(MoK\alpha) / mm^{-1}$	2.562 mm^{-1}
F(000)	5945.0
2θ range /°	2.412 to 49.046°
T I	-18<=h<=17, -25<=k<=25,
Index ranges	-30<=1<=30
Reflections collected	91825
Data / restraints / parameters	7476 / 1061 / 777
$R_1\!/\!\mathrm{w}R_2(I\!\!>\!\!2\sigma(I))^a$	$R_1 = 0.0362, wR_2 = 0.0918$
R_1/wR_2 (all data)	$R_1 = 0.0369, wR_2 = 0.0922$
GooF (all data) ^b	1.132
Data completeness	98.8 %

 Table S4. Crystal data and structure refinement for POMOF 1

 ${}^{a}R_{1} = \sum ||Fo|-|Fc|| / \sum |Fo|; wR_{2} = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

 $^{b}GooF = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2}/(n-p)\}^{1/2}$

Compound	POMOF 2
Empirical formula	$C_{38.89}Cd_2Cl_{0.28}H_{60.95}I_{0.72}Mo_{10}N_{13.45}O_{62.31}PV_2$
Formula weight	3132.46
Crystal system	monoclinic
Space group	<i>I</i> 2/a
a /Å	15.2182(12) Å
b /Å	21.5762(14) Å
c /Å	25.4191(18) Å
$\alpha / ^{\circ}$	90°
β/°	97.534(4)°
γ/°	90°
$V/Å^3$	8274.3(10) Å ³
Z	4
ρ calc /g·cm ⁻³	2.515 Mg/m^3
μ (MoK α) /mm ⁻¹	2.597 mm^{-1}
F(000)	6028.0
2θ range /°	3.232 to 50.76°
T 1	-18<=h<=18, -25<=k<=25,
Index ranges	-30<=1<=30
Reflections collected	97999
Data / restraints / parameters	7560 / 1127 / 789
$R_1/wR_2 (I \ge 2\sigma(I))^a$	$R_1 = 0.0381, wR_2 = 0.0912$
R_1/wR_2 (all data)	$R_1 = 0.0388, wR_2 = 0.0917$
GooF (all data) ^b	1.116
Data completeness	99.6 %

 Table S5. Crystal data and structure refinement for POMOF 2

 ${}^{a}R_{1} = \sum ||Fo|-|Fc|| / \sum |Fo|; \ wR_{2} = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

 ${}^{b}GooF = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2}/(n-p)\}^{1/2}$

Compound	POMOF 3
Empirical formula	$BrC_{38.02}Cd_2H_{76.99}N_{13.01}O_{70.98}PV_2W_{10}$
Formula weight	4128.22
Crystal system	monoclinic
Space group	<i>I</i> 2/a
a /Å	15.2114(15) Å
b /Å	21.527(2) Å
c /Å	25.359(3) Å
$\alpha/^{\circ}$	90°
β/°	97.727(6)°
$\gamma/^{\circ}$	90°
$V/Å^3$	8228.6(15) Å ³
Z	4
ρ calc /g·cm ⁻³	3.332 Mg/m ³
μ (MoK α) /mm ⁻¹	13.992 mm^{-1}
F(000)	7584.0
2θ range /°	3.142 to 49.234°
	-18<=h<=18, -25<=k<=25,
Index ranges	-30<=1<=30
Reflections collected	69912
Data / restraints / parameters	7555 / 1031 / 789
$R_1/wR_2 (I \ge 2\sigma(I))^a$	$R_1 = 0.0545, wR_2 = 0.1476$
R_1/wR_2 (all data)	$R_1 = 0.0560, wR_2 = 0.1486$
GooF (all data) ^b	1.062
Data completeness	99.6 %

Table S6. Crystal data and structure refinement for POMOF 3

 ${}^{a}R_{1} = \sum ||Fo|-|Fc|| / \sum |Fo|; \ wR_{2} = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

 ${}^{b}GooF = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2}/(n-p)\}^{1/2}$

Figure S5. (a) Asymmetric unit of **POMOF 1**, (b) asymmetric unit of **POMOF 2**, (c) asymmetric unit of **POMOF 3**. All the atoms are presented in thermal ellipsoids with a 50% probability level (Color Code: Cd, orange; C, grey; N, deep blue; Br, green; I, purple; O, red; Mo, blue; W, dark green; V, yellow; P, pink; H, white.)

Figure S6. (a)The structural unit diagram of POMOF 2, (b)the structural unit diagram ofPOMOF 3. (Color Code: Cd, orange; C, grey; N, deep blue; Br, green; I, purple; O, red; Mo, blue;W, dark green; V, yellow; P, pink. H Atoms are omitted for clarity.)

Figure S7. (a) The stacking diagram of **POMOF 1** along the *c*-axis direction, (b) the hydrogen bonding interaction between one $PMo_{10}V_2$ and four **AQ** ligands in **POMOF 1**, (c) the anion– π interactions between the adjacent $PMo_{10}V_2$ and **AQ** in **POMOF 1**. (Color Code: Cd, orange; C, grey; N, deep blue; Br, green; I, purple; O, red; Mo, blue; W, dark green; V, yellow; P, pink; H, white.)

5. Additional Characterizational Figures of POMOF 1-3

5.1 PXRD spectra of POMOF 2-3

Figure S8. Experimental and simulated PXRD patterns of POMOF 2.

Figure S9. Experimental and simulated PXRD patterns of POMOF 3.

Figure S10. TGA curve of POMOF 2.

Figure S11. TGA curve of POMOF 3.

Figure S12. FT-IR spectrum of POMOF 1.

Figure S13. FT-IR spectrum of POMOF 2.

Figure S14. FT-IR spectrum of POMOF 3.

5.4 Stability test of POMOF 1

Figure S15. FT-IR spectra of POMOF 1 after soaked in different organic solvents and pH

for 24 hours.

5.5 Dye adsorption by POMOF 1-3

Preparation of the working curves of Dyes: The standard solutions of 4-[4-dimethylamino]styryl)-1-methylpyridinium (DASP) was prepared in a sequential concentration of 1mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L, respectively. These standard solutions were then tested by Uv-Vis spectrometer to make working curves based on the relationship between absorption and concentration.

Dye adsorption experiment: Taking 3 mL of 30mg/L standard solution (DASP) into a 10 mL glass bottle, 3 mg **POMOF 1/POMOF 2/POMOF 3** was subsequently added and stirred for 6 hours. The solution was then filtered and used for testing its absorbance with a spectrometer. The amount of absorbed dye molecules per formula was evaluated by comparing their absorbances with the working curves.

Figure S16. UV-Vis absorption spectra of DASP solution before and after adsorption by POMOF1-3. DASP (30 mg/L, 3 mL), POMOF (3 mg), 6 h.

Figure S17. XPS survey spectra of POMOF 1.

Figure S18. XPS survey spectra of POMOF 2.

Figure S19. XPS survey spectra of POMOF 3.

Figure S20. (a-b) Resolved I 3d, Cd 3d, Mo 3d, V 2p, XPS core-level spectra of **POMOF 2**, (c-d) Resolved Br 3d, Cd 3d, W 4f, V 2p, XPS core-level spectra of **POMOF 3**.

5.7 Estimated energy band gaps of POMOF 1-3

Figure S22. Tauc plots of POMOF 2.

Figure S23. Tauc plots of POMOF 3.

Potential (V vs. Ag/AgCl)

Figure S25. Mott–Schottky plots of POMOF 2.

Figure S26. Mott–Schottky plots of POMOF 3.

6. General procedures for Photocatalytic Oxidation of Benzylamines

All manipulations were conducted under aerobic condition. Into a test tube (φ 20 mm × 170 mm) equipped with an O₂ balloon (1 atm) were successively placed catalyst, benzylamine (0.1 mmol) and CH₃CN (1 mL). A Teflon-coated magnetic stir bar was added, and the mixture was irradiated with poper light sources with stirring at room temperature for 24 h. When performing quenching experiments, 0.4 eq. scavenger was added to the above reactants. The products were confirmed using GC and GC-Mass, and the conversion was calculated with respect to the internal standard (N-hexadecane). After the reaction, the catalysts was recovered by centrifugation, washed with CH₃CN, and then air-dried prior to being used for the cycle experiment.

Figure S27. Image of photocatalytic device.

Table S7. Visible-light-driven photocatalytic oxidative coupling of benzylamine.^a

NH ₂	POMOF 1 (2.1 mol%)	
	CH ₃ CN, O ₂ , r.t. 24 hr, LED	
Entry	Light sources	Yield (%) ^b
1	500 nm	98
2	585 nm	17
3	660 nm	8

aReaction conditions: reactant (0.10 mmol), POMOF 1 (2.1 mol%), CH₃CN (1.0 mL), r.t., 24 h,

LED (10 W), O₂. The yield rate was determined by ^bGC. (N-hexadecane was used as the internal standard substance, Sel.: 99%)

NH ₂	POMOF 1 CH ₃ CN, O ₂ , r.t. 24 hr, 500 nm LED	
Entry	Catalyst dosage	Yield (%) ^b
1	1.4 mol%	74
2	2.1 mol%	98
3	2.8 mol%	87

Table S8. Screening the catalyst dosage for Photocatalytic Oxidation of Benzylamines.^a

^{*a*}Reaction conditions: reactant (0.10 mmol), **POMOF 1** (x mol%), CH₃CN (1.0 mL), r.t., 24 h, LED (10 W), O₂. The yield rate was determined by ^{*b*}GC. (N-hexadecane was used as the internal standard substance, Sel.: 99%)

Table S9. Screening the solvents for Photocatalytic Oxidation of Benzylamines.^a

NH ₂	POMOF 1 (2.1 mol%) CH ₃ CN, O ₂ , r.t. 24 hr, 500 nm LED	
Entry	Solvent	Yield (%) ^b
1	CH ₃ OH	38
2	CH ₃ CH ₂ OH	21
3	Cyclohexane	11
4	Toluene	18
5	CH ₃ CN	98

^{*a*}Reaction conditions: reactant (0.10 mmol), **POMOF 1** (2.1 mol%), Solvent (1.0 mL), r.t., 24 h, LED (10 W), O₂. The yield rate was determined by ^{*b*}GC. (N-hexadecane was used as the internal

Table	S10.	Quenching	experiments	to	determine	the	reactive	oxygen	species	(ROS)	for
Photoc	atalyti	c Oxidation	of Benzylami	nes.	a						

NH ₂	POMOF 1 (2.1 mol%) CH ₃ CN, O ₂ , r.t. 24 hr, 500 nm LED	\rightarrow	N
Entry	trapping reagent	Scavenger	Yield (%) ^b
1	1,4-benzoquinone	O2*-	32
2	DABCO	$^{1}O_{2}$	25
3	KI	\mathbf{h}^+	19
4	AgNO ₃	e-	21
5	isopropanol	• OH	88
6	Standard		98

^{*a*}Reaction conditions: reactant (0.10 mmol), **POMOF 1** (2.1 mol%), CH₃CN (1.0 mL), r.t., 24 h, LED (10 W), O₂. The yield rate was determined by ^{*b*}GC. (N-hexadecane was used as the internal standard substance, Sel.: 99%)

Figure S28. ¹H NMR of photocatalytic oxidative coupling of benzylamine at 12 h (small amount of benzaldehyde can be monitored).

Figure S29. Recycling experiments of oxidative benzylamine coupling with POMOF 1 as photocatalyst.

Figure S30. Comparison of PXRD patterns of the pristine POMOF 1 and the recovered POMOF 1 after three runs of photocatalytic oxidative coupling of benzylamine.

Figure S31. Comparison of FT-IR spectra of the pristine **POMOF 1** and the recovered **POMOF 1** after three runs of photocatalytic oxidative coupling of benzylamine.

Element	Cd	Мо	V
Mother liquor after catalyst filtration (%)	0.001	0.002	0.001

 Table S11. ICP Analysis of the mother liquor after filtration of POMOF 1.

Figure S32. Filtration experiment using POMOF 1 for the photocatalytic oxidative coupling of benzylamine.

Catalyst	T (°C)	Light Sourse	Oxidant	t (h)	Yield (%)	Ref.
ZIF-8	25	450nm LED	O ₂	7	3.5	4
Pd _{0.5} /MTNs	25	400nm LED	air	12	99	5
NH ₂ -MIL-125(Ti)	25	Blue LED (3W×4)	O ₂	4	75*	6
JNU-207	25	Blue LED	air	24	94	7
CF-HCP	25	30W Green LED	O ₂	6	91	8
Cd-PLA	25	300W Xe lamp	O ₂	6	98*	9
MOF-LS10-12	25	300W Xe lamp	air	3	94	10
l-Zn	30	465nm LED	air	2.5	98	11
B-BO-1,3,5	25	23W Blue LED	O ₂	24	99*	12
Ti-PMOF-DMA	25	Red LED	air	0.7	94*	13
Py-sp2c-COF	25	Green LED	air	1.8	95*	14
NMNs	25	300W Xe lamp	O ₂	4	91	15
FJI-Y10	40	300W Xe lamp	O ₂	6	100	16
POMOF 1	25	10W 500 nm LED	O ₂	24	98	This work
POMOF 2	25	10W 500nm LED	O ₂	24	76	This work
POMOF 3	25	10W 500 nm LED	O ₂	24	23	This work

Table S12. Review on photocatalytic oxidation of benzylamine.

* The result represented by is conversion rate.

7. ¹H NMR spectrum of photocatalytic oxidation products

Figure S33. The ¹H NMR (400 MHz, DMSO- d_6 , ppm) spectrum for the Nbenzylidenebenzylamine: Yellow oil. δ 8.52 (s, 1H), 7.80 - 7.78 (m, 2H), 7.47 (dd, J = 5.2, 1.9 Hz, 3H), 7.35 (d, J = 4.5 Hz, 4H), 7.28 (d, J = 4.5 Hz, 1H), 4.78 (s, 2H).

Figure S34. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-(4-fluorobenzyl)-1-(4-fluorophenyl) methanimine**: Yellow oil. δ 8.50 (s, 1H), 7.86 - 7.83 (m, 2H), 7.37 (dd, J = 8.5, 5.7 Hz, 2H), 7.27 (t, J = 8.8 Hz, 2H), 7.15 (dd, J = 12.4, 5.4 Hz, 2H), 4.75 (s, 2H).

Figure S35. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-(4-methylbenzylidene)-1-(p-tolyl) methanamine**: White solid. δ 8.43 (s, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.22 (dd, J = 23.4, 7.9 Hz, 4H), 7.14 (d, J = 7.9 Hz, 2H), 4.70 (s, 2H), 2.34 (s, 3H), 2.29 (s, 3H).

Figure S36. The ¹H NMR (400 MHz, DMSO- d_6 , ppm) spectrum for the N-(4-chlorphenyl)-1-(4-chlorphenyl) methanimine: Yellow oil. δ 8.51 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.42 - 7.35 (m, 4H), 4.77 (s, 2H).

Figure S37. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-(3-chlorphenyl)-1-(3-chlorphenyl) methanimine**: Yellow oil. δ 8.54 (s, 1H), 7.86-7.77 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.44 - 7.34 (m, 4H), 4.82 (s, 2H).

Figure S38. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-(2-chlorphenyl)-1-(2-chlorphenyl) methanimine**: Yellow oil. δ 8.88 (s, 1H), 8.05 (s, 1H), 7.58-7.36 (m, 7H), 4.95 (s, 2H).

Figure S39. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-(4-bromobenzyl)-1-(4-bromophenyl) methanimine**: Yellow oil. δ 8.54 (s, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 4.78 (s, 2H).

Figure S40. The ¹H NMR (400 MHz, DMSO- d_6 , ppm) spectrum for the **N-(4-(trifluoromethyl) benzyl)-1-(4-(trifluoromethyl)phenyl) methanimine**: Yellow oil. δ 8.71 (s, 1H), 8.06 (m, 2H), 7.88 (dd, J = 8.5, 5.7 Hz, 2H), 7.76 (t, J = 8.8 Hz, 2H), 7.63 (dd, J = 12.4, 5.4 Hz, 2H), 4.98 (s, 2H).

Figure S41. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **N-((4-butylbenzyl)-1-(4-butylbenzyl) methanamine**: Yellow oil. δ 8.46 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.46 (d, 2H), 7.34 (d, 2H), 7.23 (d, 2H), 4.71 (s, 2H), 1.29 (m, 9H), 1.27 (m, 9H).

Figure S42. The ¹H NMR (400 MHz, DMSO-*d*₆, ppm) spectrum for the **1-(thiophen-2-yl)-N-(thioph en-2-ylmethyl) methanimine**: Yellow oil. δ 8.64 (d, J = 1.1 Hz, 1H), 7.74 (m, 1H), 7.57 (dd, J = 3.6, 1.0 Hz, 1H), 7.47 (dd, J = 4.0, 2.4 Hz, 1H), 7.21 (dd, J = 5.0, 3.6 Hz, 1H), 7.06 (m, 2H), 4.94 (d, J = 0.8 Hz, 2H).

Figure S43. The ¹H NMR (400 MHz, Chloroform-*d*, ppm) spectrum for the **(E)-N-hexylhexan-1imine**: Yellow oil.δ 7.62 (m, 1H), 3.34 (dt, J = 33.9, 7.0 Hz, 2H), 2.22 (m, 2H), 1.58 (m, 2H), 1.52 (s, 2H), 1.32 – 1.28 (t, J = 3.5 Hz, 10H), 0.89 (d, J = 4.3 Hz, 6H).

8. References

- H.-R. Tan, X. Zhou, T. Gong, H. You, Q. Zheng, S.-Y. Zhao and W. Xuan, *RSC Adv.*, 2024, 14, 364-372.
- H. Wang, M. Zhao, Q. Zhao, Y. Yang, C. Wang and Y. Wang, *Ind. Eng. Chem. Res.*, 2017, 56, 2711-2721.
- 3. R. Tayebee and S. Tizabi, *Chin. J. Catal.*, 2012, **33**, 962-969.
- 4. Z. X. Sun, K. Sun, M. L. Gao, Ö. Metin and H. L. Jiang, *Angew. Chem., Int. Ed.*, 2022, **134**, e202206108.
- 5. H. Wang, J. Yu, S. Wei, M. Lin, Y. Song and L. Wu, Chem. Eng. J., 2022, 441, 136020.
- 6. W. Sheng, F. Huang and X. Lang, *Mater. Today Chem.*, 2023, **30**, 101505.
- K. Wu, J.-K. Jin, X.-Y. Liu, Y.-L. Huang, P.-W. Cheng, M. Xie, J. Zheng, W. Lu and D. Li, J. Mater. Chem. C, 2022, 10, 11967-11974.
- 8. Y. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and X. Liu, J. Mater. Chem. A, 2017, 5, 8697-8704.
- 9. D. Wang, C. Sun and Y. Wang, Eur. J. Inorg. Chem., 2024, 27, e202300575.
- 10. B. Ge, Y. Ye, Y. Yan, H. Luo, Y. Chen, X. Meng, X. Song and Z. Liang, *Inorg. Chem.*, 2023,

62, 19288-19297.

- Q.-Q. Li, P.-H. Pan, H. Liu, L. Zhou, S.-Y. Zhao, B. Deng, Y.-J. He, J.-X. Song, P. Liu, Y.-Y. Wang and J.-L. Li, *Inorg. Chem.*, 2023, 62, 17182-17190.
- 12. Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, *Adv. Mater.*, 2015, **27**, 6265-6270.
- 13. W. Sheng, F. Huang, X. Dong and X. Lang, J. Colloid Interface Sci., 2022, 628, 784-793.
- 14. H. Hao, F. Zhang, X. Wang, F. Huang, S. Chen and X. Lang, *Adv. Funct. Mater.*, 2024, 2419735.
- T. Wu, Y. Shi, Z. Wang, C. Liu, J. Bi, Y. Yu and L. Wu, ACS Appl. Mater. Interfaces, 2021, 13, 61286-61295.
- 16. F.-J. Zhao, G. Zhang, Z. Ju, Y.-X. Tan and D. Yuan, *Inorg. Chem.*, 2020, **59**, 3297-3303.