Supporting Information

for

Chiral CNN Pincer Ir(III)-H complexes. Transient Ligand and Counterion Influences in the Asymmetric Hydrogenation of Imines and Quinolines

by

Yisong Wen,^{a,b} Albert Cabré,^a Jordi Benet-Buchholz,^c Antoni Riera, *^{a,b} Xavier Verdaguer*^{a,b}

^[a] Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain.
 ^[b] Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica. Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain.
 ^[c] Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.

Table of Contents

Solvent comparison.	
Hydrogenated substrates	
NMR spectra	
HRMS spectra	
Crystallographic data	

Solvent comparison.

Dichloromethane, tetrahydrofuran and toluene were compared in the asymmetric hydrogenation of 1-(4-methoxyphenyl)-*N*-phenylethan-1-imine catalyzed by **5-BArF**, at 1 mol% of catalyst loading, under 3 bar of hydrogen pressure at room temperature.

*N.D.: not determined.

These solvents were also compared in the asymmetric hydrogenation of 2methylquinoline, at 1 mol% of catalyst loading, under 50 bar of hydrogen pressure at room temperature.

Solvent	Conversion (%)	ee (%)*
Dichloromethane	43	N.D.
Tetrahydrofuran	< 5	N.D.
Toluene	25	N.D.

Hydrogenated substrates.

(*R*)-1-(4-chlorophenyl)-*N*-methylethan-1-amine.

¹**H NMR (400 MHz, CDCl₃):** δ7.33 – 7.20 (m, 4H), 3.63 (q, *J* = 6.6 Hz, 1H), 2.29 (s, 3H), 1.32 (d, *J* = 6.5 Hz, 3H) ppm.

The product amine was derivatized via trifluoroacetylation prior to chiral GC analysis: the corresponding amine was placed in a 4 mL

septum vial, together with 1 mL of CH_2Cl_2 . 4 equiv. of triethylamine was added, followed by 2 equiv. of trifluoroacetic anhydride. The mixture was stirred at room temperature for 1 hour, and 1 mL of MeOH was added and stirred for 5 min before removing the solvent under reduced pressure. The crude was purified with a short silica column (Hexanes – EtOAc 90:10).

Chiral GC (derivatized as trifluoroacetamide): GAMMA-DEX (30 m), $T_{col} = 140$ °C, $T_{det} = 300$ °C, $T_{inj} = 220$ °C, Split 50:1, 1 mL/ min, Carrier: He.

(*R*)-*N*-(1-(4-methoxyphenyl)ethyl)aniline.

¹**H NMR (400 MHz, CDCl₃):** δ 7.31 – 7.24 (m, 2H), 7.12 – 7.06 (m, 2H), 6.88 – 6.83 (m, 2H), 6.67 – 6.61 (m, 1H), 6.53 – 6.48 (m, 2H), 4.45 (q, *J* = 6.7 Hz, 1H), 3.78 (s, 3H), 1.49 (d, *J* = 6.7 Hz, 3H) ppm.

Chiral HPLC: CHIRALPAK IA, Heptane/EtOH 98:2, 0.5 mL/min, $\lambda = 210$ nm.

(R)-2-methyl-1,2,3,4-tetrahydroquinoline

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 6.99 – 6.92 (m, 2H), 6.60 (td, J = 7.4, 1.2 Hz, 1H), 6.47 (dd, J = 8.3, 1.2 Hz, 1H), 3.40 (dqd, J = 10.0, 6.3, 2.8 Hz, 1H), 3.68 (broad s, 1H), 2.84 (dddt, J = 17.3, 11.5, 5.6, 1.1 Hz, 1H), 2.72 (ddd, J = 16.4, 5.4, 3.5 Hz, 1H), 1.93 (dddd, J =

12.9, 5.7, 3.5, 2.9 Hz, 1H), 1.59 (dddd, *J* = 12.9, 11.5, 9.9, 5.4 Hz, 1H), 1.21 (d, *J* = 6.3 Hz, 3H) ppm.

Chiral HPLC: CHIRALCEL OJ, Heptane/*i*PrOH 95:5, 0.5 mL/min, $\lambda = 210$ nm.

(S)-2-phenyl-1,2,3,4-tetrahydroquinoline

¹H NMR (400 MHz, CD₃OD): δ 7.37 (d, *J* = 7.3 Hz, 2H), 7.31 (dd, *J* = 8.3, 6.8 Hz, 2H), 7.27 – 7.20 (m, 1H), 6.95 – 6.86 (m, 2H), 6.58 (d, *J* = 7.8 Hz, 1H), 6.53 (t, *J* = 7.4 Hz, 1H), 4.41 (dd, *J* = 8.7, 3.4 Hz, 1H), 2.85 (ddd, *J* = 15.6, 9.8, 5.4 Hz, 1H), 2.64

(dt, J = 16.2, 5.3 Hz, 1H), 2.13 – 2.03 (m, 1H), 2.00 – 1.88 (m, 1H)

NMR spectra

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

³¹P NMR (162 MHz, CD₃CN)

(376 MHz, CD₃CN)

 $<^{2.94}_{2.90}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

HRMS spectra

Crystallographic data

Figure S1. ORTEP drawing (50 %) showing the molecules in the asymmetric unit for compound **4-BARF**.

Figure S2. ORTEP drawing (50 %) showing the cationic part of compound 4-BARF.

Table S1.	Crystal data	and structure	refinement f	or 4-BArF.
-----------	--------------	---------------	--------------	------------

Empirical formula	C9.29 H9.03 B0.13 F3.	C9.29 H9.03 B0.13 F3.10 Ir0.13 N0.39 O0.13 P0.13	
Formula weight	217.20		
Temperature	293(2)K		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 13.1050(2)Å	a= 90°.	
	b = 20.1498(3)Å	$b = 90^{\circ}.$	
	c = 27.2687(3)Å	$g = 90^{\circ}$.	
Volume	7200.66(17) Å3		
Z	31		
Density (calculated)	1.553 Mg/m3		
Absorption coefficient	1.984 mm-1		
F(000)	3376		
Crystal size	? x ? x ? mm3		
Theta range for data collection	2.381 to 31.977°.		
Index ranges	-19<=h<=19,-29<=k<=	-19<=h<=19,-29<=k<=29,-40<=l<=39	
Reflections collected	64017		
Independent reflections	22797[R(int) = 0.0268]		
Completeness to theta =31.977°	95.1%		
Absorption correction	Multi-scan		
Max. and min. transmission	1.00 and 0.58	1.00 and 0.58	
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F2	
Data / restraints / parameters	22797/441/1098		
Goodness-of-fit on F2	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0282, wR2 = 0.0282, w	R1 = 0.0282, wR2 = 0.0661	
R indices (all data)	R1 = 0.0323, wR2 = 0.0323, w	R1 = 0.0323, $wR2 = 0.0673$	
Largest diff. peak and hole	2.157 and -0.838 e.Å-3	3	

Figure S3. ORTEP drawing (50 %) showing the molecules in the asymmetric unit for compound **5-BARF**.

Figure S4. ORTEP drawing (50 %) showing compound 5-BARF.

Table S2. Crystal data and structure refinement for 5-BArF.

Empirical formula	C218 H209 B3 F72 Ir3 N9 C	C218 H209 B3 F72 Ir3 N9 O3.50 P3	
Formula weight	5080.87		
Temperature	293(2)K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	P 1		
Unit cell dimensions	a = 13.50600(10)Å	a= 99.8810(10)°.	
	$b = 14.15850(10)\text{\AA}$	b = 90.4460(10)°.	
	c = 28.9101(2)Å	$g = 93.7400(10)^{\circ}.$	
Volume	5433.71(7) Å3		
Z	1		
Density (calculated)	1.553 Mg/m3		
Absorption coefficient	1.973 mm-1		
F(000)	2547		
Crystal size	? x ? x ? mm3	? x ? x ? mm3	
Theta range for data collection	2.174 to 34.311°.		
Index ranges	-21<=h<=20,-22<=k<=22,-4	-21<=h<=20,-22<=k<=22,-45<=l<=45	
Reflections collected	197046		
Independent reflections	83919[R(int) = 0.0454]		
Completeness to theta =34.311°	95.3%	95.3%	
Absorption correction	Multi-scan	Multi-scan	
Max. and min. transmission	1.00 and 0.82	1.00 and 0.82	
Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters	83919/ 1920/ 3400		
Goodness-of-fit on F2	0.988		
Final R indices [I>2sigma(I)]	R1 = 0.0427, $wR2 = 0.0969$		
R indices (all data)	R1 = 0.0515, $wR2 = 0.0992$		
Largest diff. peak and hole	3.115 and -1.328 e.Å-3		

Data collection: The measured crystals were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

Crystal structure determination for compound **4-BARF** and **5-BARF** was carried out using a Rigaku diffractometer equipped with a Pilatus 200K area detector, a Rigaku MicroMax-007HF microfocus rotating anode with MoK_{α} radiation, Confocal Max Flux optics and an Oxford Cryosystems low temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data collection was used with ω and φ scans. *Programs used:* Data collection data reduction with CrysAlisPro¹ and absorption correction with Scale3 Abspack scaling algorithm².

Structure Solution and Refinement: Crystal structure solution was achieved using the computer program SHELXT³. Visualization and processing was performed with the program OLEX2⁴. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F² using all measured intensities was carried out using the program SHELXL 2015⁵. All non-hydrogen atoms were refined including anisotropic displacement parameters.

Comments to the structures: Compound 4-BARF: The asymmetric unit contains one molecule of the cationic Iridium metal complex and a Barf anion. Some of the CF₃-groups in the Barf anion show rotational disorder. The structure is of excellent quality and the two hydrogen atoms attached to the Iridium atom could be localized experimentally from the residual electron density. Geometry and distances corroborate the presence of these hydrogen atoms. The structure does not have any A- or B-alert.

Compound 5-BARF: The asymmetric unit contains three independent molecules of the cationic Iridium metal complex, three Barf anions and a half molecule of diethyl ether. Most of the CF₃-groups in the Barf anion show rotational disorder. The diethyl ether molecule is also disordered in two orientations with an occupancy of 0.25:0.25. Although the structure shows high disorder and some residual electron densities close to the metal atoms, at each metal complex an electron density could be localized which should correspond to hydrogen atoms. Geometry and distances correspond with the position expected for these hydrogen atoms. The presence of this hydrogen atoms was confirmed by H¹-NMR. For this compound alerts related to high densities located close

¹ Data reduction with CrysAlisPro 1.171.44.110 (Rigaku OD, 2018).

² Empirical absorption correction using spherical harmonics implemented in Scale3 Abspack scaling algorithm, CrysAlisPro 1.171.44.110 (Rigaku OD, 2018).

³ SHELXT; V2018/2. Sheldrick, G.M. Acta Cryst. 2015 A71, 3-8.

⁴ OLEX2 Version 1.5-ac7-014. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

⁵ SHELXL; SHELXL-2018/3. Sheldrick, G.M. Acta Cryst. **2015** C71, 3-8.

to the Iridium atoms were commented in the CIF-file: "The residual densities observed were attributed to the presence of the Iridium atoms. The structure was checked for unaccounted twinning, wrongly assigned atom types and other model errors and seems to be sound. Modifying the integration of the data (smaller boxes) and choosing the strong absorber option in the absorption correction, improved the data, but not enough to completely reduce the observed density. This structure was considered suitable for publication.