# Supporting Information Antimony vs bismuth: structural differences in Cat{[MCl<sub>5</sub>](I<sub>2</sub>)} halogen bond-linked

# supramolecular complexes

### The choice of space group for compound 1 refinement

Initially, we solved and refined the crystal structure of compound 1 in *Pnma* space group (as in **2**). This resulted in high R-factors ( $R_1 = 7.16\%$ ,  $wR_2 = 17.61\%$ ), poor Goodness-of-fit (1.324) and significant residual peaks without any chemical sense (max 3.081 e/Å<sup>3</sup>, min -4.066 e/Å<sup>3</sup>). All of this could be possibly an indication of twinning. No suitable twin laws were found in this space group. Also Cl atom which is in contact with I<sub>2</sub> molecule, was disordered which hinders possible halogen bonds evaluation. Possibility of twin refinement in less symmetrical monoclinic crystal system was made. The structure was solved and refined in space group *P*2<sub>1</sub>/*n* with beta angle close to 90° (90.101°). Appropriate twin matrix (-1 0 0 0-1 0 0 0 1) was successfully found by Olex (BASF 0.41404). This resulted in much better R<sub>1</sub> and Goodness-of-fit (3.89% and 1.039 respectively, see data for **1** in Table S1) and absence of any disorder, which is especially good for quantum chemical calculations.

#### Powder X-ray diffractometry (PXRD)

Analysis of polycrystals was performed on Bruker D8 Advance (CuK $\alpha$  radiation, LYNXEYE XE-T linear detector,  $4 - 50^{\circ} 2\theta$  range,  $0.03^{\circ} 2\theta$  step, 0.5s per step). A polycrystalline sample was slightly ground with hexane in an agate mortar, and the resulting suspensions were deposited on the polished side of a standard quartz sample holder, and a smooth thin layer being formed after drying. The diffraction patterns of 1-4 were completely indexed by the results of the corresponding single crystal studies (data obtained at 150 and 220 K was used), and no extra peaks were found, which indicated that the products were a single phase.

**Raman spectra** were collected using a LabRAM HR Evolution (Horiba) spectrometer with the excitation by the 633 nm line of the He-Ne laser. The spectra at room temperatures were obtained in the backscattering geometry with a Raman microscope. The laser beam was focused to a diameter of 2  $\mu$ m using a LMPlan FL 50x/0.50 Olympus objective. The spectral resolution was 0.7 cm<sup>-1</sup>. The laser power on the sample surface was about 0.03 mW.

### Differential scanning calorimetry (DSC)

Thermal analysis was performed with a NETZSCH DSC 204 F1 Phoenix differential scanning calorimeter with a digital/discrete resolution of ~0.01  $\mu$ W in temperature range -153.65 °C-25 °C (120-300 K). DSC measurements were carried out by a heat flow measurement method at a 12-15 K/min cooling/heating rate in 25 mL min<sup>-1</sup> Ar flux in unsealed aluminum crucibles with lids. Powdered samples were distributed uniformly over the bottom and carefully tamped. To increase the sensitivity and reduce baseline noise, measurements were taken at a heating rate of 12-15 K/min without the supply of gas or liquid nitrogen (self-heating rate of the calorimeter cell ~10 K/min at 130 K). The sensitivity of the sample carrier sensors and temperature scale gradation were calibrated by melting and crystal to crystal transition measurements of standard samples (cyclohexane, adamantane, Hg, Ga, benzoic acid, KNO<sub>3</sub>, In).

**Thermogravimetric analysis (TGA)** of **1-4** was carried out on a TG 209 F1 Iris thermobalance (NETZSCH, Germany). The measurements were made in a helium flow in the temperature range of 30-450 °C using the heating rate of 10 °C/min the gas flow rate of 60 mL/min and open Al crucibles.

**Diffuse reflectance spectra** of **1-4** were measured on a setup which consists of a Kolibri-2 spectrometer (VMK Optoelektronica, Russia), fiber optic cable QR-400-7 (Ocean Optics, USA), and deuterium–tungsten lamp AvaLight-DHS (Avantes, Netherlands). The reference of 100% reflectance was BaSO<sub>4</sub> powder. The spectra were recorded five times in the wavelength interval of 300-1000 nm and then averaged to reduce the random error.

| Identification code                                                               | 1                                                                                   | 2                                                                                  | 2_100K                                                                              |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| CCDC number                                                                       | 2413116                                                                             | 2413117                                                                            | 2426309                                                                             |
| Empirical formula                                                                 | $C_{12}H_{14}N_2SbCl_5I_2$                                                          | C <sub>12</sub> H <sub>14</sub> N <sub>2</sub> BiCl <sub>5</sub> I <sub>2</sub>    | C <sub>12</sub> H <sub>14</sub> N <sub>2</sub> BiCl <sub>5</sub> I <sub>2</sub>     |
| M, g/mol                                                                          | 739.05                                                                              | 826.28                                                                             | 826.28                                                                              |
| Temperature/K                                                                     | 150                                                                                 | 220                                                                                | 100                                                                                 |
| Crystal system                                                                    | Monoclinic                                                                          | Orthorhombic                                                                       | Orthorhombic                                                                        |
| Space group                                                                       | $P2_1/n$                                                                            | Pnma                                                                               | Pnma                                                                                |
| a, Å                                                                              | 14.2820 (6)                                                                         | 7.4735 (2)                                                                         | 7.3832 (4)                                                                          |
| b, Å                                                                              | 7.3356 (3)                                                                          | 14.2835 (4)                                                                        | 14.2708 (7)                                                                         |
| <i>c</i> , Å                                                                      | 19.7031 (7)                                                                         | 19.7322 (6)                                                                        | 19.6817 (9)                                                                         |
| a, deg.                                                                           | 90                                                                                  | 90                                                                                 | 90                                                                                  |
| $\beta$ , deg.                                                                    | 90.101 (1)                                                                          | 90                                                                                 | 90                                                                                  |
| γ, deg.                                                                           | 90                                                                                  | 90                                                                                 | 90                                                                                  |
| Volume, Å <sup>3</sup>                                                            | 2064.23 (14)                                                                        | 2106.37 (10)                                                                       | 2073.75 (18)                                                                        |
| Z                                                                                 | 4                                                                                   | 4                                                                                  | 4                                                                                   |
| $\rho_{calc}, g/cm^3$                                                             | 2.378                                                                               | 2.606                                                                              | 2.647                                                                               |
| $\mu$ , mm <sup>-1</sup>                                                          | 4.97                                                                                | 11.93                                                                              | 45.97                                                                               |
| F(000)                                                                            | 1368                                                                                | 1496                                                                               | 1496                                                                                |
| Crystal size, mm                                                                  | $0.14 \times 0.07 \times 0.05$                                                      | $0.25\times0.15\times0.03$                                                         | $0.06 \times 0.05 \times 0.02$                                                      |
| $\Theta$ range for data collection, deg.                                          | 1.760 to 33.739                                                                     | 2.064 to 31.508                                                                    | 3.826 to 76.255                                                                     |
| T <sub>min</sub> , T <sub>max</sub>                                               | 0.633, 0.747                                                                        | 0.166, 0.373                                                                       | 0.098, 0.298                                                                        |
| Range of $h \mid k \mid$                                                          | $-22 \le h \le 22, -11 \le k \le 11,$                                               | $-10 \le h \le 10, -21 \le k \le 20,$                                              | $-8 \le h \le 9, -17 \le k \le 17, -$                                               |
|                                                                                   | $-27 \le l \le 30$                                                                  | $-29 \le l \le 29$                                                                 | $23 \le l \le 24$                                                                   |
| $(\sin \theta / \lambda)_{\max} (A^{-1})$                                         | 0.781                                                                               | 0.735                                                                              | 0.630                                                                               |
| R <sub>int</sub>                                                                  | 0.054                                                                               | 0.065                                                                              | 0.079                                                                               |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 35710, 8239, 6518                                                                   | 27777, 3616, 3007                                                                  | 13964, 2254, 2032                                                                   |
| Data/restraints/parameters                                                        | 8239/0/201                                                                          | 3616/100/168                                                                       | 2254/123/145                                                                        |
| Goodness-of-fit on F <sup>2</sup>                                                 | 1.039                                                                               | 1.038                                                                              | 1.029                                                                               |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$                                       | $R_1 = 0.0389, wR_2 = 0.0687$                                                       | $R_1 = 0.0268, wR_2 = 0.0531$                                                      | $R_1 = 0.0410, wR_2 = 0.1041$                                                       |
| Final <i>R</i> indexes [all data]                                                 | $R_1 = 0.0593, wR_2 = 0.0743$                                                       | $R_1 = 0.0379, wR_2 = 0.0565$                                                      | $R_1 = 0.0459, wR_2 = 0.1083$                                                       |
| Weighting scheme                                                                  | $w = 1/[\sigma^2(F_o^2) + (0.0087P)^2 + 7.7987P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ | $w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 0.652P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ | w = $1/[\sigma^2(F_o^2) + (0.0597P)^2 + 4.5187P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $(\Delta/\sigma)_{\rm max}$                                                       | 0.002                                                                               | 0.001                                                                              | < 0.001                                                                             |
| Largest diff. peak/hole,<br>e/Å <sup>3</sup>                                      | 1.80, -1.86                                                                         | 1.02, -0.63                                                                        | 3.51, -1.79                                                                         |
| Extinction coefficient                                                            | 0.00041(5)                                                                          | 0.00195 (8)                                                                        | -                                                                                   |

 Table S1. Crystal data and structure refinement for 1–2 and 2 at 101K.

Computer programs: SHELXT 2014/5 (Sheldrick, 2014), SHELXL 2017/1 (Sheldrick, 2015), Olex2 1.5 (Dolomanov et al., 2009).

| Identification code                                                               | 3                                                                                   | 3 300K                                                                              | 4                                                                                   |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| CCDC number                                                                       | 2413118                                                                             | 2426310                                                                             | 2413119                                                                             |
| Empirical formula                                                                 | $C_{13}H_{16}N_2Cl_5SbI_2$                                                          | $C_{13}H_{16}N_2Cl_5SbI_2$                                                          | C <sub>13</sub> H <sub>16</sub> N <sub>2</sub> BiCl <sub>5</sub> I <sub>2</sub>     |
| M, g/mol                                                                          | 753.08                                                                              | 753.08                                                                              | 840.31                                                                              |
| Temperature/K                                                                     | 220                                                                                 | 300                                                                                 | 150                                                                                 |
| Crystal system                                                                    | Orthorhombic                                                                        | Orthorhombic                                                                        | Monoclinic                                                                          |
| Space group                                                                       | Pnma                                                                                | Pnma                                                                                | $P2_{1}/c$                                                                          |
| <i>a</i> , Å                                                                      | 15.3188 (4)                                                                         | 15.3811 (12)                                                                        | 14.3756 (3)                                                                         |
| b, Å                                                                              | 14.2431 (3)                                                                         | 14.2816 (11)                                                                        | 18.7195 (4)                                                                         |
| <i>c</i> , Å                                                                      | 9.9383 (3)                                                                          | 9.9869 (7)                                                                          | 8.2348 (2)                                                                          |
| a, deg.                                                                           | 90                                                                                  | 90                                                                                  | 90                                                                                  |
| $\beta$ , deg.                                                                    | 90                                                                                  | 90                                                                                  | 97.212 (1)                                                                          |
| γ, deg.                                                                           | 90                                                                                  | 90                                                                                  | 90                                                                                  |
| Volume, Å <sup>3</sup>                                                            | 2168.41 (10)                                                                        | 2193.8 (3)                                                                          | 2198.49 (8)                                                                         |
| Z                                                                                 | 4                                                                                   | 4                                                                                   | 4                                                                                   |
| $\rho_{calc}, \mathrm{g/cm^3}$                                                    | 2.307                                                                               | 2.280                                                                               | 2.539                                                                               |
| $\mu$ , mm <sup>-1</sup>                                                          | 4.74                                                                                | 37.67                                                                               | 11.44                                                                               |
| F(000)                                                                            | 1400                                                                                | 1400                                                                                | 1528                                                                                |
| Crystal size, mm                                                                  | 0.22 	imes 0.15 	imes 0.06                                                          | $0.09 \times 0.06 \times 0.06$                                                      | 0.18 	imes 0.12 	imes 0.02                                                          |
| $\Theta$ range for data collection, deg.                                          | 2.443 to 31.511                                                                     | 5.281 to 77.933                                                                     | 1.428 to 30.529                                                                     |
| $T_{min}, T_{max}$                                                                | 0.527, 0.746                                                                        | 0.089, 0.217                                                                        | 0.416, 0.746                                                                        |
| Range of $h, k, l$                                                                | $-20 \le h \le 22, -20 \le k \le 20,$<br>$-14 \le l \le 14$                         | $-18 \le h \le 19, -16 \le k \le 18,$<br>$-12 \le l \le 12$                         | $-20 \le h \le 20, -26 \le k \le 26, \\ -11 \le l \le 11$                           |
| $(sin \theta/\lambda)_{max}$ (Å <sup>-1</sup> )                                   | 0.735                                                                               | 0.634                                                                               | 0.715                                                                               |
| R <sub>int</sub>                                                                  | 0.042                                                                               | 0.048                                                                               | 0.057                                                                               |
| No. of measured,<br>independent and<br>observed $[I > 2\sigma(I)]$<br>reflections | 29013, 3744, 3053                                                                   | 12734, 2398, 2047                                                                   | 28700, 6720, 5371                                                                   |
| Data/restraints/parameters                                                        | 3744/0/113                                                                          | 2398/0/113                                                                          | 6720/0/209                                                                          |
| Goodness-of-fit on <i>F</i> <sup>2</sup>                                          | 1.039                                                                               | 1.033                                                                               | 1.029                                                                               |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$                                       | $R_1 = 0.0257, wR_2 = 0.0478$                                                       | $R_1 = 0.0288, wR_2 = 0.0701$                                                       | $R_1 = 0.0343, wR_2 = 0.0611$                                                       |
| Final R indexes [all data]                                                        | $R_1 = 0.0378, wR_2 = 0.0509$                                                       | $R_1 = 0.0348, wR_2 = 0.0733$                                                       | $R_1 = 0.0510, wR_2 = 0.0651$                                                       |
| Weighting scheme                                                                  | $w = 1/[\sigma^2(F_o^2) + (0.0134P)^2 + 1.8679P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ | $w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 0.7315P]$<br>where P = $(F_o^2 + 2F_c^2)/3$ | $w = 1/[\sigma^2(F_o^2) + (0.0169P)^2 + 2.2265P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $(\Delta/\sigma)_{\rm max}$                                                       | 0.002                                                                               | 0.001                                                                               | 0.003                                                                               |
| Largest diff. peak/hole,<br>e/Å <sup>3</sup>                                      | 0.66, -0.74                                                                         | 0.47, -0.60                                                                         | 1.82, -0.91                                                                         |
| Extinction coefficient                                                            | 0.00187(8)                                                                          | 0.00034 (3)                                                                         | 0.00037 (4)                                                                         |

 Table S2. Crystal data and structure refinement for 3, 3\_300K and 4.

Computer programs: SHELXT 2014/5 (Sheldrick, 2014), SHELXL 2017/1 (Sheldrick, 2015), Olex2 1.5 (Dolomanov et al., 2009).

| Bond length, Å  |             |             |             |  |
|-----------------|-------------|-------------|-------------|--|
| Sb1—Cl3         | 2.5435 (9)  | Sb1—Cl4     | 2.4577 (13) |  |
| Sb1—Cl2         | 2.4234 (9)  | I1—I2       | 2.7453 (4)  |  |
| Sb1—Cl5         | 2.7461 (11) | I1—Cl1      | 2.8121 (15) |  |
| Bond angle, (°) |             |             |             |  |
| Cl3—Sb1—Cl5     | 175.48 (6)  | Cl4—Sb1—Cl3 | 87.73 (6)   |  |
| Cl2—Sb1—Cl3     | 93.19 (3)   | Cl4—Sb1—Cl5 | 88.14 (6)   |  |
| Cl2—Sb1—Cl5     | 85.03 (3)   | I2—I1—C11   | 178.99 (4)  |  |
| Cl2—Sb1—Cl4     | 90.58 (6)   |             |             |  |

 Table S3. Selected bond lengths and angles for 1.

Symmetry code(s): (i) -x+3/2, y-1/2, -z+3/2; (ii) x+1, y-1, z.

| Table S4 | . Selected | hydrogen | bond | parameters | for | 1. |
|----------|------------|----------|------|------------|-----|----|
|----------|------------|----------|------|------------|-----|----|

| D—H····A                     | D—H (Å) | H…A (Å) | D…A (Å)   | D—H····A (°) |
|------------------------------|---------|---------|-----------|--------------|
| N1— $H1$ ···Cl5 <sup>i</sup> | 0.88    | 2.57    | 3.258 (5) | 136.1        |
| N2—H2····Cl2 <sup>ii</sup>   | 0.88    | 2.86    | 3.495 (6) | 130.8        |
| N2—H2····Cl3 <sup>iii</sup>  | 0.88    | 2.54    | 3.217 (6) | 134.3        |
| C5—H5····Cl1 <sup>iv</sup>   | 0.95    | 2.78    | 3.673 (8) | 156.4        |
| C6—H6A····Cl2 <sup>v</sup>   | 0.99    | 2.73    | 3.627 (5) | 150.9        |
| С6—Н6В…С13 <sup>v</sup>      | 0.99    | 2.80    | 3.632 (5) | 141.8        |
| C11—H11····Cl4vi             | 0.95    | 2.84    | 3.575 (8) | 134.8        |
| C11—H11…Cl5 <sup>ii</sup>    | 0.95    | 2.92    | 3.498 (7) | 120.6        |

Symmetry code(s): (i) x, y-1, z; (ii) x+1, y-1, z; (iii) x+1, y, z; (iv) -x+1/2, y-1/2, -z+3/2; (v) -x+1, -y+1, -z+1; (vi) -x+3/2, y-1/2, -z+3/2.

| Bond lengths, Å             |             |                                            |            |
|-----------------------------|-------------|--------------------------------------------|------------|
| Bi1—Cl2                     | 2.5999 (11) | Bi1—Cl1B <sup>ii</sup>                     | 2.856 (11) |
| Bi1—Cl3                     | 2.5701 (10) | Bi1—Cl1B <sup>iii</sup>                    | 2.856 (11) |
| Bi1—Cl4                     | 2.6898 (10) | Bi1—Cl1B                                   | 2.842 (11) |
| Bi1—Cl4 <sup>i</sup>        | 2.6898 (10) | Bi1—Cl1B <sup>i</sup>                      | 2.842 (11) |
| Bi1—Cl1A                    | 2.856 (6)   |                                            |            |
| Bond angles, (°)            |             |                                            |            |
| Cl2—Bi1—Cl4                 | 87.89 (2)   | Cl4 <sup>i</sup> —Bi1—Cl1A <sup>ii</sup>   | 92.00 (2)  |
| Cl2—Bi1—Cl4 <sup>i</sup>    | 87.89 (2)   | Cl4—Bi1—Cl1A <sup>ii</sup>                 | 92.00 (2)  |
| Cl2—Bi1—Cl1A                | 179.3 (3)   | Cl4—Bi1—Cl1A                               | 92.09 (2)  |
| Cl2—Bi1—Cl1A <sup>ii</sup>  | 98.1 (3)    | Cl4 <sup>i</sup> —Bi1—Cl1B <sup>ii</sup>   | 87.2 (4)   |
| Cl2—Bi1—Cl1B <sup>iii</sup> | 89.0 (13)   | Cl4—Bi1—Cl1B <sup>iii</sup>                | 87.2 (4)   |
| Cl2—Bi1—Cl1B <sup>ii</sup>  | 89.0 (13)   | Cl4 <sup>i</sup> —Bi1—Cl1B <sup>iii</sup>  | 96.1 (4)   |
| Cl2—Bi1—Cl1B                | 170.3 (12)  | Cl4—Bi1—Cl1B <sup>ii</sup>                 | 96.1 (4)   |
| Cl2—Bi1—Cl1B <sup>i</sup>   | 170.3 (12)  | Cl4 <sup>i</sup> —Bi1—Cl1B                 | 87.9 (4)   |
| Cl3—Bi1—Cl2                 | 96.18 (4)   | Cl4—Bi1—Cl1B <sup>i</sup>                  | 87.9 (4)   |
| Cl3—Bi1—Cl4                 | 88.52 (2)   | Cl4—Bi1—Cl1B                               | 96.8 (4)   |
| Cl3—Bi1—Cl4 <sup>i</sup>    | 88.52 (2)   | Cl4 <sup>i</sup> —Bi1—Cl1B <sup>i</sup>    | 96.8 (4)   |
| Cl3—Bi1—Cl1A <sup>ii</sup>  | 165.7 (3)   | Cl1A—Bi1—Cl1A <sup>ii</sup>                | 82.58 (5)  |
| Cl3—Bi1—Cl1A                | 83.2 (3)    | Cl1A—Bi1—Cl1B <sup>ii</sup>                | 91.6 (11)  |
| Cl3—Bi1—Cl1B                | 92.5 (13)   | Cl1A—Bi1—Cl1B <sup>iii</sup>               | 91.6 (11)  |
| Cl3—Bi1—Cl1B <sup>ii</sup>  | 173.1 (11)  | Cl1B <sup>i</sup> —Bi1—Cl1B <sup>iii</sup> | 82.01 (6)  |
| Cl3—Bi1—Cl1B <sup>i</sup>   | 92.5 (13)   | Cl1B <sup>i</sup> —Bi1—Cl1B                | 9.0 (9)    |
| Cl3—Bi1—Cl1B <sup>iii</sup> | 173.1 (11)  | Cl1B—Bi1—Cl1B <sup>iii</sup>               | 82.71 (8)  |
| Cl4—Bi1—Cl4 <sup>i</sup>    | 174.56 (5)  | Bi1—Cl1A—Bi1 <sup>iv</sup>                 | 158.2 (6)  |
| Cl4 <sup>i</sup> —Bi1—Cl1A  | 92.09 (2)   |                                            |            |

 Table S5. Selected bond lengths and angles for 2.

Symmetry code(s): (i) x, -y+3/2, z; (ii) x-1/2, y, -z-1/2; (iii) x-1/2, -y+3/2, -z-1/2; (iv) x+1/2, y, -z-1/2. **Table S6.** Selected hydrogen bond parameters for **2**.

| D—H····A                     | D—H (Å) | H…A (Å) | D…A (Å)    | D—H···A (°) |
|------------------------------|---------|---------|------------|-------------|
| C5—H5…Cl4 <sup>i</sup>       | 0.94    | 2.68    | 3.590 (11) | 161.9       |
| N2—H2A····Cl2 <sup>ii</sup>  | 0.87    | 2.55    | 3.211 (10) | 133.6       |
| N2—H2A····Cl3 <sup>iii</sup> | 0.87    | 2.66    | 3.327 (10) | 133.9       |
| C11—H11····Cl4 <sup>iv</sup> | 0.94    | 3.06    | 3.720 (8)  | 128.4       |
| C12—H12····Cl4 <sup>iv</sup> | 0.94    | 3.11    | 3.743 (6)  | 126.3       |
| C6—H6A…Cl3                   | 0.98    | 2.73    | 3.620 (7)  | 151.2       |
| C6—H6B…Cl2                   | 0.98    | 2.80    | 3.655 (7)  | 146.2       |

Symmetry code(s): (i) -x+3/2, -y+1, z+1/2; (ii) -x+1, y+1/2, -z; (iii) -x+2, y+1/2, -z; (iv) -x+3/2, y+1/2, z+1/2.

| Bond lengths, Å           |            |                                         |             |
|---------------------------|------------|-----------------------------------------|-------------|
| Bi1—Cl2                   | 2.602 (2)  | Bi1—Cl1                                 | 2.846 (2)   |
| Bi1—Cl3                   | 2.560 (2)  | Bi1—Cl1 <sup>ii</sup>                   | 2.909 (2)   |
| Bi1—Cl4                   | 2.691 (2)  | I1—I1 <sup>i</sup>                      | 2.7167 (9)  |
| Bi1—Cl4 <sup>i</sup>      | 2.691 (2)  |                                         |             |
| Bond angles, (°)          |            |                                         |             |
| Cl2—Bi1—Cl4               | 87.86 (4)  | Cl3—Bi1—Cl1 <sup>ii</sup>               | 166.44 (8)  |
| Cl2—Bi1—Cl4 <sup>i</sup>  | 87.86 (4)  | Cl4—Bi1—Cl4 <sup>i</sup>                | 174.76 (8)  |
| Cl2—Bi1—Cl1 <sup>ii</sup> | 98.15 (8)  | Cl4 <sup>i</sup> —Bi1—Cl1 <sup>ii</sup> | 91.80 (4)   |
| Cl2—Bi1—Cl1               | 179.79 (8) | Cl4—Bi1—Cl1                             | 92.13 (4)   |
| Cl3—Bi1—Cl2               | 95.42 (7)  | Cl4—Bi1—Cl1 <sup>ii</sup>               | 91.80 (4)   |
| Cl3—Bi1—Cl4               | 88.69 (4)  | Cl4 <sup>i</sup> —Bi1—Cl1               | 92.13 (4)   |
| Cl3—Bi1—Cl4 <sup>i</sup>  | 88.69 (4)  | Cl1—Bi1—Cl1 <sup>ii</sup>               | 82.07 (2)   |
| Cl3—Bi1—Cl1               | 84.37 (8)  | Bi1—Cl1—Bi1 <sup>iii</sup>              | 156.81 (12) |

 Table S7. Selected bond lengths and angles for 2\_100K.

Symmetry code(s): (i) x, -y+1/2, z; (ii) x+1/2, y, -z+3/2; (iii) x-1/2, y, -z+3/2.

 Table S8. Selected hydrogen bond parameters for 2\_100K.

| D—H····A                     | D—H (Å) | H…A (Å) | D…A (Å)    | $D - H \cdots A(^{\circ})$ |
|------------------------------|---------|---------|------------|----------------------------|
| $C2$ — $H2$ ··· $Cl4^i$      | 0.95    | 2.94    | 3.804 (9)  | 151.8                      |
| C5—H5····Cl4 <sup>ii</sup>   | 0.95    | 2.61    | 3.532 (8)  | 163.4                      |
| N1—H1A…Cl1 <sup>iii</sup>    | 0.88    | 2.68    | 3.356 (10) | 134.0                      |
| C6—H6A…Cl3                   | 0.99    | 2.68    | 3.579 (14) | 150.6                      |
| C6—H6B…Cl2                   | 0.99    | 2.77    | 3.632 (15) | 146.2                      |
| С9—Н9…С13                    | 0.95    | 3.05    | 3.894 (10) | 149.2                      |
| C10—H10…Cl4                  | 0.95    | 3.21    | 3.970 (10) | 138.5                      |
| N2—H2A····Cl2 <sup>iv</sup>  | 0.88    | 2.45    | 3.144 (10) | 136.3                      |
| N2—H2A····Cl3 <sup>v</sup>   | 0.88    | 2.72    | 3.368 (11) | 131.5                      |
| C11—H11····Cl4 <sup>vi</sup> | 0.95    | 3.04    | 3.693 (11) | 127.4                      |
| C11—H11····Cl1 <sup>v</sup>  | 0.95    | 2.82    | 3.439 (11) | 124.0                      |
| C12—H12····Cl4 <sup>vi</sup> | 0.95    | 3.09    | 3.720 (11) | 124.9                      |

Symmetry code(s): (i) x, -y+1/2, z; (ii) -x+1/2, y+1/2, z-1/2; (iii) -x, y+1/2, -z+1; (iv) -x+1, y-1/2, -z+1; (v) -x, y-1/2, -z+1; (vi) -x+1/2, -y, z-1/2.

| Bond length, Å             |             |                           |             |  |  |
|----------------------------|-------------|---------------------------|-------------|--|--|
| Sb1—Cl1                    | 2.6211 (7)  | Sb1—Cl3                   | 2.3970 (8)  |  |  |
| Sb1—Cl1 <sup>i</sup>       | 2.6211 (7)  | Sb1—Cl4                   | 2.4770 (9)  |  |  |
| Sb1—Cl2                    | 2.8146 (9)  | I1—I1 <sup>ii</sup>       | 2.7156 (4)  |  |  |
| Bond angle, (°)            |             |                           |             |  |  |
| Cl1 <sup>ii</sup> —Sb1—Cl1 | 170.23 (3)  | Cl3—Sb1—Cl2               | 82.31 (3)   |  |  |
| Cl1 <sup>ii</sup> —Sb1—Cl2 | 87.058 (16) | Cl3—Sb1—Cl4               | 88.85 (3)   |  |  |
| Cl1—Sb1—Cl2                | 87.058 (16) | Cl4—Sb1—Cl1 <sup>ii</sup> | 92.308 (16) |  |  |
| Cl3—Sb1—Cl1                | 85.742 (15) | Cl4—Sb1—Cl1               | 92.308 (16) |  |  |
| Cl3—Sb1—Cl1 <sup>ii</sup>  | 85.742 (16) | Cl4—Sb1—Cl2               | 171.16 (3)  |  |  |
|                            |             |                           |             |  |  |

 Table S9. Selected bond lengths and angles for 3.

Symmetry code(s): (i) x, -y+1/2, z; (ii) x, -y+3/2, z.

 Table S10. Selected hydrogen bond parameters for 3.

| D—H····A                     | D—H (Å) | H…A (Å) | D…A (Å)   | D—H···A (°) |
|------------------------------|---------|---------|-----------|-------------|
| N1—H1····Cl2 <sup>i</sup>    | 0.87    | 2.31    | 3.136 (2) | 158.1       |
| N1—H1····Cl3 <sup>i</sup>    | 0.87    | 3.09    | 3.645 (2) | 123.9       |
| C2—H2…Cl1 <sup>ii</sup>      | 0.94    | 3.01    | 3.724 (3) | 134.3       |
| C2—H2…Cl3 <sup>iii</sup>     | 0.94    | 3.18    | 3.809 (3) | 126.2       |
| C5—H5…Cl3 <sup>i</sup>       | 0.94    | 2.83    | 3.533 (3) | 132.7       |
| C6—H6B…Cl4 <sup>iii</sup>    | 0.98    | 3.19    | 3.834 (3) | 125.1       |
| C7—H7A····Cl2 <sup>iv</sup>  | 0.98    | 2.75    | 3.645 (3) | 152.5       |
| C7—H7B····Cl3 <sup>iii</sup> | 0.98    | 2.86    | 3.834 (3) | 170.8       |

Symmetry code(s): (i) x-1/2, -y+3/2, -z+1/2; (ii) -x+1, -y+1, -z; (iii) -x+1, y-1/2, -z; (iv) -x+1, y-1/2, -z+1.

 Table S11. Selected bond lengths and angles for 3\_300K.

| Bond length, Å            |             |                          |             |  |
|---------------------------|-------------|--------------------------|-------------|--|
| Sb1—Cl3                   | 2.3955 (13) | Sb1—Cl1                  | 2.6256 (13) |  |
| Sb1—Cl2                   | 2.8217 (17) | Sb1—Cl1 <sup>i</sup>     | 2.6256 (13) |  |
| Sb1—Cl4                   | 2.4734 (16) | I1—I1 <sup>ii</sup>      | 2.7155 (7)  |  |
| Bond angle, (°)           |             |                          |             |  |
| Cl1—Sb1—Cl1 <sup>i</sup>  | 170.83 (6)  | Cl3—Sb1—Cl2              | 82.48 (5)   |  |
| Cl1 <sup>i</sup> —Sb1—Cl2 | 87.19 (3)   | Cl3—Sb1—Cl4              | 88.93 (5)   |  |
| Cl1—Sb1—Cl2               | 87.19 (3)   | Cl4—Sb1—Cl1              | 92.24 (3)   |  |
| Cl3—Sb1—Cl1 <sup>i</sup>  | 86.05 (3)   | Cl4—Sb1—Cl1 <sup>i</sup> | 92.24 (3)   |  |
| Cl3—Sb1—Cl1               | 86.05 (3)   | Cl4—Sb1—Cl2              | 171.41 (5)  |  |

Symmetry code(s): (i) x, -y+3/2, z.

| Table S12. Selected hydroger | n bond parameters | for 3_300K. |
|------------------------------|-------------------|-------------|
|------------------------------|-------------------|-------------|

| D—H····A                   | D—H (Å) | H…A (Å) | D…A (Å)   | D—H···A (°) |
|----------------------------|---------|---------|-----------|-------------|
| N1—H1····Cl2 <sup>i</sup>  | 0.86    | 2.33    | 3.151 (5) | 158.5       |
| C1—H1A····Cl3 <sup>i</sup> | 0.93    | 2.85    | 3.554 (6) | 133.4       |
|                            |         | 12      |           | •           |

Symmetry code(s): (i) -x+3/2, -y+1, z-1/2.

| 2.6585 (11) | Bi1—Cl2                                                                                                                                                              | 2.5550 (12)                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2.9046 (12) | Bi1—Cl1                                                                                                                                                              | 2.7145 (12)                                          |
| 2.7979 (12) | I1—I2                                                                                                                                                                | 2.7109 (5)                                           |
| 2.6631 (11) |                                                                                                                                                                      |                                                      |
|             |                                                                                                                                                                      |                                                      |
| 83.40 (3)   | Cl2—Bi1—Cl3                                                                                                                                                          | 92.99 (4)                                            |
| 177.18 (3)  | Cl2—Bi1—Cl4                                                                                                                                                          | 88.47 (4)                                            |
| 87.14 (3)   | Cl2—Bi1—Cl4 <sup>i</sup>                                                                                                                                             | 176.39 (4)                                           |
| 86.34 (4)   | Cl2—Bi1—Cl5                                                                                                                                                          | 93.18 (4)                                            |
| 95.140 (12) | Cl2—Bi1—Cl1                                                                                                                                                          | 93.89 (4)                                            |
| 95.20 (4)   | Cl1—Bi1—Cl4                                                                                                                                                          | 91.15 (4)                                            |
| 86.57 (4)   | Cl1—Bi1—Cl4 <sup>i</sup>                                                                                                                                             | 85.99 (4)                                            |
| 170.62 (4)  | Bi1—Cl4—Bi1 <sup>ii</sup>                                                                                                                                            | 153.14 (5)                                           |
|             | 2.6585 (11)<br>2.9046 (12)<br>2.7979 (12)<br>2.6631 (11)<br>83.40 (3)<br>177.18 (3)<br>87.14 (3)<br>86.34 (4)<br>95.140 (12)<br>95.20 (4)<br>86.57 (4)<br>170.62 (4) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

 Table S13. Selected bond lengths and angles for 4.

Symmetry code(s): (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.

| Table S14. | Selected | hydrogen | bond | parameters for 4. |
|------------|----------|----------|------|-------------------|
|------------|----------|----------|------|-------------------|

| D—H····A                      | D—H (Å) | H…A (Å) | D…A (Å)   | D—H····A (°) |
|-------------------------------|---------|---------|-----------|--------------|
| N1—H1····Cl3 <sup>i</sup>     | 0.88    | 2.52    | 3.293 (4) | 146.4        |
| N2—H2····Cl3 <sup>ii</sup>    | 0.88    | 2.37    | 3.215 (4) | 159.6        |
| C10—H10····Cl4 <sup>iii</sup> | 0.95    | 2.72    | 3.505 (5) | 140.5        |

Symmetry code(s): (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, y-1/2, -z+3/2.



Figure S1. Hydrogen bonds (dashed) in crystal structures of 3 (*left*) and 4 (*right*).



Figure S2. DSC curve for  $(H_2bpe)\{[SbCl_5](I_2)\}$  (1).



Figure S3. DSC curve for  $(H_2bpp)\{[SbCl_5](I_2)\}$  (3).



Figure S4. DSC curve for  $(H_2bpp)\{[BiCl_5](I_2)\}$  (4).



Figure S5. Experimental (red) and calculated from SCXRD data (blue) powder patterns comparison for 1.



ure S6. Experimental (red) and calculated from SCXRD data (blue) powder patterns comparison for 2.



Figure S7. Experimental (red) and calculated from SCXRD data (blue) powder patterns comparison for 3.



Figure S8. Experimental (red) and calculated from SCXRD data (blue) powder patterns comparison for 4.



Figure S9. TG, DTG and DTA curves for 3.



Figure S10. TG, DTG and DTA curves for 4.



Figure S11. Raman spectrum of 1.



Figure S12. Raman spectrum of 2.



Figure S13. Raman spectrum of 3.



Figure S15. Diffuse reflectance spectrum (*left*) and Cubelka-Munk function (*right*) for 1.



Figure S16. Diffuse reflectance spectrum (*left*) and Cubelka-Munk function (*right*) for 2.



Figure S17. Diffuse reflectance spectrum (left) and Cubelka-Munk function (right) for 3.



Figure S18. Diffuse reflectance spectrum (left) and Cubelka-Munk function (right) for 4.



Figure S19. Band gap determination for 1.



Figure S20. Band gap determination for 2.



Figure S21. Band gap determination for 3.



Figure S22. Band gap determination for 4.

#### **Computational details**

The single point calculations based on the experimental X-ray geometries of **2**, **3**, and **4** have been carried out at the DFT level of theory using the dispersion-corrected hybrid functional  $\omega$ B97XD [Phys. Chem. Chem. Phys. 2008, 10, 6615.] with the help of Gaussian-09 [M. J. Frisch et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.] program package. The Douglas–Kroll–Hess 2<sup>nd</sup> order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using the DZP-DKH basis sets [Mol. Phys. 2010, 108, 1965. || J. Chem. Phys. 2009, 130, 064108. || Chem. Phys. Lett. 2013, 582, 158. || J. Mol. Struct. - Theochem 2010, 961, 107.] for all atoms. The topological analysis of the electron density distribution (QTAIM), electron localization function (ELF), reduced density gradient (RDG) and interaction region indicator (IRI) analyses [Chemistry–Methods 2021, 1, 231.] have been performed by using the Multiwfn program (version 3.7) [J. Comput. Chem. 2012, 33, 580.]. The VMD program [J. Molec. Graphics 1996, 14, 33.] was used for visualization. The Cartesian atomic coordinates for model supramolecular associates presented in **Table S6**.



**Figure S23**. Contour line diagram of the Laplacian of electron density distribution  $\nabla^2 \rho(\mathbf{r})$ , bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for intermolecular interactions I···Cl (halogen bonds) in 2. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps is presented in a.u.



**Figure S24**. Contour line diagram of the Laplacian of electron density distribution  $\nabla^2 \rho(\mathbf{r})$ , bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for intermolecular interactions I···Cl (halogen bonds) in **3**. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps is presented in a.u.



**Figure S25.** Contour line diagram of the Laplacian of electron density distribution  $\nabla^2 \rho(\mathbf{r})$ , bond paths, and selected zero-flux surfaces (top panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, bottom panel) analyses for intermolecular interactions (halogen bonds) I···Cl in 4. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps is presented in a.u.

|      |           | 1         |          |  |  |
|------|-----------|-----------|----------|--|--|
| Atom | X         | Y         | Z        |  |  |
| 2    |           |           |          |  |  |
| Bi   | 5.752951  | 10.712625 | 7.070675 |  |  |
| Cl   | 7.930878  | 10.712625 | 5.231822 |  |  |
| Cl   | 3.718440  | 10.712625 | 8.689316 |  |  |
| Cl   | 7.558773  | 10.712625 | 8.899267 |  |  |
| Cl   | 5.725747  | 8.026184  | 7.195186 |  |  |
| Cl   | 5.725747  | 13.399066 | 7.195186 |  |  |
| Cl   | 4.194128  | 10.712625 | 4.634328 |  |  |
| Ι    | 5.693686  | 4.929379  | 7.428619 |  |  |
| Ι    | 5.693686  | 2.212371  | 7.428619 |  |  |
|      |           | 3         |          |  |  |
| Sb   | 8.885517  | 10.682325 | 3.961009 |  |  |
| Cl   | 10.655451 | 10.682325 | 2.344544 |  |  |
| Cl   | 11.044548 | 10.682325 | 5.766699 |  |  |
| Cl   | 7.252226  | 10.682325 | 2.098870 |  |  |
| Cl   | 9.103044  | 8.070710  | 3.910622 |  |  |
| Cl   | 9.103044  | 13.293940 | 3.910622 |  |  |
| Ι    | 9.862550  | 4.918570  | 4.284997 |  |  |
| Ι    | 9.862550  | 2.202980  | 4.284997 |  |  |
| 4    |           |           |          |  |  |
| Bi   | 3.240988  | 6.537973  | 2.406044 |  |  |
| Cl   | 2.999751  | 8.688656  | 3.950026 |  |  |
| Cl   | 3.609017  | 4.241652  | 0.850706 |  |  |
| Cl   | 0.580423  | 6.429025  | 2.371404 |  |  |
| Cl   | 3.353911  | 7.924526  | 0.262899 |  |  |
| Cl   | 5.908388  | 6.712064  | 2.878576 |  |  |
| Cl   | 3.092115  | 5.118098  | 4.935531 |  |  |
| Ι    | 8.837118  | 6.340856  | 3.480761 |  |  |
| Ι    | 11.542799 | 6.191475  | 3.555350 |  |  |
| Ι    | -5.538482 | 6.340856  | 3.480761 |  |  |
| Ι    | -2.832801 | 6.191475  | 3.555350 |  |  |

 Table S15. Cartesian atomic coordinates for model supramolecular associates.