Electronic Supplementary Information

(C₇H₃NO₄)₂Sb₂F₂·2H₂O: a pyridine-based compound shows large optical anisotropy

Yaoguo Shen, *[†] Jiajia Xiong,[†] Yinman Yang,[†] and Zhifeng Tang[†]

[†]College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China

*Email: shenyg@mju.edu.cn

Contents

Reagents	S2
Synthesis of $(C_7H_3NO_4)_2Sb_2F_2 \cdot 2H_2O(CSF)$	S2
Single-Crystal Structure Determination	S2
Thermal Stability Analysis	S2
UV-Vis-NIR Diffuse Reflectance Spectroscopy	S2
Infrared Spectroscopy	S3
Computational Methods	S3
Figure S1. Thermal stability analysis for CSF.	S4
Figure S2. Infrared spectrum of CSF	S4
Figure S3. Electronic band structure of CSF.	S4
Table S1. Crystal Data and Structural Refinement for (C7H3NO4)2Sb2F2·2H2O	S5
Table S2. The Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters	S6
Table S3. Anisotropic Displacement Parameters for (C7H3NO4)2Sb2F2·2H2O.	S7
Table S4. Bond Lengths for (C ₇ H ₃ NO ₄) ₂ Sb ₂ F ₂ ·2H ₂ O	S8
Table S5. Bond Angles for (C ₇ H ₃ NO ₄) ₂ Sb ₂ F ₂ ·2H ₂ O.	S8
Table S6. Hydrogen Bonds for (C7H3NO4)2Sb2F2·2H2O.	S10
Table S7. Torsion Angles for $(C_7H_3NO_4)_2Sb_2F_2 \cdot 2H_2O$.	S10
Table S8. Hydrogen Atom Coordinates and Isotropic Displacement Parameters.	S11
Table S9. Comparison of statistics for most birefringent compounds in recent years	S11
References	S13

Reagents

 $C_7H_5NO_4$ (99%), SbF₃ (98%) and HF(AR, $\geq 40\%$) were purchased from Aladdin and used as received.

(Caution: Hydrofluoric acid is a great safety risk and must be protected and used with care)

Synthesis of (C7H3NO4)2Sb2F2·2H2O (CSF)

Polycrystalline samples of **CSF** were synthesized by a simple evaporation technique of aqueous solution. The raw reactants of C₇H₅NO₄ (0.167 g, 1 mmol), SbF₃ (1.424 g, 8 mmol) and HF (5ml) were mixed together with deionized water (5 mL) in a plastic beaker. The solution was stirred with a magnetic mixer for 30 minutes, and then filtered through a filter paper to obtain a clear, transparent liquid. The beaker was sealed with perforated plastic wrap and left to stand at room temperature for about days. Colorless rod crystals were obtained at the bottom of beaker. The purity of the obtained product is confirmed by the powder X–ray diffraction (XRD) patterns, which were taken on a Rigaku MiniFlex II diffractometer (Cu *Ka* radiation) in the range of $2\theta = 7^{\circ}-70^{\circ}$ with a step width of 0.01° and a sampling rate of 5° min⁻¹. The results agree well with the calculated XRD patterns from single–crystal XRD analyses (Figure 2c).

Single-Crystal Structure Determination

A colorless **CSF** crystal ($0.09 \times 0.08 \times 0.07 \text{ mm}^3$) was selected using an optical microscope for single–crystal XRD analysis. The diffraction data were collected by using graphite–monochromatized Mo *Ka* radiation ($\lambda = 0.71073$ Å) at 200 (10) K on an Agilent SuperNova Dual diffractometer with an Atlas detector. The collection of the intensity data, cell refinement, and data reduction were carried out with the program CrysAlisPro.¹ Using Olex2,² the structure was solved with the olex2.solve³ structure solution program using Charge Flipping and refined with the SHELXL⁴ refinement package using Least Squares minimisation. Details of crystal parameters, data collection, and structure refinement are summarized in Table S1. The atomic coordinates and equivalent isotropic displacement parameters are listed in Table S3. The selected bond distances and angles are presented in Table S4–S5. Hydrogen Bonds are listed in Table S6. The torsion angles are listed in Table S7. The hydrogen atom coordinates and the isotropic displacement parameters are listed in Table S8. The Comparison of statistics for most birefringent compounds in recent years are listed in Table S9.

Thermal Stability Analysis

The thermogravimetric (TG) of CSF was carried out on a NETZSCH STA 449C simultaneous analyzer. About 16.7 mg of CSF was placed in Al₂O₃ crucibles, heated at a rate of 293 K min⁻¹ from room temperature to 773 K under flowing nitrogen.

UV-Vis-NIR Diffuse Reflectance Spectroscopy

The UV/Vis/NIR diffuse reflection data were collected on a PerkinElmer Lamda–1050 UV/vis/NIR spectrophotometer. A whiteboard provided by the merchant was used as a reference (100% reflectance) in the range from 220 nm to 800 nm. The measured results can be converted to absorption rate of light according to Kubelka–Munk function: $F(R) = (1-R)^2/2R$, where R is the reflectance.

Infrared Spectroscopy

Infrared spectrum was measured on a Nicolet iS50FT–IR spectrometer with KBr pellets as a standard in the range of 4000~400 cm⁻¹. The mixture of **CSF** and dried KBr (mass ratio = 1:100) was ground thoroughly in an agate mortar, and then pressed into a thin slice for measurement.

Computational Methods

The first-principles calculations for **CSF** were performed by CASTEP⁵ on a plane-wave pseudopotential total energy package based density functional theory (DFT).⁶ The functional developed by Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)⁷⁻⁸ form was adopted to describe the exchange-correlation energy. The ultrasoft pseudopotentials were used to model the effective interaction between atom cores and valence electrons. H 1s¹, C 2s²2p², N 2s²2p³, O 2s²2p⁴, F 2s²2p⁵ and Sb 5s²5p³ electrons were treated as valence electrons. The kinetic energy cutoff of 489.80 eV and dense 2 × 1 × 2 Monkhorst-Pack⁹ k-point meshes in the Brillouin zones were chosen. The linear optical properties were examined based on the dielectric function $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$. The imaginary part of dielectric function ε_2 can be calculated based on the electronic structures and the real part is obtained by the Kramers-Kronig transformation, accordingly the refractive indices and the birefringence (Δn) can be calculated. The frequency-dependent refractive indices were calculated to demonstrate the validity of birefringence measurements.

Fig. S1. Thermal stability analysis for CSF.

Fig. S2. Infrared spectrum of CSF.

Fig. S3. Electronic band structure of CSF.

Empirical formula	$(C_7H_3NO_4)_2Sb_2F_2\cdot 2H_2O$
Formula weight	647.74
Temperature/K	293(2)
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /c
a/Å	8.6106(5)
b/Å	22.0552(11)
c/Å	10.2958(5)
α/°	90
β/°	108.674(6)
$\gamma/^{\circ}$	90
Volume/Å ³	1852.33(18)
Z	4
$\rho_{calc} g/cm^3$	2.323
μ/mm^{-1}	2.996
F(000)	1232.0
Crystal size/mm ³	$0.09\times0.08\times0.07$
Radiation	Mo Ka ($\lambda = 0.71073$ Å)
2Θ range for data collection/°	3.694 to 53.758
Index ranges	$-10 \le h \le 8, -27 \le k \le 23, -9 \le l \le 13$
Reflections collected	9033
Independent reflections	3774 [$R_{int} = 0.0203, R_{sigma} = 0.0311$]
Data/restraints/parameters	3774/6/284
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	R1 = 0.0237, wR2 = 0.0511
Final R indexes [all data]	R1 = 0.0279, wR2 = 0.0533

Table S1. Crystal Data and Structural Refinement for (C₇H₃NO₄)₂Sb₂F₂·2H₂O.

Atom	x	У	Ζ	U(eq)
Sb1	6763.4(2)	5800.4(2)	4861.0(2)	23.03(7)
Sb2	8167.6(2)	3896.4(2)	4945.6(2)	23.02(7)
F1	6314.5(19)	3715.3(8)	5558.4(17)	37.2(4)
F2	8560.7(19)	5645.7(8)	4172.3(17)	34.2(4)
01	5880(3)	7522.7(10)	3059(3)	66.5(9)
O2	6997(3)	6739.6(9)	4405(2)	36.7(6)
O3	5881(2)	4877.8(9)	3736.3(19)	32.2(5)
O4	4311(3)	4436.6(10)	1811(2)	52.2(7)
05	9206(3)	6199.2(10)	6729(2)	46.3(7)
06	9979(3)	5207.0(9)	8275(2)	45.7(6)
O7	8324(2)	4772.1(9)	6364.2(19)	31.9(5)
08	6240(3)	3483.9(10)	2862(2)	47.7(7)
09	8637(2)	2950.1(9)	5092.0(18)	33.4(5)
O10	9756(3)	2156.0(9)	6407(2)	45.4(6)
N1	5312(3)	5955.2(10)	2669(2)	24.8(6)
N2	9610(3)	3704.3(10)	7118(2)	22.7(5)
C1	5062(4)	6532.0(13)	2240(3)	30.9(7)
C2	3994(4)	6674.7(15)	971(3)	40.3(9)
C3	3172(4)	6209.7(17)	129(3)	45.5(10)
C4	3445(4)	5618.4(15)	565(3)	37.3(8)
C5	4524(4)	5504.1(14)	1859(3)	27.5(7)
C6	4926(4)	4880.3(14)	2495(3)	32.7(8)
C7	6025(4)	6980.3(14)	3299(3)	36.9(8)
C8	9416(4)	4769.7(14)	7539(3)	29.7(7)
С9	10081(4)	4141.7(13)	8059(3)	25.5(7)
C10	11117(4)	4025.6(14)	9359(3)	33.5(8)
C11	11681(4)	3437.5(15)	9688(3)	37.2(8)
C12	11176(4)	2987.4(14)	8715(3)	34.6(8)
C13	10138(4)	3136.3(13)	7425(3)	26.8(7)
C14	9495(4)	2700.2(14)	6254(3)	29.9(7)

Table S2. The Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Ų×103)for (C7H3NO4)2Sb2F2·2H2O. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	21.54(12)	20.46(13)	24.63(12)	0.63(8)	3.97(9)	-0.94(8)
Sb2	22.35(12)	21.47(13)	22.59(12)	-0.05(8)	3.49(9)	0.98(8)
F1	25.4(10)	43.7(12)	45.0(11)	5.8(9)	14.9(9)	0.1(9)
F2	24.3(10)	42.1(11)	38.2(10)	-0.6(8)	13.0(8)	-0.8(8)
01	76(2)	22.7(14)	68.5(17)	4.2(12)	-22.9(15)	-2.7(13)
02	36.5(13)	22.5(12)	38.5(13)	1.8(10)	-5.8(10)	-4.4(10)
03	34.1(12)	25.5(12)	27.2(11)	2.9(9)	-3.8(9)	-5.0(10)
O4	60.8(18)	23.4(13)	45.2(14)	-5.7(11)	-21.2(12)	0.1(12)
05	62.5(17)	25.2(14)	34.2(14)	-3.0(10)	-8.5(12)	0.9(13)
O6	66.4(16)	21.3(12)	32.0(13)	-6.3(10)	-8.4(11)	1.8(12)
O7	33.1(12)	27.2(12)	26.0(11)	-0.7(9)	-3.8(9)	6.5(10)
08	53.0(17)	28.9(15)	41.7(14)	-0.5(11)	-12.1(12)	-2.7(12)
09	40.9(13)	22.1(12)	28.7(12)	-3.3(9)	-0.7(10)	2.8(10)
O10	61.8(16)	20.2(12)	44.0(14)	-0.7(10)	2.7(12)	5.7(12)
N1	26.2(14)	19.6(13)	25.1(13)	0.0(10)	3.4(11)	-1.7(11)
N2	24.8(13)	19.3(13)	21.2(12)	0.4(10)	3.2(10)	-2.4(11)
C1	31.7(19)	21.0(17)	34.2(17)	2.8(13)	2.6(14)	-1.3(14)
C2	47(2)	25.4(19)	38.1(19)	7.8(15)	-0.3(17)	1.0(16)
C3	50(2)	44(2)	29.6(19)	6.3(15)	-5.6(17)	3.0(18)
C4	43(2)	31(2)	27.3(17)	-2.1(14)	-3.0(15)	-2.6(16)
C5	27.3(17)	26.2(17)	26.2(16)	-0.2(13)	4.8(13)	-0.3(14)
C6	34.1(19)	27.6(18)	29.2(17)	1.0(14)	-0.2(14)	-2.5(15)
C7	37(2)	22.6(18)	40.5(19)	2.5(15)	-3.0(16)	-3.1(15)
C8	36.6(19)	25.7(18)	22.1(15)	1.3(13)	3.1(13)	6.9(15)
C9	27.5(17)	23.4(17)	23.3(15)	-0.9(12)	4.9(13)	-0.8(13)
C10	38(2)	28.8(18)	25.7(17)	-1.5(14)	-0.6(15)	-0.3(16)
C11	42(2)	33(2)	29.3(17)	6.8(14)	1.2(15)	4.4(16)
C12	39(2)	26.3(18)	32.6(18)	7.6(14)	2.9(15)	1.6(15)
C13	29.0(18)	22.4(17)	28.0(16)	1.5(13)	7.8(14)	0.2(14)
C14	31.8(18)	23.6(18)	31.1(17)	-0.9(13)	5.8(14)	0.7(14)

Table S3. Anisotropic Displacement Parameters (Å2×10³) for $(C_7H_3NO_4)_2Sb_2F_2\cdot 2H_2O$. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom Atom Length/Å		Atom Atom Length/Å			
Sb1	F2	1.9279(16)	Sb2	F1	1.9361(16)
Sb1	02	2.147(2)	Sb2	07	2.3991(19)
Sb1	03	2.3442(19)	Sb2	08	2.430(2)
Sb1	05	2.511(2)	Sb2	09	2.122(2)
Sb1	N1	2.228(2)	Sb2	N2	2.224(2)
01	C7	1.220(3)	06	C8	1.226(3)
02	C7	1.292(3)	07	C8	1.273(3)
03	C6	1.279(3)	09	C14	1.310(3)
04	C6	1.223(3)	O10	C14	1.222(3)
N1	C1	1.341(3)	N2	С9	1.335(3)
N1	C5	1.336(3)	N2	C13	1.336(3)
C1	C2	1.372(4)	C8	С9	1.528(4)
C1	C7	1.508(4)	C9	C10	1.374(4)
C2	C3	1.383(4)	C10	C11	1.388(4)
C3	C4	1.375(5)	C11	C12	1.378(4)
C4	C5	1.382(4)	C12	C13	1.382(4)
C5	C6	1.515(4)	C13	C14	1.502(4)

Table S4. Bond Lengths for (C₇H₃NO₄)₂Sb₂F₂·2H₂O.

Table S5. Bond Angles for (C₇H₃NO₄)₂Sb₂F₂·2H₂O.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
F2	Sb1	02	87.02(8)	F1	Sb2	07	81.90(7)
F2	Sb1	03	80.57(7)	F1	Sb2	08	79.00(8)
F2	Sb1	05	76.66(8)	F1	Sb2	09	86.10(8)
F2	Sb1	N1	84.87(8)	F1	Sb2	N2	83.47(8)
02	Sb1	03	140.13(7)	07	Sb2	08	136.74(7)
02	Sb1	05	73.46(7)	09	Sb2	07	140.92(6)
02	Sb1	N1	72.08(8)	09	Sb2	08	75.83(7)
O3	Sb1	05	137.89(7)	09	Sb2	N2	73.08(8)
N1	Sb1	03	69.19(7)	N2	Sb2	07	68.69(7)
N1	Sb1	05	141.49(8)	N2	Sb2	08	145.11(8)
C7	02	Sb1	120.63(19)	C8	O7	Sb2	117.11(18)
C6	03	Sb1	119.52(19)	C14	09	Sb2	121.17(18)
C1	N1	Sb1	117.24(19)	C9	N2	Sb2	122.28(19)
C5	N1	Sb1	121.78(19)	C9	N2	C13	120.3(2)
C5	N1	C1	120.3(3)	C13	N2	Sb2	117.03(19)
N1	C1	C2	121.3(3)	O6	C8	07	127.6(3)
N1	C1	C7	113.0(3)	06	C8	C9	117.8(3)

Ator	n Ator	n Ator	n Angle/°	Atom	Atom	n Atom	Angle/°
C2	C1	C7	125.7(3)	07	C8	С9	114.6(3)
C1	C2	C3	118.7(3)	N2	С9	C8	114.1(3)
C4	C3	C2	119.9(3)	N2	С9	C10	121.6(3)
C3	C4	C5	118.7(3)	C10	С9	C8	124.3(3)
N1	C5	C4	121.1(3)	С9	C10	C11	118.6(3)
N1	C5	C6	114.0(3)	C12	C11	C10	119.4(3)
C4	C5	C6	124.9(3)	C11	C12	C13	118.9(3)
03	C6	C5	114.9(3)	N2	C13	C12	121.1(3)
O4	C6	03	126.4(3)	N2	C13	C14	113.6(2)
04	C6	C5	118.7(3)	C12	C13	C14	125.3(3)
O1	C7	02	125.3(3)	09	C14	C13	114.8(3)
O1	C7	C1	120.0(3)	O10	C14	09	123.9(3)
02	C7	C1	114.8(3)	O10	C14	C13	121.4(3)

Table S6. Hydrogen Bonds for (C₇H₃NO₄)₂Sb₂F₂·2H₂O.

DH	A	d(D-H)/Å	d(H–A)/Å	d(D-A)/Å	D-H-A/°
O5 H5A	06	0.850(17)	1.833(18)	2.663(3)	165(3)
O5 H5B	O10	0.837(17)	1.973(19)	2.800(3)	169(4)
O8 H8A	04	0.863(17)	1.829(18)	2.682(3)	170(4)
O8 H8B	O1 ²	0.867(17)	1.94(2)	2.760(3)	158(3)

(1) 2-X,1/2+Y,3/2-Z; ²1-X,-1/2+Y,1/2-Z

Table S7. Torsion Angles for (C₇H₃NO₄)₂Sb₂F₂·2H₂O.

Α	B	С	D	Angle/	b	А	В	С	D	Angle/°
Sb1	02	C7	01	167	7.3(3)	Sb2	07	C8	06	160.6(3)
Sb1	02	C7	C1	-14	.6(4)	Sb2	07	C8	C9	-19.1(3)
Sb1	03	C6	O4	-176	5.2(3)	Sb2	09	C14	O10	177.5(2)
Sb1	03	C6	C5	2	.5(4)	Sb2	09	C14	C13	-1.8(4)
Sb1	N1	C1	C2	-170	.6(2)	Sb2	N2	C9	C8	5.1(4)
Sb1	N1	C1	C7	8	3.0(4)	Sb2	N2	C9	C10	-172.9(2)
Sb1	N1	C5	C4	170	.7(2)	Sb2	N2	C13	C12	173.6(2)
Sb1	N1	C5	C6	-9	.1(4)	Sb2	N2	C13	C14	-6.5(3)
N1	C1	C2	C3	-0	.1(5)	06	C8	C9	N2	-169.7(3)
N1	C1	C7	01	-178	.1(3)	06	C8	C9	C10	8.2(5)
N1	C1	C7	02	3	.7(4)	07	C8	C9	N2	10.1(4)
N1	C5	C6	03	3	.9(4)	07	C8	C9	C10	-172.0(3)
N1	C5	C6	04	-177	7.3(3)	N2	C9	C10	C11	0.1(5)
C1	N1	C5	C4	C	.3(5)	N2	C13	C14	09	5.5(4)
C1	N1	C5	C6	-179	9.5(3)	N2	C13	C14	O10	-173.8(3)
C1	C2	C3	C4	-0	.6(5)	C8	C9	C10	C11	-177.7(3)
C2	C1	C7	01	C	.4(6)	C9	N2	C13	C12	0.1(5)
C2	C1	C7	02	-177	.8(3)	C9	N2	C13	C14	180.0(3)
C2	C3	C4	C5	1	.1(5)	С9	C10	C11	C12	-0.7(5)
C3	C4	C5	N1	-1	.0(5)	C10	C11	C12	C13	1.0(5)
C3	C4	C5	C6	178	3.7(3)	C11	C12	C13	N2	-0.7(5)
C4	C5	C6	03	-175	.9(3)	C11	C12	C13	C14	179.4(3)
C4	C5	C6	04	2	.9(5)	C12	C13	C14	09	-174.7(3)
C5	N1	C1	C2	C	.3(5)	C12	C13	C14	O10	6.1(5)
C5	N1	C1	C7	178	.8(3)	C13	N2	C9	C8	178.2(3)
<u>C7</u>	C1	C2	C3	-178	5.(3)	C13	N2	C9	C10	0.2(5)

Atom	X	у	z	U(eq)
H5A	9510(50)	5928(12)	7340(30)	70
H5B	9420(50)	6514(10)	7210(30)	70
H2	3826.15	7076.04	682.94	48
H3	2436.12	6296.8	-732.52	55
H4	2913.54	5301.7	0.2	45
H8A	5560(40)	3761(12)	2440(30)	72
H8B	5670(40)	3156(11)	2800(40)	72
H10	11434.09	4334.55	10004.78	40
H11	12393.04	3348.1	10557.53	45
H12	11527.63	2589.79	8922.68	42

Table S8. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for $(C_7H_3NO_4)_2Sb_2F_2\cdot 2H_2O$.

Table S9. Comparison of statistics for most birefringent compounds in recent years.

Number	substance	Birefringence	Reference
1	$(C_7H_3NO_4)_2Sb_2F_2\cdot 2H_2O$	0.40@550 nm	This work
2	$(C_6H_5N_2)HgCl_3$	0.36@546 nm	10
3	[(H-cmpy) ₄ (Pb ₃ Br ₁₀)]	0.315@550 nm	11
4	[4-AP][3-pySO ₃]	0.296@546 nm	12
5	$(C_6H_6NO_2)(H_2PO_4)$	0.284@546 nm	13
6	$(C_5H_4N)NH(C_5H_4NH)Br\cdot 2H_2O$	0.28@550 nm	14
7	$Ag_{2}C_{14}H_{20}N_{6}O_{6}$	0.261@546.1 nm	15
8	(C5H4N) NH(C5H4NH)Cl·2H2O	0.25@550 nm	14
9	$(C_5H_6ON)^+(H_2PO_4)^-$	0.25@1064 nm	16
10	$[C_5H_6O_2N_3][HSO_4]$ ·H2O	0.25@1064 nm	17
11	$(C_4H_6N_3)^+(H_2PO_3)^-$	0.225@589.3 nm	18
12	$(C_{3}H_{7}N_{6})_{6}(H_{2}PO_{4})_{4}(HPO_{4})\cdot 4H_{2}O$	0.22@1064 nm	19
13	(C ₅ H ₆ NO)(CH ₃ SO ₃)	0.216@546 nm	20
14	$AgC_6H_8N_3O_3$	0.212@546.1 nm	15
15	Te(CS(NH ₂) ₂) ₄ SO ₄ ·2H ₂ O	0.210@546.1 nm	21
16	[(H ₂ -dpys)(PbBr ₄)]	0.192@550 nm	20
17	$(C_3H_7N_6)_2SO_4{\cdot}2H_2O$	0.173@1064 nm	19
18	$(C_5H_6N)_2B_2O(HPO_4)_2$	0.156@547 nm	22
19	$[C(NH_2)_3]SbFPO_4 \cdot H_2O$	0.151@546 nm	23
20	$[Te(C_6H_5)_2][PO_3(OH)]_n$	0.133@550 nm	24
21	C(NH ₂) ₃ SO ₃ F	0.133@1064 nm	25
22	NaIn(C ₂ O ₄)(HPO ₄)(H ₂ O) ₅	0.098@546 nm	10
23	$[C(NH_2)_3]_6(PO_4) \cdot 3H_2O$	0.078@546 nm	26
24	$[(C(NH_2)_3]_3PO_4 \cdot 2H_2O$	0.055@546 nm	27

25	$(C_5H_4NH)_2SBr_2$	0.048@550 nm	11	
26	$[C(NH_2)_3]_2PO_3F$	0.039@532 nm	10	
27	$[C(NH_2)_3]_2Sb_3F_3(HPO_3)_4$	0.027@546 nm	23	
28	$[C(NH_2)_3]_2HPO_4 \cdot H_2O$	0.014@532 nm	10	

References

(1) CrysAlisPro, Ver. 1.171.36.28; Agilent Technologies: Santa Clara, CA, 2013.

(2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

(3) Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. *Acta Cryst. A* **2015**, *71*, 59–75.

(4) Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. C 2015, 71, 3-8.

(5) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567–570.

(6) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for *ab initio* total–energy calculations: molecular dynamics and conjugate gradients. *Rev. Mod. Phys.* **1992**, *64*, 1045–1097.

(7) Ceperley, D. M.; Alder, B. J. Ground-state of the electron-gas by a stochastic method. *Phys. Rev. Lett.* **1980**, *45*, 566-569.

(8) Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. *Phys. Rev. B* **1981**, *23*, 5048–5079.

(9) Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

(10) Tang, R. L.; Yang, D. X.; Ma, L.; Lv, Y. L.; Liu, W. L.; Guo, S. P. $(C_6H_5N_2)$ HgCl₃: Discovery of a polar Hg–based hybrid halide as preeminent nonlinear optical and birefringent material activated by π –conjugated organic cation substitution. *Adv. Opt. Mater.* **2024**, No. adom.202403044.

(11) Zhang, L. L.; Huang, H.; Ding, Q. R.; Xiao, H. P.; Liu, Q. Y.; Wang, Y. L. Modulating the birefringence of two-dimensional hybrid lead bromide perovskites using pyridine derivative cations. *Inorg. Chem. Front.* **2024**, *11*, 7853–7859.

(12) Lu, J. C.; Ok, K. M. Synergistic engineering of ultraviolet metal-free crystals with exceptional birefringence via pyridine-derived dimers. *Chem. Sci.* **2025**, No. d5sc00112a.

(13) Zhou, X. Y.; Mao, X.; Zhang, P.; Dong, X. H.; Huang, L.; Cao, L. L.; Gao, D. J.; Zou, G. H. Designing excellent UV birefringent materials through the synergistic interaction of two highly distorted functional groups. *Inorg. Chem. Front.* 2024, *11*, 3221–3228.

(14) He, W. J.; Liu, X.; Chen, L.; Wu, L. M. Intramolecular hydrogen bonds enhance structure coplanarity, resulting in significant birefringence in bridged–bipyridine halides. *Cryst. Growth Des.* **2024**, *24*, 5285–5293.

(15) Choi, M. H.; Li, Y.; Ok, K. M. Designing optical anisotropy: silver–aminoalkylpyridine nitrate complexes with tunable structures. *Inorg. Chem.* **2024**, *63*, 2793–2802.

(16) Lu, J.; Liu, X.; Zhao, M.; Deng, X. B.; Shi, K. X.; Wu, Q. R.; Chen, L.; Wu, L. M. Discovery of NLO semiorganic (C₅H₆ON)⁺(H₂PO₄)⁻: dipole moment modulation and superior synergy in solar–blind UV regions. *J. Am. Chem. Soc.* **2021**, *143*, 3647–3654.

(17) Zhang, L. M.; Zhang, X. Y.; Liang, F.; Hu, Z. G.; Wu, Y. C. Rational design of noncentrosymmetric organic–inorganic hybrids with a π -conjugated pyridium–type cation for high nonlinear–optical performance. *Inorg. Chem.* **2023**, *62*, 14518–14522.

(18) Zhang, Z. P.; Liu, X.; Liu, X. M.; Lu, Z. W.; Sui, X.; Zhen, B. Y.; Lin, Z. S.; Chen, L.; Wu, L. M. Driving nonlinear optical activity with dipolar 2–aminopyrimidinium cations in (C₄H₆N₃)⁺⁽H₂PO₃)⁻. *Chem. Mater.* **2022**, *34*, 1976–1984.
(19) Li, S. F.; Hu, L.; Ma, Y.; Mao, F. F.; Zheng, J.; Zhang, X. D.; Yan, D. Noncentrosymmetric

 $(C_3H_7N_6)_6(H_2PO_4)_4(HPO_4)_4H_2O$ and centrosymmetric $(C_3H_7N_6)_2SO_4:2H_2O$: exploration of acentric structure by combining planar and tetrahedral motifs via hydrogen bonds. *Inorg. Chem.* **2022**, *61*, 10182–10189.

(20) Zhang, Z. P.; Liu, X.; Wang, R. X.; Zhao, S.; He, W. J.; Chen, H. Y.; Deng, X. B.; Wu, L. M.; Zhou, Z. Y.; Chen, L. Remarkable second harmonic generation response in (C₅H₆NO)⁺(CH₃SO₃)⁻: anraveling the role of hydrogen bond in thermal driven nonlinear optical switch. *Angew. Chem., Int. Ed.* **2024**, *63*, No. anie.202408551.

(21) Weng, X. Y.; Lin, C. S.; Peng, G.; Fan, H. X.; Zhao, X.; Chen, K. C.; Luo, M.; Ye, N. Te(CS(NH₂)₂)₄SO₄: A Three-in-one semiorganic nonlinear optical crystal with an unusual quadrilateral (TeS₄)⁶⁻ chromophore. *Cryst. Growth Des.* **2021**, *21*, 2596–2601.

(22) Zhang, H. L.; Jiao, D. X.; Li, X. F.; He, C.; Dong, X. M.; Huang, K.; Li, J. H.; An, X. T.; Wei, Q.; Wang, G. M. A noncentrosymmetric metal-free borophosphate: achieving a large birefringence and excellent stability by covalent-linkage. *Small* **2024**, *20*, No. smll.202401464.

(23) Dong, X. H.; Long, Y.; Huang, L.; Cao, L. L.; Gao, D. J.; Bi, J.; Zou, G. H. Large optical anisotropy differentiation induced by the anion-directed regulation of structures. *Inorg. Chem. Front.* **2022**, *9*, 6441–6447.

(24) Xue, M. M.; Zhang, L.; Wang, X.; Dong, Q.; Zhu, Z. K.; Wang, X.; Gu, Q. F.; Kang, F. Y.; Li, X. X.; Zhang, Q. C. A metal-free helical covalent inorganic polymer: preparation, crystal structure and optical properties. *Angew. Chem., Int. Ed.* **2024**, *63*, No. anie.202315338.

(25) Luo, M.; Lin, C. S.; Lin, D. H.; Ye, N. Rational design of the metal-free KBe₂BO₃F₂.(KBBF) family member C(NH₂)₃SO₃F with ultraviolet optical nonlinearity. *Angew. Chem., Int. Ed.* **2020**, *59*, 15978–15981.

(26) Wu, C.; Jiang, X. X.; Wang, Z. J.; Sha, H. Y.; Lin, Z. S.; Huang, Z. P.; Long, X. F.; Humphrey, M. G.; Zhang, C. UV solar–blind–region phase–matchable optical nonlinearity and anisotropy in a π –conjugated cation–containing phosphate. *Angew. Chem., Int. Ed* **2021**, *60*, 14806–14810.

(27) Wen, X.; Lin, C. S.; Luo, M.; Fan, H. X.; Chen, K. C.; Ye, N. [(C(NH₂)₃]₃PO₄·2H₂O: A new metal-free ultraviolet nonlinear optical phosphate with large birefringence and second-harmonic generation response. *Sci. China Mater.* **2021**, *64*, 2008–2016.