Unprecedented Photochromism of Ferrocene-Aryl Dicyanovinylenes

Atul Babasaheb Nipate,^a and M. Rajeswara Rao* Department of Chemistry, IIT Dharwad, Dharwad-580011, Karnataka, India Email: rajesh@iitdh.ac.in

Table of Contents

Fig. S1 Redox Mechanism of M ₂ 2
Fig. S2 Spectroelectrochemical (a-c) & chemical (d-f) oxidation (Iron perchlorate 1 β 10 ⁻⁴ M)
spectra of M ₁ .M ₃ measured in dichloromethane2
Fig. S3 UV/vis spectral changes of a) M_1 upon irradiation with 254 nm in a) CCl ₄ b) Toluene
Fig. S4 FTIR spectra of compound M_1 a) before b) after irradiating with 254 nm light
Fig. S5 FTIR spectra of compound M_3 a) before b) after irradiating with 254 nm light4
Fig. S6 i) Chemical (a-c) and Electrochemical (d-f) reversibility of M ₁ -M ₃ measured in
dichloromethane
Fig. S7 HRMS of compound M_1
Fig. S8 ¹ H NMR spectrum of compound M_1 (400 MHz, CDCl ₃)
Fig. S9 { ^{1}H } ^{13}C NMR spectrum of compound M ₁ (101 MHz, CDCl ₃)9
Fig. S10 1 H- 1 H, COSY NMR spectrum of compound M ₁ (400 MHz, CDCl ₃)9
Fig. S11 HRMS of compound M_2
Fig. S12 ¹ H NMR spectrum of Compound M_2 (400 MHz, CDCl ₃)10
Fig. S13 { 1 H} 13 C NMR spectrum of Compound M ₂ (101 MHz, CDCl ₃)11
Fig. S14 1 H- 1 H, COSY NMR spectrum of compound M ₂ (400 MHz, CDCl ₃)11
Fig. S15 HRMS of compound M_3
Fig. S16 ¹ H NMR spectrum of compound M_3 (400 MHz, CDCl ₃)12
Fig. S17 $\{^{1}H\}^{13}C$ NMR spectrum of Compound M ₃ (101 MHz, CDCl ₃)13

Fig. S1 Redox Mechanism of M₂.

Fig. S2 Spectroelectrochemical (a-c) & chemical (d-f) oxidation (Iron perchlorate $1\beta 10^{-4}$ M) spectra of $M_{1-}M_3$ measured in dichloromethane

Fig. S3 UV/vis spectral changes of a) M_1 upon irradiation with 254 nm in a) CCl₄ b) Toluene

Fig. S4 FTIR spectra of compound M_1 a) before b) after irradiating with 254 nm light.

Fig. S5 FTIR spectra of compound M_3 a) before b) after irradiating with 254 nm light

Fig. S6 i) Chemical (a-c) and Electrochemical (d-f) reversibility of M_1 - M_3 measured in dichloromethane

Experimental section

General Procedure of M_1 - M_3

In a 25 mL round bottom flask, compound **Fc-d** (0.36 mmol), aromatic aldehyde (0.36 mmol) and catalytic amounts of piperidine were added and mixed with 10 mL of ethanol. The flask was heated to reflux for 12 hours. At the end of the time, the reaction mixture was brought to room temperature and poured into water. The resultant solid was filtered and purified by silica gel column chromatography with dichloromethane/petroleum ether (1/1, v/v) as an eluent.

(E)-2-(1-ferrocenyl-3-(p-tolyl) allylidene)malononitrile (M₁):

Blue solid (82 %), HRMS (QTOF): m/z calcd for $C_{23}H_{18}FeN_2$ ([M+]): 378.0819; found m/z: 378.0795; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, ³J_{H-H} = 15.9 Hz, 1H), 7.47 (d, ³J_{H-H} = 7.9 Hz, 2H), 7.24 (d, ³J_{H-H} = 8.0 Hz, 2H), 7.20 (d, ³J_{H-H} = 15.9 Hz, 1H), 5.01 (t, ³J_{H-H}, 2.0 Hz, 2H), 4.75

(t, ${}^{3}J_{\text{H-H}}$, 2.0 Hz, 2H), 4.33 (s, 5H), 2.41 (s, 3H). { ${}^{1}\text{H}$ } ${}^{13}\text{C}$ NMR (101 MHz, CDCl₃) δ 172.51, 144.55, 141.62, 132.18, 130.04, 128.24, 123.52, 115.98, 115.21, 74.97, 73.09, 71.93, 71.45, 21.67.

(E)-2-(3-(4-(diphenylamino)phenyl)-1-ferrocenyl-allylidene)malononitrile (M_2): Orange solid (81%), HRMS (QTOF) : m/z calcd for C₃₄H₂₅FeN₃ ([M+H]): 532.1471; found m/z: 532.1446; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, ³*J*_{H-H} = 15.8 Hz, 1H), 7.42 (d, ³*J*_{H-H} = 8.8 Hz, 2H), 7.34 – 7.29 (m, 4H), 7.16 – 7.10 (m, 7H), 7.02 (d, ³*J*_{H-H} = 8.8 Hz, 2H), 4.98 (t, ³*J*_{H-H} = 2.0 Hz, 2H), 4.72 (t, ³*J*_{H-H}, 2.0 Hz, 2H), 4.31 (s, 5H). {¹H}¹³C NMR (101 MHz, CDCl₃) δ 172.09, 150.58, 146.59, 144.49, 129.63, 129.56, 127.57, 125.69, 124.51, 121.78, 121.36, 116.26, 115.50, 73.87, 72.64, 71.84, 71.28.

2,2'-((2E,2'E)-1,4-phenylenebis(1-ferrocene-2-en-3-yl-1-ylidene)dimalononitrile (**M**₃): Green solid (78%), ¹H NMR (400 MHz, CDCl₃), HRMS (QTOF): m/z calcd for $C_{38}H_{26}Fe_2N_4$ [(M+)]: 650.0856; found m/z: 650.0844; δ 7.62 (s, 4H), 7.55 (d, *J* = 16.0 Hz, 2H), 7.30 (d, *J* = 16.0 Hz, 2H), 5.05 – 5.00 (m, 4H), 4.82 – 4.77 (m, 4H), 4.35 (s, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 172.04, 142.70, 136.94, 128.82, 125.89, 115.72, 77.30, 73.44, 71.87, 71.52.

Spectral data

MassHunter Qual 10.0 (End of Report)

Fig. S7 HRMS of compound M₁

Fig. S9 { ^{1}H } ^{13}C NMR spectrum of compound M₁ (101 MHz, CDCl₃)

Fig. S10 1 H- 1 H, COSY NMR spectrum of compound M₁ (400 MHz, CDCl₃)

Fig. S11 HRMS of compound M_2

Fig. S12 ¹H NMR spectrum of Compound M₂ (400 MHz, CDCl₃)

Fig. S13 { ^{1}H } ^{13}C NMR spectrum of Compound M₂ (101 MHz, CDCl₃)

Fig. S14 ¹H-¹H, COSY NMR spectrum of compound M₂ (400 MHz, CDCl₃)

Compound Details Cpd. 1: C38 H26 Fe2 N4 Formula C38 H26 Fe2 N4 m/z Observed M/Z Difference Da Difference PPM Score 650.0844 <u>650.084351631536</u> -0.259268031868487 -0.401284704873722 81.84 Compound Spectra (Zoomed) x10⁴ Cpd 1: C38 H26 Fe2 N4; 0.367: + FBF Spectrum (rt: 0.317-0.450 min) MR-AN-855.d Subtract 650.0844 648.0894 M+ 673.0739 (M+Na)+ 689.0475 (M+K)+ 646 648 650 652 654 656 658 660 662 664 666 668 670 672 674 676 678 680 682 684 688 690 692 694 686 Counts vs. Mass-to-Charge (m/z)

Fig. S16 ¹H NMR spectrum of compound M₃ (400 MHz, CDCl₃)

Fig. S17 { ^{1}H } ^{13}C NMR spectrum of Compound M₃ (101 MHz, CDCl₃)