Electronic Supplementary Information

Engineering Metal Site Behavior: Electrophilic-Nucleophilic Dualism in Square-Planar Platinum(II) through Geometry-Controlled Switching

Anastasiya A. Eliseeva,¹* Daniil M. Ivanov,¹ Anton V. Rozhkov,¹ Vadim Yu. Kukushkin,^{1,2} Nadezhda A. Bokach¹*

¹Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation ²Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation

Table of Content

S1. X-ray diffraction studies	3
S1.1 Crystal data and structure refinement	3
S1.2 Comparison of bond lengths and angles	4
S1.3 Hydrogen bonding in the cocrystals	5
S2. Theoretical calculations	6
S2.1 Molecular electrostatic potential surfaces for FIBs	6
References	7

S1. X-ray diffraction studies

S1.1 Crystal data and structure refinement

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{cccccc} CDC No. & 2421923 & 2421929 & 2421928 & 2421920 & 2421920 \\ Empirical formula & C_{a}H_{10}O_{2}H_{20}O_{1}H_{20}F_{3}L_{0}O_{2}H_{3} & C_{18}H_{10}F_{3}L_{0}O_{2}H_{3} & C_{18}H_{10}F_{3}L_{0}O_{2}H_{3} & C_{18}H_{10}F_{3}L_{0}O_{2}H_{3} & C_{18}H_{10}F_{3}L_{0}O_{2}H_{3} & M_{2}M_{2} & M_{2}M_{2}M_{2} & M_{2}M_{2}M_{2}M_{2}M_{2}M_{2}M_{2}M_{2}$		1	1 ·2(1,3-FIB)	1 ·2(1,4-FIB)	1 · FIBiPh
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	CCDC No.	2421923	2421929	2421928	2421930
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Empirical formula	$C_6H_{10}O_2PtS_4$	$C_{18}H_{10}F_8I_4O_2PtS_4$	$C_{18}H_{10}F_8I_4O_2PtS_4$	$C_{18}H_{10}F_8I_2O_2PtS_4$
T/K 100(2)100(2)100(2)100(2)Radiation $CuK\alpha$ ($\lambda = 1.54184$) $CuK\alpha$ ($\lambda = 1.54184$) $CuK\alpha$ ($\lambda = 1.54184$) $Mo K\alpha$ ($\lambda = 0.71073$)Crystal color, shapeyellow, prismyellow, prismyellow, prismYellow, prismCrystal size/mm³ $0.16 \times 0.05 \times 0.04$ $0.14 \times 0.13 \times 0.1$ $0.142 \times 0.094 \times 0.051$ $0.12 \times 0.09 \times 0.04$ Crystal systemmonoclinictriclinicmonoclinicmonoclinicmonoclinicSpace group P_2 $P1$ P_2 P_2/α a/λ d/λ 7.525(2) $5.9888(2)$ $4.4993(3)$ $22.9538(2)$ b/A 7.6217(2) $8.4835(2)$ $11.1792(7)$ $14.6829(2)$ c/A $0.4277(3)$ $14.2189(2)$ $28.4149(18)$ $7.34950(10)$ a'' 90 $79.259(2)$ $90.952(7)$ $90.3850(10)$ a'' 90 $79.259(2)$ $90.952(7)$ $90.3850(10)$ p'' 90 $88.855(2)$ 90 90 p'' 90 $88.85(2)$ 90 90 T/A^3 $573.27(3)$ $697.88(3)$ $1429.03(16)$ $2476.93(5)$ Z 2.953 2.885 2.648 $\mu'mm^{-1}$ 29.457 47.615 46.507 8.572 $F(000)$ 408.0 560.0 1120.0 1816.0 20 arage/° 8.644 to 139.806 6.434 to 139.798 6.222 to 139.982 5.324 to 60.706 20 arage/° 8.644 to 139.806 6.434 to 139.798 6.221 to 139.983 <td< td=""><td>M_{W}/g</td><td>437.47</td><td>1241.19</td><td>1241.19</td><td>987.39</td></td<>	M_{W}/g	437.47	1241.19	1241.19	987.39
Radiation $CuKa (\lambda = 1.54184)$ $CuKa (\lambda = 1.54184)$ $CuKa (\lambda = 1.54184)$ $Mo Ka (\lambda = 0.71073)$ Crystal color, shapeyellow, prismyellow, prismyellow, prismyellow, prismyellow, prismCrystal size/mm³ $0.16 \times 0.05 \times 0.04$ $0.14 \times 0.13 \times 0.1$ $0.142 \times 0.09 \times 0.051$ $0.12 \times 0.09 \times 0.04$ Crystal size/mm³ $0.16 \times 0.05 \times 0.04$ triclinicmonoclinicmonoclinicSpace groupP21P-1P21P2, a/A 7.3525(2)5.9888(2)4.4993(3)22.9538(2) b/A 7.6217(2)8.4835(2)11.1792(7)14.6829(2) c/A 10.4277(3)14.2189(2)28.4149(18)7.34950(10) $a/^{0}$ 9079.530(2)9090 $a/^{0}$ 9088.855(2)9090 $p/^{0}$ 101.177(3)79.269(2)90.952(7)90.3850(10) $p/^{0}$ 9088.855(2)9090 p/a^{0} 9088.855(2)9090 p/a^{0} 91142.93311429.031(6)2476.93(5)Z2124 $p_{a}/grcm^{-3}$ 2.5342.9532.8852.648 μ/mm^{-1} 29.45747.61546.5078.572 $F(000)$ 408.0560.01120.01816.0 20 arange/a8.644 to 139.8066.434 to 139.7986.222 to 139.9825.324 to 60.706 20 arange/a8.644 to 139.8066.434 to 139.788, agam0.006910.02921Data/restraints/param	T/K	100(2)	100(2)	100(2)	100(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	Mo <i>K</i> α (λ = 0.71073)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal color, shape	yellow, prism	yellow, prism	yellow, prism	yellow, prism
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal size/mm ³	0.16 imes 0.05 imes 0.04	$0.14 \times 0.13 \times 0.1$	$0.142 \times 0.094 \times 0.051$	$0.12 \times 0.09 \times 0.04$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal system	monoclinic	triclinic	monoclinic	monoclinic
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Space group	P21	P-1	P21	P2 ₁ /c
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a/Å	7.3525(2)	5.9888(2)	4.4993(3)	22.9538(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b/Å	7.6217(2)	8.4835(2)	11.1792(7)	14.6829(2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	c/Å	10.4277(3)	14.2189(2)	28.4149(18)	7.34950(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a/°	90	79.530(2)	90	90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β°	101.177(3)	79.269(2)	90.952(7)	90.3850(10)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	y/°	90	88.855(2)	90	90
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V/Å ³	573.27(3)	697.88(3)	1429.03(16)	2476.93(5)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ζ	2	1	2	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rho_{\rm c}/{\rm g}\cdot{\rm cm}^{-3}$	2.534	2.953	2.885	2.648
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	μ/mm^{-1}	29.457	47.615	46.507	8.572
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F(000)	408.0	560.0	1120.0	1816.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2Θ range/°	8.644 to 139.806	6.434 to 139.798	6.222 to 139.982	5.324 to 60.706
$ \begin{array}{c c} \mbox{Independent reflections} & 2148 [R_{int} = 0.0329, R_{sigma} = & 2604 [R_{int} = 0.0403, R_{sigma} = & 2621 [R_{int} = 0.0593, R_{sigma} = & 7033 [R_{int} = 0.0537, R_{sigma} = & 0.0440] & 0.0694] & 0.0292] \\ \mbox{Data/restraints/parameters} & 2148/7/121 & 2604/0/171 & 2621/0/170 & 7033/0/318 & 0.0292] & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.0292 & 0.02$	Reflections collected	4943	5787	5489	58038
Independent reflections 0.0382] 0.0440] 0.0694] 0.0292]Data/restraints/parameters $2148/7/121$ $2604/0/171$ $2621/0/170$ $7033/0/318$ Goodness-of-fit on F^2 1.056 1.044 1.056 1.083 Final R indexes [I $\geq 2\sigma$ (I)] $R_1 = 0.0382$, $wR_2 = 0.0990$ $R_1 = 0.0359$, $wR_2 = 0.0961$ $R_1 = 0.0588$, $wR_2 = 0.1519$ $R_1 = 0.0228$, $wR_2 = 0.0443$ Final R indexes [all data] $R_1 = 0.0386$, $wR_2 = 0.0993$ $R_1 = 0.0368$, $wR_2 = 0.0974$ $R_1 = 0.0692$, $wR_2 = 0.1626$ $R_1 = 0.0284$, $wR_2 = 0.0460$ Largest diff. peak/hole / $e \cdot Å^{-3}$ $2.11/-2.02$ $2.29/-1.49$ $2.10/-1.58$ $0.94/-0.59$	Indexed and and a discus	$2148 [R_{int} = 0.0329, R_{sigma} =$	$2604 [R_{int} = 0.0403, R_{sigma} =$	$2621 [R_{int} = 0.0593, R_{sigma} =$	7033 $[R_{int} = 0.0537, R_{sigma} =$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Independent reflections	0.0382]	0.0440]	0.0694]	0.0292]
Goodness-of-fit on F^2 1.0561.0441.0561.083Final R indexes [I $\geq 2\sigma$ (I)]R ₁ = 0.0382, wR ₂ = 0.0990R ₁ = 0.0359, wR ₂ = 0.0961R ₁ = 0.0588, wR ₂ = 0.1519R ₁ = 0.0228, wR ₂ = 0.0443Final R indexes [all data]R ₁ = 0.0386, wR ₂ = 0.0993R ₁ = 0.0368, wR ₂ = 0.0974R ₁ = 0.0692, wR ₂ = 0.1626R ₁ = 0.0284, wR ₂ = 0.0460Largest diff. peak/hole / $e \cdot Å^{-3}$ 2.11/-2.022.29/-1.492.10/-1.580.94/-0.59	Data/restraints/parameters	2148/7/121	2604/0/171	2621/0/170	7033/0/318
Final R indexes [$I \ge 2\sigma(I)$] $R_1 = 0.0382$, $wR_2 = 0.0990$ $R_1 = 0.0359$, $wR_2 = 0.0961$ $R_1 = 0.0588$, $wR_2 = 0.1519$ $R_1 = 0.0228$, $wR_2 = 0.0443$ Final R indexes [all data] $R_1 = 0.0386$, $wR_2 = 0.0993$ $R_1 = 0.0368$, $wR_2 = 0.0974$ $R_1 = 0.0692$, $wR_2 = 0.1626$ $R_1 = 0.0284$, $wR_2 = 0.0460$ Largest diff. peak/hole / $e \cdot Å^{-3}$ $2.11/-2.02$ $2.29/-1.49$ $2.10/-1.58$ $0.94/-0.59$	Goodness-of-fit on F^2	1.056	1.044	1.056	1.083
Final R indexes [all data] $R_1 = 0.0386, wR_2 = 0.0993$ $R_1 = 0.0368, wR_2 = 0.0974$ $R_1 = 0.0692, wR_2 = 0.1626$ $R_1 = 0.0284, wR_2 = 0.0460$ Largest diff. peak/hole / $e \cdot Å^{-3}$ 2.11/-2.022.29/-1.492.10/-1.580.94/-0.59	Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0382, wR_2 = 0.0990$	$R_1 = 0.0359, wR_2 = 0.0961$	$R_1 = 0.0588, wR_2 = 0.1519$	$R_1 = 0.0228, wR_2 = 0.0443$
Largest diff. peak/hole / e·Å ⁻³ 2.11/-2.02 2.29/-1.49 2.10/-1.58 0.94/-0.59	Final <i>R</i> indexes [all data]	$R_1 = 0.0386, wR_2 = 0.0993$	$R_1 = 0.0368, wR_2 = 0.0974$	$R_1 = 0.0692, wR_2 = 0.1626$	$R_1 = 0.0284, wR_2 = 0.0460$
	Largest diff. peak/hole / $e \cdot \text{Å}^{-3}$	2.11/-2.02	2.29/-1.49	2.10/-1.58	0.94/-0.59

Table S1. Crystal data and structure refinement for 1, 1·2(1,3-FIB), 1·2(1,4-FIB), and 1·FIBiPh.

S1.2 Comparison of bond lengths and angles

YOS	NAV ¹	1		1 in 1·2(1,3-FIB)	1 in 1·2(1,4-FIB)	1 in 1 ·2(1,4-FIB)
Bonds/angles	value in Å/°	Bonds/angles	value in Å/°	Bonds/angles	Value in Å/°	Bonds/angles	Value in Å/°	Bonds/angles	Value in
									Å/°
Pt1–S1	2.313(7)	Pt1–S1	2.325(3)	Pt1–S1	2.3269(14)	Pt1–S1	2.318(3)	Pt1–S1	2.3211(8)
		Pt1–S4	2.324(3)					Pt1–S4	2.3191(8)
Pt1–S2	2.320(6)	Pt1–S2	2.331(3)	Pt1–S2	2.3217(14)	Pt1–S2	2.328(3)	Pt1–S2	2.3287(8)
		Pt1–S3	2.336(3)					Pt1–S3	2.3322(8)
S1C1	1.66(3)	S1C1	1.70(2)	S1C1	1.705(6)	S1C1	1.688(16)	S1–C1	1.698(3)
		S4–C4	1.70(2)					S4–C4	1.692(3)
S2C1	1.70(3)	S2C1	1.70(3)	S2C1	1.707(6)	S2C1	1.728(16)	S2C1	1.698(3)
		S3–C4	1.72(2)					S3–C4	1.705(3)
C101	1.32(3)	C1–O1	1.309(16)	C1–O1	1.297(7)	C101	1.314(19)	C1–O1	1.307(4)
		C4–O2	1.303(16)					C4–O2	1.305(4)
S1–Pt1–S2	75.1(3)	S1–Pt1–S2	75.09(12)	S1–Pt1–S1	75.29(5)	S1–Pt1–S2	75.46(12)	S1–Pt1–S2	75.14(3)
		S3–Pt1–S4	75.16(12)					S3-Pt1-S4	75.04(3)
S1–Pt1–S1	180	S1–Pt1–S4	179.15(14)	S1–Pt1–S1	180	S1–Pt1–S1	180	S1–Pt1–S4	178.39(3)
S2–Pt1–S2	180	S2–Pt1–S3	179.78(14)	S2-Pt1-S2	180	S2-Pt1-S2	180	S2–Pt1–S3	179.85(3)

 Table S2. Selected geometric parameters of 1, 1·2(1,3-FIB), 1·2(1,4-FIB), and 1·FIBiPh.

S1.3 Hydrogen bonding in the cocrystals

Table S3. Parameters of the C-H···X (X = I, F, S, Pt) HBs in the XRD structures of cocrystals1.2(1,3-FIB), 1.2(1,4-FIB), and 1.FIBiPh.

Structure	Contact	<i>d</i> (H···X), Å	$d(\mathbf{C}\cdots\mathbf{X}),\mathbf{\mathring{A}}$	∠(C–H···X),°
1 ·2(1,3-FIB)	C2–H2B…I1S	3.0648(4)	3.944(7)	137.7(4)
	C3–H3C…F4S	2.433(4)	3.447(9)	153.5(4)
	C3–H3A····F2S	2.581(4)	3.469(8)	137.5(4)
	C3–H3B…S1	2.8838(13)	3.787(7)	139.9(4)
1 ·2(1,4-FIB)	C2–H2B…I1S	3.1770(8)	4.106(16)	143.3(9)
	C3–H3A····F2S	2.417(8)	3.46(2)	159.7(9)
	C2–H2B…F4S	2.564(6)	3.390(15)	131.6(9)
	C2−H2A…C1	2.802(17)	3.74(3)	143.6(9)
1 · FIBiPh	C5–H5B…Pt1	2.8511(4)	3.677(3)	132.13(16)
	C6–H6C····I2S	3.1358(4)	4.055(3)	141.90(16)
	C6–H6A…S4	2.8898(7)	3.980(3)	173.95(16)
	C6–H6B…S2	2.9940(7)	3.950(3)	146.08(15)

S2. Theoretical calculations

S2.1 Molecular electrostatic potential surfaces for FIBs

To obtain a preliminary assessment of potential electrostatic interactions between complex 1 and the XB donors, we calculated the surface ($\rho = 0.001 \text{ e/bohr}^3$)² electrostatic potentials³⁻⁵ (ESP) for isolated FIB molecules, as shown in **Figure S1**. The FIBs demonstrate pronounced positive σ -holes along the C–I bond axes. The ESP maxima, localized at the I-atoms, are nearly identical (28.0–28.1, 28.6–28.8, and 29.4–29.5 kcal/mol for 1,3-FIB, 1,4-FIB, and FIBiPh, respectively), thus confirming that the XB donor's geometry plays a determinative role in the metal-involving interactions.

Figure S1. ESP on surface ($\rho = 0.001$ a.u.) for 1,3-FIB (left), 1,4-FIB (center), and FIBiPh (right) in kcal/mol.

References

- 1. R. D. Rogers, M. J. Adrowski and A. H. Bond, Crystal structure of Pt(S2COEt)2, *Journal* of Chemical Crystallography, 1994, **24**, 707-710.
- R. F. W. Bader, M. T. Carroll, J. R. Cheeseman and C. Chang, Properties of atoms in molecules: atomic volumes, *Journal of the American Chemical Society*, 1987, 109, 7968-7979.
- 3. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, *New Concepts II*, Berlin, Heidelberg, 1973.
- 4. E. Scrocco and J. Tomasi, in *Advances in Quantum Chemistry*, ed. P.-O. Löwdin, Academic Press, 1978, vol. 11, pp. 115-193.
- T. Brinck, J. S. Murray and P. Politzer, Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions, *International Journal of Quantum Chemistry*, 1992, 44, 57-64.