Ta-doped Nb₂O₅ with enhanced performance for

lithium-ion batteries

Shuyu Wang, Shuoqing Zhao, Lijiang Zhao, Xinghua Liu, Xungang Diao, Huiwu Long* and Junying Zhang*

Dr. Ms. S.Y. Wang, L.J. Zhao, Ms. X.H. Liu, Prof. J.Y. Zhang
School of Physics, Beihang University, Beijing 100191, China.
E-mail: zjy@buaa.edu.cn
Prof. S.Q. Zhao
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, Jilin, China.
E-mail: shuoqingzhao@jlu.edu.cn
Dr. L.J. Zhao, Prof. X. G. Diao
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.

Dr. H. Long College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China. E-mail: huiwu_long@126.com

Supplementary Figures

Figure S1. CV curves of Nb_2O_5 (a) and $Ta_{0.2}Nb_2O_{5.5}$ (b) at scan rate of 0.1 to 1.0 mV s⁻¹.

Figure S2. Cycling tests of $Ta_{0.2}Nb_2O_{5.5}$ at 4 A g^{-1} and 6 A $g^{-1}.$

Figure S3. CV curves of $Ta_{0.2}Nb_2O_{5.5}$ before and after cycling at different current densities at scan rate of 0.1 mV s⁻¹.

Figure S4. Charge-discharge voltage profiles of LCO//Nb $_2O_5$ at 0.1, 0.2, 0.5, 1, 2, 4 and 6 A g⁻¹.

Supplementary Tables

Table S1 Comparison among $Ta_{0.2}Nb_2O_{5.5}$ and other element-doped Nb_2O_5 anodes reported in literatures.

Materials	Characterized size (μm)	Electrode composition	Electrode density (mg cm ⁻²)	High-rate capacity (mAh g ⁻¹)	Cycling capacity retention after cycles	Refs
Ta _{0.2} Nb ₂ O _{5.5}	2.0 ~ 5.0	90:5:5	1.0 ~ 2.0	86 (20 A g ⁻¹) 149 (4 A g ⁻¹)	64%, 1000 cycles (8 A g ⁻¹) 86.8%, 1500 cycles (2 A g ⁻¹)	This work
W ⁶⁺ -doped Nb ₂ O ₅	0.5~6	7:2:1	N/A	167.1 (20 C)	70.1%, 600 cycles (5 C)	[1]
Cu-doped Nb ₂ O ₅	N/A	7:2:1	~1.0	144.2 (4 A g ⁻¹)	69.2%, 5000 cycles (1 A g ⁻¹)	[2]
Nb _{1.94} Mo _{0.06} O ₅ @C	0.02 ~ 0.2	8:1:1	3.0 ~ 4.0	132.3 (5 C)	90%, 100 cycles (0.2 C)	[3]
Phosphorus-doped urchin-like Nb ₂ O ₅	3.0	7:2:1	~ 1.9	89 (10 C)	93.9%, 1000 cycles (5 C)	[4]
V-doped T-Nb ₂ O ₅ sub-microspheres	~ 1.0	8:1:1	N/A	107 (10 C)	82.2%, 5000 cycles (5 C)	[5]
KNb ₆ O ₁₅ F-wired Nb ₂ O ₅	0.1 ~ 1.0	7:2:1	~ 2.0	80 (20 C)	75%, 200 cycles (0.5 C)	[6]
Hierarchical flower-like N-doped Nb ₂ O ₅ @N- doped carbon composites	2.0 ~ 3.0	7:2:1	N/A	158 (20 C)	81%, 2500 cycles (10 C)	[7]

Note: in this work, 1C is approximately 0.2 A $g^{\mbox{-}1}$

Supplementary References

- 1 X. L. Chen, P. Cui, X. L. Chen, A. Naveed, Y. Zhou, A. Dou, M. Su and Y. J. Liu, J. Alloys Compd., 2023, 967, 171846.
- 2 H. Dong, T. H. Yao, X. Ji, Q. M. Zhang, X. F. Lin, B. L. Zhang, C. S. Ma, L. J. Meng, Y. Chen and H. K. Wang, ACS Appl. Mater., 2024, 16, 22055-22065.
- 3 G. Wang, G. X. Wang, H. T. Dong, J. X. Li, S. J. Zhang, H. T. Zhang, Adv. Funct. Mater., 2025, 35, 2414393.
- 4 W. Y. Zhang, X. F. Liu, X. W. Li, Y. H. Ding, G. Y. Liu, L. B. Li, S. Y. Yang, D. Zhang, Y. Yang, J. B. Cheng, Electrochim. Acta, 2025, 513, 145590.
- 5 H. H. Huang, G. Y. Zhao, X. B. Yu, X. J. Shen, M. Wang, X. M. Bai, N. Q. Zhang, J. Mater. Chem. A, 2022,10, 577-584.
- 6 D. Y. Cao, Z. G. Yao, J. J. Liu, J. C. Zhang, C. L. Li, Energy Storage Mater., 2018, 11, 152-160.
- 7 Q. Wang, W. Y. Zhang, K. C. Liu, X. W. Li, D. Zhang, G. Y. Liu, Y. Y. Liu, S. R. Wang, Y. Yang, N. Li, Z. Z. Yang, X. D. Liu, J. Alloys Compd., 2024, 977, 173334.