A Chloride-doped Cu₁₈ Nanocluster: Synthesis, Bonding and Nonlinear Optical Property

Xuekun Gong^{+a}, Chan Zheng^{+b}, Dongjie Zuo^{+a}, Simin Li^a*, Wei-Hui Fang^c*, and Hui Shen^a*

^a College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China

^b Institute of Biology and Chemistry, Fujian University of Technology, 350118, Fuzhou, P.R. China

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China

⁺These authors contributed equally to this work

E-mail: shen@imu.edu.cn; fwh@fjirsm.ac.cn

Figure S1. Digital photograph of single crystals of $ClCu_{18}$ clusters under the microscope.

ure S2. ORTEP diagram of $ClCu_{18}$ with the thermal ellipsoids at 50% probability.

Figure S3. The overall $ClCu_{18}$ cluster diagram of length and width.

Figure S4. The C-H··· π interactions in ClCu₁₈ (highlighted as red dashed line). Color legends: Cu blue; S yellow; P pink; Cl orange; C gray. Hydrogen atoms are omitted for clarity.

Figure S5. The C-H $\cdots\pi\cdots\pi$ interactions in the packing structure of the ClCu₁₈ cluster in their single crystals (highlighted as green and purple dashed lines). Color legends: Cu blue; S yellow; P pink; Cl orange; C gray. Hydrogen atoms are omitted for clarity.

Figure S6. The ESI-MS spectrum of the $ClCu_{18}$ cluster. Inset are the comparisons between experimental simulated isotopic patterns of and peaks a: ([Cu₁₈(PET)₁₆Cl(PPh₃)(CH₂Cl₂)₂(H₂O)]⁺), b: ([Cu₁₈(PET)₁₆Cl(PPh₃)₂(CH₂Cl₂)₂(CH₃OH)]⁺), c: $([Cu_{18}(PET)_{16}Cl(PPh_3)_1(CH_2Cl_2)_2(CH_3OH)(BPh_4)H]^+$ d: and ([Cu₁₈(PET)₁₆Cl(PPh₃)₄(CH₂Cl₂)₂(CH₃OH)]⁺).

-29.15

Figure S7. The proton-decoupled ${}^{31}P$ NMR spectrum of ClCu₁₈ in CDCl₃.

Figure S8. The ${}^{1}H$ NMR spectrum of ClCu₁₈ in CDCl₃.

Figure S9. The initial XPS data of Cu 2p of the ClCu₁₈ cluster.

Figure S10. The EDS elemental maps of the $ClCu_{18}$ cluster.

Compound	$[ClCu_{18}(C_8H_9S)_{16}(C_{18}H_{15}P)_4(CH_2Cl_2)]^+$
CCDC No.	2442407
Formula	$C_{202}H_{208}Cu_{18}Cl_5P_4S_{16}$
Formula weight	4593.48
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	<i>C2/c</i>
a (Å)	27.4052(3)
b (Å)	27.2127(4)
c (Å)	27.7815(4)
α (°)	90.0(10)
β (°)	92.0930(10)
γ (°)	90.0(10)
V (Å ³)	20704.8(5)
Z	4
$D_c / (g \cdot cm^{-3})$	1.474
Radiation	Cu Ka ($\lambda = 1.54184$)
2Theta (°) range	4.578 to 155.47
Index ranges	$-34 \le h \le 34, -32 \le k \le 34, -32 \le l \le 35$
Refls. Total	99385
Restraints	703
Parameters	1268
R _{int}	0.0692
R_1/wR_2 [I>2 σ (I)]	0.1101/0.3417
R_1/wR_2 (all data)	0.1468/0.3924
Goodness-of-fit on F ²	1.300

Table S1. Crystal data and structure refinement for $ClCu_{18}$.

		- ·	
Parameter	value	Parameter	value
Cu2-Cu6	2.958(2)	Cu57-S5	2.440(5)
Cu2-S131	2.290(2)	Cu57-S58	2.056(5)
Cu2-S2	2.273(2)	Cu3-S5	2.254(2)
Cu4-Cu8	2.626(9)	Cu3-S1	2.258(3)
Cu4-S1	2.240(3)	Cu3-P13	2.070(8)
Cu4-S10	2.244(2)	Cu3-P1	2.397(10)
Cu4-S9 ¹	2.441(5)	Cl53-Cu54	2.287(2)
Cu4-Cu1 ¹	2.564(3)	Cl53-Cu54 ¹	2.287(2)
Cu4-S81	2.192(5)	Cl53-Cu12	2.553(3)
Cu4-Cu9	2.815(9)	C153-Cu1	2.309(2)
Cu8-S13	2.356(9)	Cl53-Cu5	2.478(3)
Cu8-S58 ¹	2.366(8)	C153-Cu10	2.285(6)
Cu8-S10	2.072(2)	Cl53-Cu10 ¹	2.285(6)
Cu6- Cu7	2.740(2)	Cu54-S131	2.205(3)
Cu6-Cu57	2.673(4)	Cu54-S2 ¹	2.737(4)
Cu6-S2	2.223(3)	Cu54-Cu12	2.847(4)
Cu6-S58	2.287(3)	Cu54-S9	2.316(6)
Cu6-S11	2.218(3)	S13-Cu12	2.406(2)
Cu7-S5	2.272(3)	S13-Cu1 ¹	2.523(3)
Cu7-S11	2.224(3)	S13-Cu9	2.157(10)
Cu7-S9 ¹	2.104(5)	S2-Cu12	2.160(3)
Cu7-Cu1 ¹	3.052(3)	S5-Cu10	2.144(6)
Cu7-S8 ¹	2.446(5)	S1-Cu5	2.163(3)
Cu7-Cu10	3.048(7)	S58-Cu91	2.111(9)
Cu57-Cl53	2.281(6)	S58-Cu10	2.469(5)
S10-Cu9	2.437(7)		

Table S2. Selected bond lengths (Å) for compound $ClCu_{18}$.

	n ₀	α ₀ (cm ⁻¹)	eta (*10 ⁻¹⁰ m/W)	Imχ ⁽³⁾ (*10 ⁻¹² esu)	FOM (*10 ⁻¹² esu)
20µJ	1.33	2.31	1.60	4.52	1.96
40µJ	~	~	1.66	4.69	2.03
60µJ	~	~	1.70	4.80	2.08
75µJ	2	~	1.72	4.86	2.1

Table S3. Refractivity (n_0) , linear absorption coefficient (α) , nonlinear absorption coefficient (β) , the imaginary part of third-order nonlinear susceptibility $(\chi^{(3)})$, FOM, and the onset of OL of the ClCu₁₈ cluster at different pulse energies, respectively.

Cluster	Ligand	β (cm/GW)	Reference
ClCu ₁₈	2-penylethylmercaptan	17.2 (this work)	This work
Cu ₅₀ -1	3,5- <i>di</i> Me-PhSH	96.3	ACS Materials Lett. 2024, 6, 281
Cu ₅₀ -2	4-F-PhSH	25.6	ACS Materials Lett. 2024, 6, 281
Cu ₅₀ -3	PhSH	32.1	ACS Materials Lett. 2024, 6, 281
Cu ₅₀ -4	4-F-PhSH	12.5	ACS Materials Lett. 2024, 6, 281
Cu ₂₅	2-fluorobenzenethiol	13.8	<i>Polyoxometalates</i> , 2025, 4, 9140072
Cu ₂₆	2-fluorobenzenethiol	23.1	<i>Polyoxometalates</i> , 2025, 4, 9140072

Table S4. The comparison of nonlinear optical properties among different Cu nanoclusters.