Supplementary Information

Crystal structure and luminescent properties of halocuprates with trimethylsulfonium cations

Andrey A. Petrov^{a,b,,*}, Luyi Chen^{a,‡}, Mingming Li^{a,*}, Sergey A. Fateev^{a,b},

Andrey V. Petrov^c, Victor N. Khrustalev^{d,e}, Alexey B. Tarasov^{b,f}

^a Faculty of Materials Science, Shenzhen MSU-BIT University, 518172 Shenzhen, China

^b Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia

° Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia

^d Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation

^e Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow Russia

^f Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation

[‡] The first two authors contributed equally to this work.

* Corresponding authors: Andrey A. Petrov (<u>basolon@gmail.com</u>), Mingming Li (<u>lmmhfut@163.com</u>)

Fig. S1. Powder X-ray diffraction patterns from grinded crystals at 298 K (red), calculated diffraction patterns from crystal structures of single crystals refined at 100 K; insets: corresponding single hcrystals of (TMS)Cu₂I₃, (TMS)Cu₂Br₃, and (TMS)₂CuBr₃.

Fig. S2. DSC for (TMS)Cu₂I₃, (TMS)Cu₂Br₃, and (TMS)₂CuBr₃

Fig. S3. Photoluminescence of trimethylsulfonium halocuprates at 77K at 254 nm.

Fig. S4. PLE & PL spectra of (TMS)Cu₂Br₃ at 77K.

Fig. S5. PLE & PL spectra of (TMS)Cu₂I₃ at 77K.

Fig. S6. Temperature-dependence of PL for (TMS)Cu₂Br₃ (a) and (TMS)Cu₂I₃ (b) at $\lambda_{ex} = 254$ nm.

Fig. S7. PLE & PL spectra of (TMS)₂CuBr₃ at 77K.

Fig. S8. PLE & PL spectra of (TMS)₃Cu₂I₅ at 77K.

Fig. S7. Electronic structure of (CH₃NH₃)Cu₂I₃, (CH₃NH₃)Cu₂Br₃, [(CH₃)₃SO]Cu₂I₃, and (Me-MePy)Cu₂I₃).

Phase	TMSCu ₂ I ₃	TMSCu ₂ Br ₃	TMS ₂ CuBr ₃	
Empirical formula	C9H24I9Cu6S3	C3H9Br3Cu2S	$C_6H_{18}Br_3CuS_2$	
M, g/mol	583.93	443.96	457.59	
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	
Space group	Pnma	Pnma	<i>C2/c</i>	
<i>a</i> , Å	17.7139(14)	17.0099(2)	14.3468(9)	
<i>b</i> , Å	6.3941(6)	6.00199(8)	10.2589(6)	
<i>c</i> , Å	29.860(2)	28.8341(3)	12.0601(8)	
α , deg.	90.000	90.000	90.000	
β , deg.	90.000	90.000	124.698(2)	
γ, deg.	90.000	90.000	90.000	
V, Å ³	3382.1(5)	2943.77(6)	1459.37(16)	
Temperature (K)	100.0(2)	100.0(2)	100.0(2)	
Ζ	12	12	12	
D (calc), g/cm^3	3.440	3.005	2.083	
μ , mm ⁻¹	12.107	21.028	9.956	
F(000)	3108	2472	880	
Crystal size, mm	$0.26 \times 0.25 \times 0.19$	$0.27 \times 0.04 \times 0.03$	$0.25 \times 0.18 \times 0.16$	
Θ range for data collection, deg.	3.568 - 56.862	3.048 - 79.615	2.63 - 30.48	
	$-23 \le h \le 23$	$-18 \le h \le 21$	$-19 \le h \le 20$	
Index ranges	$-8 \le k \le 8$	$-6 \le k \le 7$	$-14 \le k \le 14$	
	$-39 \le l \le 39$	$-35 \le l \le 36$	$-17 \le l \le 12$	
Reflections collected/indepen dent	107527 / 4624	18385 / 3494	12727 / 2236	
Rint	0.1174	0.0541	0.0747	
Reflections with $I > 2\sigma(I)$	4624	3291	1841	
Goodness-of-fit on F	1.072	1.050	1.063	
Final R indices	$R_1 = 0.0336$	$R_1 = 0.0595$	$R_1 = 0.0304$	
([I>2σ(I)])	$wR_2 = 0.0740$	$wR_2 = 0.1329$	$wR_2 = 0.0634$	
R indices (all	$R_1 = 0.0445$	$R_1 = 0.0620$	$R_1 = 0.0440$	
data)	$wR_2 = 0.0792$	$wR_2 = 0.1341$	$wR_2 = 0.0689$	
Largest diff. peak/hole, e/Å ³	1.97 / -1.89	1.587 / -1.540	0.745 / -0.713	

Table S1. Parameters of the crystal structure refinement.

	Eg, eV	PL, eV	PLE, eV	Stokes shift, eV	PLQY, %	Ref
Rb Cu ₂ Br ₃	3.61	3.18 eV (RT)	4.59, 4.28	1.41, 1.10		[1]
CsCu ₂ I ₃	3.63	2.17 (RT) 2.12 (77K)	3.71	1.56	3.23	[2]
CsCu ₂ Br ₃	3.73	2.33 (RT) 2.32 (77K)	3.89	1.56	18.3	[2]
CsCu ₂ Cl ₃	3.79	2.36 (RT) 2.32 (77K)	3.89	1.53	48	[2]
MACu ₂ I ₃	3.62	2.06 (100K)				[3]
MACu ₂ Br ₃	3.63	1.89 (77K)	3.63	1.74		[4]
TMSCu ₂ I ₃	3.53	1.93 (77K), 1.85 (77K) [*]	3.94, 3.29	2.00, 1.44		This work
TMSCu ₂ Br ₃	3.65	1.98 (77K) 1.75 (>77K)**	3.95	1.97		This work
NMPyCu ₂ I ₃	2.85	1.84 1.77 (80K)	330	1.92	3.95	[5]
TMSOCu ₂ I ₃	3.63	2.12 (RT)		1.49	<1%	[6]
DMACu ₂ Cl ₃	3.80	2.05 (77K)				[7]

Table S2. Optical properties of the studied phases in comparison withother known halocuprates

*when excited by light near the second PLE maximum, **at 77K < T < RT

Table S3. Cu-X bond distances in (TMS)Cu₂I₃, (TMS)Cu₂Br₃, and (TMS)₂CuBr₃.

Compound	Min. Distance (Å)	Max. Distance (Å)	Mean Distance (Å)	Std. Dev. (Å)
(TMS)Cu ₂ I ₃	2.576	2.855	2.662	0.083
(TMS)Cu ₂ Br ₃	2.415	2.591	2.496	0.069
(TMS) ₂ CuBr ₃	2.362	2.398	2.374	0.018

Phase	Distortion index (bond length) [8]	Bond angle variance, deg. [8]	Cu…Cu distances, Å	Reference
CsCu ₂ Br ₃	0.02890	12.6846	2.90660	[9]
MACu ₂ Br ₃	0.02251	27.1412	2.754 2.816	[4]
CsCu ₂ I ₃	0.01883	7.0799	3.14327	[9]
MACu ₂ I ₃	0.01136	17.3062	2.883(9)	[3]
(TMS)Cu2Br3	$(1) 0.02755; (2_1) 0.03091, 0.02590; (2_2) 0.03091, 0.2177$	$(1) 24.81; (2_1) 30.66, 25.07; (2_2) 30.66, 107.9; $	2.902, 2.939	This work
(TMS)Cu2I3	$(1) 0.01506;$ $(2_1) 0.02888, 0.03042,$ $0.01326, 0.01151;$ $(2_2) 0.02888, 0.02826,$ $0.01141, 0.01151;$	$(1) 21.98;$ $(2_1) 41.26, 57.45,$ $23.12, 17.09;$ $(2_2) 41.26, 101.80,$ $23.12, 90.47;$	2.854, 2.870	This work

Table S4. Parameters of the bond lengths and main distances in all studied structures.

* symbols (1) and (2_x) stands for type-1 and type-2 Cu₂I₃ chains, subscript symbols q and 2 in (2_x) indicated the two different variants of type-2 chains according to specific choice of different partially occupied positions.

References:

- [1] Ding Y, Lin R, Lin Z, Zheng W. Switchable biexcitons in perovskite-like RbCu₂Br₃ crystals driven by thermally induced phase transition. J Mater Chem C 2023;11:2531–9. https://doi.org/10.1039/D2TC05063C.
- [2] Roccanova R, Yangui A, Seo G, Creason TD, Wu Y, Kim DY, et al. Bright Luminescence from Nontoxic CsCu₂X₃ (X = Cl, Br, I). ACS Mater Lett 2019;1:459–65. https://doi.org/10.1021/acsmaterialslett.9b00274.
- Petrov AA, Fateev SA, Grishko AY, Ordinartsev AA, Petrov AV, Seregin AY, et al. Optical properties and electronic structure of methylammonium iodocuprate as an X-ray scintillator. Mendeleev Commun 2021;31:14–6. https://doi.org/10.1016/j.mencom.2021.01.003.
- [4] Belikova DE, Fateev SA, Khrustalev VN, Marchenko EI, Goodilin EA, Wang S, et al. Exceptional structural diversity of hybrid halocuprates(I) with methylammonium and formamidinium cations. Dalt Trans 2023;52:7152–60. https://doi.org/10.1039/D3DT00687E.
- [5] Yue C-Y, Lin N, Gao L, Jin Y-X, Liu Z-Y, Cao Y-Y, et al. Organic cation directed onedimensional cuprous halide compounds: syntheses, crystal structures and photoluminescence properties. Dalt Trans 2019;48:10151–9. https://doi.org/10.1039/C9DT01460H.
- [6] Pinky T, Popy DA, Zhang Z, Jiang J, Pachter R, Saparov B. Synthesis and Characterization of New Hybrid Organic–Inorganic Metal Halides [(CH₃)₃SO]M₂I₃ (M = Cu and Ag). Inorg Chem 2024;63:2174–84. https://doi.org/10.1021/acs.inorgchem.3c04119.
- Belikova DE, Fateev SA, Khrustalev VN, Kozhevnikova V, Ordinartsev AA, Dzuban A
 V., et al. Bright luminescence of new low-melting copper(I) chlorides with compact
 organic cations. J Mater Chem C 2024;12:13537–44.
 https://doi.org/10.1039/D4TC02152E.
- [8] Hazen RM, Downs RT, Prewitt CT. Principles of Comparative Crystal Chemistry. Rev Mineral Geochemistry 2000;41:1–33. https://doi.org/10.2138/rmg.2000.41.1.
- [9] Hull S, Berastegui P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides—II: ordered phases within the (AgX)_x-(MX)_{1-x} and (CuX)_x-(MX)_{1-x} (M=K, Rb and Cs; X=Cl, Br and I) systems. J Solid State Chem 2004;177:3156–73. https://doi.org/10.1016/j.jssc.2004.05.004.