Ammonium Tagged Hoveyda-Grubbs Catalyst Immobilized on Yolk/Shell Silica Gels with a Hydrophobic Shell for Olefin Metathesis Reactions

Bengi Özgün ÖZTÜRK^{a*}, Aleyna HİLLİK^a, Beyza Nur KÜÇÜK^{b, c}, Fatih INCI^{b,}

^b UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, TURKEY

^c Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, TURKEY

SUPPORTING INFORMATION

Figure S 1. High contrast TEM images of nano-SiO ₂ (1) core and particle size distribution						
graph2						
Figure S 2. High contrast TEM images of nano-SiO $_2$ (2) and particle size distribution graph 2						
Figure S 3. High contrast TEM images of non-etched BTME@SiO2 (1) (without any						
purification protocol)						
Figure S 4. High contrast TEM images of non-etched BTME@SiO ₂ (2) (without any						
purification protocol)						
Figure S 5. High contrast TEM images of etch-BTME@SiO ₂ (1)4						
Figure S 6. High contrast TEM images of etch-BTME@SiO ₂ (2)4						
Figure S 7. SEM images of etch-BTME@SiO ₂ (1)5						
Figure S 8. SEM images of etch-BTME@SiO ₂ (2)5						
Figure S 9. XPS analysis of Ru@SiO26						
Figure S 10. XPS spectrum of Ru@etch-BTME@SiO2 (1((Please note that ruthenium peak						
was not observed due to the penetration limit of XPS (≈ 10 nm), indicating the confinement of						
ruthenium in inner core						
Figure S 11. High resolution TEM images of Ru@etch-BTME@SiO2 (1)7						
Figure S 12. EDX line analysis of Ru@etch-BTME@SiO27						
Figure S 13. In filtrate analysis of RCM reactions						
Figure S 14. Water-contact angle measurements of a) nano-SiO ₂ (51°) and b) Ru@etch-						
BTME@SiO ₂ (139°)						

^a Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-ANKARA, TÜRKİYE e-mail: <u>bengi04@hacettepe.edu.tr</u>, Tel: +90312 297 62 99

Figure S 1. High contrast TEM images of nano-SiO₂ (1) core and particle size distribution graph.

Figure S 2. High contrast TEM images of nano-SiO₂ (2) and particle size distribution graph

Figure S 3. High contrast TEM images of non-etched BTME@SiO₂ (1) (without any purification protocol)

Figure S 4. High contrast TEM images of non-etched BTME@SiO₂ (2) (without any purification protocol)

Figure S 5. High contrast TEM images of etch-BTME@SiO $_2$ (1)

Figure S 6. High contrast TEM images of etch-BTME@SiO₂ (2)

Figure S 7. SEM images of etch-BTME@SiO₂ (1)

Figure S 8. SEM images of etch-BTME@SiO₂ (2)

Figure S 9. XPS analysis of Ru@SiO₂

Figure S 10. XPS spectrum of Ru@etch-BTME@SiO₂ (1((Please note that ruthenium peak was not observed due to the penetration limit of XPS (\approx 10 nm), indicating the confinement of ruthenium in inner core.

Figure S 11. High resolution TEM images of Ru@etch-BTME@SiO $_2(1)$

Figure S 12. EDX line analysis of Ru@etch-BTME@SiO₂

Figure S 13. In filtrate analysis of RCM reactions

Figure S 14. Water-contact angle measurements of a) nano-SiO₂ (51°) and b) Ru@etch-BTME@SiO₂ (139°)

Catalyst	Ru	Conv.	Time	TON	Ref.
	%	%	(h)		
Ru (Aquamet)	1	97	0.5	97	[1]
Ru@(Al)MIL-101-	0.05	53	24	1060	[2]
NH ₂ ·HCl					
$Ru@SiO_2(2)@Fe_2O_3$	0.1	77	8	770	[3]
Ru@SBA-15	0.05	60	1	1200	[4]
Ru@etch-	0.05	60	24	1200	This
BTME@SiO ₂					study

Table S1. The comparison of different catalysts in litereature

REFERENCES

- [1] A. Chołuj, A. Zieliński, K. Grela, M. J. Chmielewski, ACS Catal. 2016, 6, 6343-6349.
- [2] K. Skowerski, G. Szczepaniak, C. Wierzbicka, Ł. Gułajski, M. Bieniek, K. Grela, Catal. Sci. Technol. 2012, 2, 2424-2427.

[3] B. Ö. Öztürk, Microporous Mesoporous Mater. 2018, 267, 249-256

[4] J. Pastva, K. Skowerski, S. J. Czarnocki, N. Žilková, J. Čejka, Z. Bastl, H. Balcar, ACS Catal. 2014, 4, 3227-3236.