Supplementary Information for

Emergence of a bismuth-based metal-organic framework as an X-ray scintillator

Peng Lin,^{a,c,‡} Junpu Yang,^{b,‡} Weinan Sun,^c Xiaoyuan Zhou,^c Fangbo Zhao,*^a and Jian Lin,*^b

^a College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P.

R. China. Email: zhaofangbo@hrbeu.edu.cn

^b School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China. Email: jianlin@xjtu.edu.cn

^c Department of Radioactive Waste Technology and Radiochemistry Research, China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518124, P.R. China

[‡] These authors contribute equally to this work.

Experimental Procedures

Materials and synthesis

Materials. Bi(NO₃)₃·5H₂O (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd.), 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H₄TCPE) (95%, Shanghai Adamas Reagent Co., Ltd.), HNO₃ (GR, 96%, Sinopharm Chemical Reagent Co., Ltd.), and dimethylformamide (99.5%, Shanghai Macklin Biochemical Co., Ltd) were used as received from commercial suppliers without further purification.

Synthesis. Bi-TCPE. A mixture of $Bi(NO_3)_3 \cdot 5H_2O$ (0.001 mmol), H_4TCPE (0.001 mmol), HNO_3 (45 µL), and DMF (1000 µL) was loaded into a 7 mL glass vial. The vial was sealed and heated at 100 °C for 48 h, then cooled to room temperature under ambient conditions. Yellow, tablet-shaped single crystals of **Bi-TCPE** were obtained, washed with ethanol, and dried under ambient conditions.

Characterizations

Single-crystal X-ray diffraction (SCXRD) analysis was performed on a Bruker D8-Venture single-crystal X-ray diffractometer equipped with an I μ S 3.0 microfocus X-ray source (Mo K α radiation, $\lambda = 0.71073$ Å) and a CMOS detector at 298 K. Data collection and reduction were carried out using the APEX3 program. The crystal structure was solved by intrinsic phasing using ShelXT and refined by full-matrix least-squares techniques with ShelXL, as interpreted by the Olex2 software.

Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 Advance diffractometer (40 kV, 40 mA) with Cu K α radiation ($\lambda = 1.54060$ Å) at a step size of 0.02°. The simulated PXRD pattern of **Bi-TCPE** was generated from its crystallographic information file (CIF) using Materials Studio.

Photoluminescence (PL) spectra, time-resolved PL lifetimes, and photoluminescence quantum yields (PLQYs) were measured at room temperature using an Edinburgh FLS980 fluorescence spectrometer.

X-ray-induced radioluminescence (RL) spectra were obtained under a tungsten (W) K α radiation source (70 kV, 12 W), and the emission was recorded using a NOVA cooled fiber optic spectrometer.

Thermogravimetric analysis (TGA) was conducted using a Waters SDT650 simultaneous thermal analyzer under a dry nitrogen atmosphere from 30 to 800 °C at a heating rate of 10 °C/min.

Fourier-transform infrared (FTIR) spectra were recorded on a Nicolet iS50 FTIR spectrometer in the range of 640–4000 cm⁻¹.

Fabrication of flexible Bi-TCPE⊂PDMS scintillator film

A 10:1 weight ratio of polydimethylsiloxane (PDMS) base to curing agent (SYLGARD 184) was thoroughly mixed. Subsequently, **Bi-TCPE** powder (20 wt%) was incorporated and uniformly dispersed through vigorous stirring. The homogenous mixture was then cast onto a flat glass surface, leveled using a blade, and thermally cured at 100 °C for 1 h to produce the **Bi-TCPE** \subset PDMS scintillator film.

Fig. S1 Coordination environments of Bi(1) and Bi(2) in Bi-TCPE.

Fig. S2 Simulated and as-synthesized PXRD patterns of Bi-TCPE.

Fig. S3 Thermogravimetric analysis (TGA) curve of Bi-TCPE.

Fig. S4 Excitation spectrum of H₄TCPE.

Fig. S5 Excitation spectrum of Bi-TCPE.

Fig. S6 Photoluminescence spectrum of H₄TCPE.

Fig. S7 Time-resolved photoluminescence decay profile of Bi-TCPE.

Fig. S8 Time-resolved photoluminescence decay profile of H₄TCPE.

Fig. S9 Photoluminescence quantum yield of Bi-TCPE.

Fig. S10 Radioluminescence spectra of Bi-TCPE and LYSO under comparable irradiation condition.

Fig. S11 Radioluminescence spectra and photographs of Bi-TCPE and H₄TCPE under comparable irradiation condition.

Fig. S12 PXRD patterns of Bi-TCPE before and after X-ray irradiation.

Fig. S13 FTIR spectra of Bi-TCPE before and after X-ray irradiation.

Fig. S14 PXRD patterns of Bi-TCPE before and after exposure to 100% relative humidity (RH).

Fig. S15 FTIR spectra of Bi-TCPE before and after exposure to 100% relative humidity (RH).

 Table S1 Crystallographic data for Bi-TCPE.

Compound	Bi_TCPF	
	2//36/8	
Formula	C H O D:	
Formula weight	$C_{33}\Pi_{23}O_{10}DI_2$	
romula weight	1011.48	
ρ_{calc} . (g cm ⁻⁵)	1.891	
μ (mm ⁻¹)	7.424	
Colour	Yellow	
Habit	block	
Space group	<i>P</i> -1	
a (Å)	11.032(4)	
b (Å)	12.390(4)	
<i>c</i> (Å)	14.370(4)	
α (deg)	85.718(10)	
β (deg)	73.575(10)	
γ (deg)	70.606(12)	
$V(Å^3)$	1776.7(10)	
Z	2	
$T(\mathbf{K})$	293.00	
λ (Å)	0.711	
Θ_{max} (deg)	25.027	
R_{I}	0.0418	
ωR_2	0.1080	
R_{int}	0.0698	
GooF	1.013	

Table S2 Selected bond distances and bond valence sums of Bi(1) and Bi(2) in Bi-TCPE.

Bond Distance		Bond Distance	
	(Å)		(Å)
Bi(1)-O(1)	2.167	Bi2–O1	2.146
Bi(1)-O(1)#1	2.209	Bi2–O8	2.268
Bi(1)-O(3)	2.260	Bi206	2.332
Bi(1)-O(7)	2.540	Bi2–O4	2.472
Bi(1)-O(2)	2.542	Bi2–O9	2.492
Bi(1)-O(10)	2.609	Bi2010	2.798
Bi(1)-O(6)	2.762	Bi2–O5	2.886
		Bi2–O5	2.887
Bi(1) BVS	3.167	Bi(2) BVS	3.071