ELECTRONIC SUPPORTING INFORMATION

Pnictogen-Functionalised Isocyanide Ligands

Ryan M. Kirk and Anthony F. Hill*

1 Experimental

1.0 General considerations

Unless otherwise stated, all manipulations were carried out under an inert atmosphere of commercially purified argon using standard Schlenk techniques; the air stability/sensitivity of each compound is explicitly stated in the accompanying text. Anaerobic flash chromatography was conducted using a 30 x 5 cm Schlenk column loaded with oven-dried (120 °C) silica gel which had previously been degassed in situ by placing under vacuum for ca 60 minutes followed by flushing the apparatus with argon for a further ca 10 minutes. Reagents and materials were purchased from chemical vendors and used as-supplied without further purification: $[Cr(CO)_6]$, $[Mo(CO)_6]$, $[W(CO)_6]$, $[Mn(CO)_{3}(\eta^{5}-C_{5}H_{5})],$ [Fe(CO)₅], $[Re_2(CO)_{10}]$ (Strem); Na[N(SiMe₃)₂], ClP^tBu₂, AsCl₃, SbCl₃, ^tBuMgCl solution (2 M in Et₂O), silica gel 230–400 mesh, celite 545 (diatomaceous earth) (Sigma-Aldrich). $[Fe(CO)_4(PPh_3)]^1$ and $[Re(CO)_3(\eta^5-C_5H_5)]^2$ were prepared according to literature procedures. HPLC-grade solvents were purchased from Merck and re-distilled from an appropriate desiccant under nitrogen: THF, Et₂O (sodium/benzophenone); toluene, tmeda, *n*-hexane (sodium); CH₂Cl₂, *n*-pentane (P₂O₅). Re-distilled solvents were then stored over an appropriate desiccant: THF, Et₂O, *n*-pentane, *n*-hexane, toluene (sodium mirror); TMEDA, CH₂Cl₂ (4 Å molecular sieves). Deuterated solvents were purchased from Cambridge Isotopes Laboratories and re-distilled under argon from an appropriate desiccant under nitrogen: C₆D₆ (sodium); CDCl₃, CD₂Cl₂ (P₂O₅); CD₃CN (CaCl₂). ClAs^tBu₂ and ClSb^tBu₂ were prepared from AsCl₃ or SbCl₃, respectively, and two equivalents of ^tBuMgCl in Et₂O at 0 °C and purified by vacuum distillation.

 $\label{eq:classifier} \begin{array}{l} \mbox{ClAs'Bu}_2: \mbox{ Quantities used: } 2.00 \mbox{ mL AsCl}_3 (23.8 \mbox{ mmol}), 23.8 \mbox{ mL} \\ {}^t\mbox{BuMgCl solution (2.0 M, 47.6 \mbox{ mmol}). Isolated yield: } 3.60 \mbox{ g (15.9 \mbox{ mmol}, 67\%). \mbox{ NMR: } {}^1\mbox{H} (C_6 D_6, 400 \mbox{ MHz}, 25 \mbox{ °C}) \\ \delta_{\rm H} = 1.12 \mbox{ ppm; } \\ {}^{13}\mbox{C}_1^{\rm H} \mbox{H} (C_6 D_6, 101 \mbox{ MHz}, 25 \mbox{ °C}) \\ \delta_{\rm C} = 39.5, 27.9 \mbox{ ppm. } \end{array}$

 $\begin{array}{l} \textbf{ClSb^{t}Bu_2:} \ Quantities \ used: \ 3.00 \ g \ SbCl_3 \ (13.2 \ mmol), \ 13.2 \ mL \ ^tBuMgCl \ solution \ (2.0 \ M, \ 26.4 \ mmol). \ Isolated \ yield: \ 1.80 \ g \ (51\%, \ 6.6 \ mmol). \ NMR: \ ^1H \ (C_6D_6, \ 400 \ MHz, \ 25 \ ^cC) \ \delta_H \ = \ 1.20 \ ppm; \ ^{13}C\{^1H\} \ (C_6D_6, \ 101 \ MHz, \ 25 \ ^cC) \ \delta_C \ = \ 38.4, \ 28.8 \ ppm. \end{array}$

Solution NMR spectroscopy was conducted on Bruker Avance 400 (400 MHz for ¹H, 101 MHz for ¹³C, 162 MHz for ³¹P) or 800 (201 MHz for ¹³C) instruments. Spectra were processed using the MestReNova suite and are referenced to the residual *protio*-solvent impurity (for ¹H), the solvent itself (for ¹³C), or an external standard (for ³¹P: 85% aqueous H₃PO₄). Chemical shifts are reported to 2 d.p. for ¹H, and 1 d.p. for ¹³C, ³¹P, and also coupling constants. We thank Dr Doug Lawes of the ANU for helpful discussion and assistance. Solution and solid-state IR

spectroscopies were conducted on Perkin Elmer Spectrum One and Spectrum Two instruments, respectively, and bond stretching frequencies are reported to the nearest whole number. The following abbreviations are used to denote relative absorption intensities: w (weak), m (medium), s (strong), vs (very strong). High-resolution mass spectrometry was conducted by the Joint Mass Spectrometry Facility at the Research School of Chemistry (ANU) using a Waters Synapt G2-Si HDMS LC-Q/TOF MS-MS spectrometer. Ion signals are reported to 4 d.p. and specific isotopomers are given for non-C,H,N,O elements. We thank Mrs Anitha Jeyasingham of the ANU for acquisition and processing of spectra. Elemental microanalytical data (duplicate runs) were provided by the Chemical Analysis Facility at the Department of Molecular Sciences, Macquarie University (NSW, Australia). Analyses are given to 2 d.p. Single crystal X-ray diffraction was conducted at 150 K on an Agilent Technologies Supernova equipped with a HyPix 6000HE detector using Rigaku graphitemonochromatised Cu-K α radiation (λ = 1.5406 Å), or New Xcalibur equipped with an Atlas CCD detector using graphitemonochromatised Mo-K α radiation (λ = 0.7107 Å). Selected crystals were mounted in oil on nylon loops and fixed under a cold stream of nitrogen. Data were processed within the CrysAlisPRO-CCD and -RED software packages.⁴ Structures were solved within Olex25 with SHELXT using intrinsic phasing and refined with SHELXL⁶ using full-matrix least-squares against F² in an anisotropic (for non-hydrogen atoms) approximation. Hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{iso}(H)$ parameters fixed to 1.2 (for aromatic hydrogens) or 1.5 (for aliphatic hydrogens) $U_{eq}(C_i)$, where $U_{eq}(C_i)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Specific absorption correction methods are stated for each crystalline sample in the accompanying text. POV-RAY images of crystal structures were rendered in ORTEP-3 (v2020.1)⁷ or Mercury.⁸ We thank Dr Michael Gardiner of the ANU for helpful discussion and assistance.

1.2 Synthesis of homoleptic cyanometallate salts

As these intermediates were identical or similar to previously reported salts, elemental microanalytical data were not pursued.

The procedure is a slight modification of that previously described by King³. To a solution of $Na[N(SiMe_3)_2]$ in toluene was added one equivalent of the appropriate homoleptic metal carbonyl ([Cr(CO)₆], [Mo(CO)₆], [W(CO)₆] or [Fe(CO)₅]) at ambient temperature resulting in pale-yellow suspensions after the prescribed time. For Cr, Mo, and W the mixtures were

ELECTRONIC SUPPORTING INFORMATION

vigorously stirred for 48—72 hours (extended reaction times are due to the moderate solubility of the metal carbonyls in toluene), whereas for Fe only 16 hours reaction time was required. The supernatants were then decanted, and the solids were re-suspended in fresh toluene and collected on a mediumporosity frit under argon. Copious washing with toluene then *n*hexane followed by drying *in vacuo* afforded the cyanometallate salts as air-sensitive solids which were stored in an argon-filled glovebox. All are soluble in donor solvents including THF, Et₂O, acetone, acetonitrile, TMEDA, DME, and water. Proton NMR spectra with 4-iodoanisole as an internal standard confirmed the as-isolated products were unsolvated. **Caution should be exercised when handling these metal cyanide salts as their toxicological properties are unknown**.

1.2.1 Na[Cr(CN)(CO)₅]

Quantities used: 4.00 g Na[N(SiMe₃)₂] (21.8 mmol), 4.80 g [Cr(CO)₆] (21.8 mmol). The product is encountered as a white solid which is pale yellow in solution. Isolated yield: 4.70 g (19.4 mmol, 88%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) *quiescent*; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ_{C} = 222.0 (*C*O_{ax}), 219.0 (*C*O_{eq}) 153.0 (*C*N) ppm. IR (THF, 25 °C): v_{CO} 2054(w), 1928(vs), 1898(s) cm⁻¹, v_{CN} 2112(w) cm⁻¹; IR (ATR, 25 °C): v_{CO} 2069(w), 1965(vs), 1892(vs), 1800(vs) cm⁻¹, v_{CN} 2110(s) cm⁻¹.

1.2.2 Na[Mo(CN)(CO)₅]

Quantities used: 4.00 g Na[N(SiMe₃)₂] (21.8 mmol), 5.76 g $[Mo(CO)_6]$ (21.8 mmol). The product is encountered as a white solid which is pale yellow in solution. Isolated yield: 5.20 g (18.2 mmol, 83%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) *quiescent*; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ 211.7 (*C*O_{ax}), 207.3 (*C*O_{eq}), 148.5 (*C*N) ppm. IR (THF, 25 °C): v_{CO} 2060(w), 1930(vs), 1899(s) cm⁻¹, v_{CN} 2114(w) cm⁻¹; IR (ATR, 25 °C): v_{CO} 2075(w), 1968(vs), 1898(vs), 1799(vs) cm⁻¹, v_{CN} 2113(w) cm⁻¹.

1.2.3 Na[W(CN)(CO)₅]

Quantities used: 5.00 g Na[N(SiMe₃)₂] (27.2 mmol), 9.60 g $[W(CO)_6]$ (27.2 mmol). The product is encountered as a white solid which is pale yellow in solution. Isolated yield: 9.30 g (24.9 mmol, 92%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) *quiescent*; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ_{C} = 201.0 (¹*J*_{WC} = 140.6 Hz, *C*O_{ax}), 197.5 (¹*J*_{WC} = 123.7 Hz, *C*O_{eq}) 139.8 (¹*J*_{WC} = 92.6 Hz, *C*N) ppm. IR (THF, 25 °C): v_{CO} 2058(w), 1922(vs), 1896(s) cm⁻¹, v_{CN} 2117(w) cm⁻¹; IR (ATR, 25 °C): v_{CO} 2073(w), 1957(vs), 1884(vs), 1792(vs) cm⁻¹, v_{CN} 2116(s) cm⁻¹.

1.2.4 Na[Fe(CN)(CO)₄]

Quantities used: $3.00 \text{ g Na}[N(SiMe_3)_2]$ (16.3 mmol), 2.20 mL [Fe(CO)₅] (17 mmol). The product is encountered as a light brown solid which is light orange in solution. Isolated yield: 6.30 g (29.0 mmol, 85%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) *quiescent*; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ_c = 217.0 (*C*0), 144.1 (*C*N) ppm. IR (THF, 25 °C):

 ν_{CO} 2038(s), 1950(s), 1930(vs) cm⁻¹, ν_{CN} 2120(w) cm⁻¹; the compound was too air sensitive for ATR IR measurements, where rapid oxidation occurred (signalled by a dark brown cast forming on the sample almost instantly) and ν_{CO} and ν_{CN} assignments could not be made in confidence.

1.2.5 [LiW(μ-CN)(CO)₅·TMEDA]₂

A solution of Li[N(SiMe₃)₂] in 25 mL THF was prepared from 0.60 mL HN(SiMe₃)₂ (2.8 mmol) and 1.2 mL *n*-BuLi solution (2.8 mmol, 2.5 M in hexanes) at 0 °C. To this was added 0.50 mL tmeda (3.1 mmol) and 1.00 g [W(CO)₆] (2.8 mmol) and the mixture stirred overnight, becoming light yellow. After this time volatiles were removed under reduced pressure and the residue triturated in *n*-hexane resulting in precipitation of off-white solids which were collected on a glass frit under argon and washed copiously with *n*-hexane and dried *in vacuo*. Isolated yield: 0.87 g (0.91 mmol, 65%). Encountered as an off-white solid which is pale yellow in solution. A ¹H NMR spectrum containing a known quantity of 4-iodoanisole as an internal standard confirmed the product to be (empirically) a TMEDA monosolvate.

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) δ_{H} = 2.35 (s, 4H, C₂H₄), 2.22 (s, 12H, CH₃) ppm; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ_{C} = 200.9 (¹J_{WC} = 139.1 Hz, CO_{ax}), 197.8 (¹J_{WC} = 125.0 Hz, CO_{eq}), 141.8 (¹J_{WC} = 93.1 Hz, CN), 57.4 (C₂H₄), 46.1 (CH₃) ppm. IR (THF, 25 °C) v_{CO} 2059(m), 1925(vs), 1900(s) cm⁻¹, v_{CN} 2123(w) cm⁻¹; IR (ATR, 25 °C) v_{CO} 2053(s), 1984(s), 1880(vs, br) cm⁻¹, v_{CN} 2108(m) cm⁻¹.

Single crystals were grown by layering a THF solution with *n*hexane at -30 °C. The TMEDA ethylene bridge was disordered over two positions in a ca 80:20 occupancy ratio, and the minor component was modelled isotropically. The asymmetric unit contains one-half of a dimeric complex. Crystal Data for $C_{24}H_{32}Li_2N_6O_{10}W_2$ ($M_w = 946.13 \text{ gmol}^{-1}$): colourless prism 0.42 × 0.19×0.11 mm, triclinic, space group P-1 (no. 2), a = 8.71120(10) Å, b = 10.7852(2) Å, c = 11.3689(2) Å, $\alpha =$ $112.5180(10)^{\circ}$, $\beta = 111.564(2)^{\circ}$, $\gamma = 93.9840(10)^{\circ}$, V =889.73(3) Å³, Z = 1, spherical correction $T_{min}/T_{max} = 0.183/0.277$, μ (Cu-K α) = 12.236 mm⁻¹, ρ_{calc} = 1.766 Mgm⁻³, 10566 reflections measured (9.154° $\leq 2\Theta \leq 156.102^{\circ}$), 3729 unique ($R_{int} = 0.0422$, R_{sigma} = 0.0308) which were used in all calculations against 218 parameters. The final R_1 was 0.0362 ($I > 2\sigma(I)$) and wR_2 was 0.0945 (all data), $GOF(F^2) = 1.055$, $D_{min}/D_{max} = -2.72/1.21 \text{ e}\text{\AA}^{-3}$. CCDC number 2403970.

Figure S1: Molecular structure of centrosymmetric $\{Li(tmeda)[1_w]\}2$.

1.2.6 [LiFe(μ-CN)(CO)₄·tmeda]₂

Prepared and purified as described above, except Et_2O was used as the reaction medium. Quantities used: 3.0 mL *n*-BuLi solution (7.6 mmol, 2.5 M in hexanes), 1.6 mL HN(SiMe₃)₂ (7.6 mmol), 1.2 mL tmeda (8.0 mmol), 1.0 mL [Fe(CO)₅] (7.6 mmol). Isolated yield: 1.8 g (2.7 mmol, 71%). Encountered as a pale yellow solid which is yellow in solution.

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) δ 2.36 (s, 4H, C₂H₄), 2.23 (s, 12H, CH₃) ppm; ¹³C{¹H} (CD₃CN, 400 MHz, 25 °C) δ 217.0 (CO), 146.4 (CN), 57.4 (C₂H₄), 46.0 (CH₃) ppm. IR (THF, 25 °C) v_{CO} 2040(s), 1954(s), 1933(vs) cm⁻¹, v_{CN} 2126(w) cm⁻¹; IR (ATR, 25 °C) v_{CO} 2036(s), 1929(vs, br) cm⁻¹, v_{CN} 2107(m) cm⁻¹.

Single crystals were grown by layering a THF solution with *n*-hexane at -30 °C. The selected crystal proved to be twinned, and data was processed accordingly. The asymmetric unit contains one-half of a dimeric molecule. *Crystal data for* $C_{22}H_{32}Fe_2Li_2N_6O_8$ ($M_w = 634.11$ gmol⁻¹): colourless plate 0.269 × 0.105 × 0.061 mm, triclinic, space group *P*-1 (no. 2), *a* = 9.6531(15) Å, *b* = 9.7961(15) Å, *c* = 10.6609(13) Å, *α* = 116.394(14)°, *6* = 108.038(12)°, γ = 97.046(13)°, *V* = 817.6(2) Å³, *Z* = 1, multi-scan correction $T_{min}/T_{max} = 0.784/1.000$, μ (Mo-K α) = 0.934 mm⁻¹, ρ_{calc} = 1.288 Mgm⁻³, 8226 reflections measured (6.932° ≤ 20 ≤ 59.626°), 8226 unique (R_{sigma} = 0.0718) which were used in all calculations against 186 parameters. The final R_1 was 0.0644 (I > 2 σ (I)) and wR_2 was 0.1797 (all data), $GOF(F^2) = 0.944$, $D_{min}/D_{max} = -0.73/1.15$ e/Å³. CCDC number 2403969.

Figure S2: Molecular structure of centrosymmetric $\{Li(tmeda)[1_{Fe}]\}_2$.

Dimeric arrangements are found for {Li(tmeda)[$\mathbf{1}_{W}$]}₂ and {Li(tmeda)[$\mathbf{1}_{Fe}$]}₂ in the solid state with the cyanide *N*-termini bridging a pair of tetrahedral lithium cations; a crystallographic inversion centre is found at the midpoints of the (N1-Li1)₂ rhomboids which have side lengths *ca* 2.0 Å, and the metal-cyanide carbon distances of 2.161(7) (M = W) and 1.911(5) Å (M = Fe) are not especially remarkable. Formal C=N bonds are measured which are essentially indistinguishable between the two metals (*ca* 1.15–1.16 Å), as dictated by the modest π -acceptor character of the cyanide ligand (*viz.* the axial position

in $[\mathbf{1}_{Fe}]^{-}$) and in spite the disparate retrodative properties of the $W(CO)_5$ and $Fe(CO)_4$ centres.

1.3 Synthesis of heteroleptic cyanometallate salts

These cyanometallates were prepared and purified similarly to those above, except the mixtures in toluene were warmed to reflux for 16 h. **Caution should be exercised when handling these metal cyanide salts as their toxicological properties are unknown**.

1.3.1 Na[Fe(CN)(CO)₃(PPh₃)]

Quantities used: 1.00 g [Fe(CO)₄(PPh₃)] (2.4 mmol), 0.425 g Na[N(SiMe₃)₂] (2.34 mmol). The product is encountered as a beige solid which is dark orange in solution. Isolated yield: 0.80 g (1.77 mmol, 74%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) $\delta_{H} = 7.47 - 7.43$ (m, 6H, C₆H₅), 7.34 - 7.32 (m, 9H, C₆H₅) ppm; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) $\delta_{C} = 218.8$ (d, ²J_{PC} = 27.3 Hz, CO), 152.2 (d, ²J_{PC} = 6.8 Hz, CN), 138.5 (d, ¹J_{PC} = 43.0 Hz, *ipso*-C₆H₅), 133.8 (d, ²J_{PC} = 10.4 Hz, *ortho*-C₆H₅), 130.5 (*para*-C₆H₅), 128.9 (d, ⁴J_{PC} = 9.7 Hz, *meta*-C₆H₅) ppm; ³¹P{¹H} (CD₃CN, 162 MHz, 25 °C) $\delta_{P} = 84.3$ ppm. IR (THF) v_{CO} 1780(vs), 1726(s) cm⁻¹, v_{CN} 2117(w) cm⁻¹; IR (ATR) v_{CO} 1991(s), 1909(s), 1895(vs), 1845(vs), 1789(vs) cm⁻¹, v_{CN} 2070(s), 2060(s) cm⁻¹.

1.3.2 Na[Mn(CN)(CO)₂(η⁵-C₅H₅)]

Quantities used: 1.50 g $[Mn(CO)_3(\eta^5-C_5H_5)]$ (7.3 mmol), 1.35 g $Na[N(SiMe_3)_2]$ (7.3 mmol). Encountered as a beige solid which is dark yellow in solution. Isolated yield: 1.21 g (5.3 mmol, 72%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) δ_{H} = 4.41 (η^{5} -C₅H₅) ppm; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ_{C} = 236.4 (CO), 165.6 (CN), 82.1 (η^{5} -C₅H₅) ppm. IR (THF) v_{CO} 1915(vs), 1845(vs) cm⁻¹, v_{CN} 2075(m) cm⁻¹; IR (ATR) v_{CO} 2047(s), 1899(vs), 1836(s), 1820(vs) cm⁻¹, v_{CN} 2057(s) cm⁻¹.

1.3.3 Na[Re(CN)(CO)₂(η⁵-C₅H₅)]

Quantities used: 1.50 g [Re(CO)₃(η^5 -C₅H₅)] (4.4 mmol), 0.82 g Na[N(SiMe₃)₂] (4.4 mmol). Encountered as beige solid which is dark yellow in solution. Isolated yield: 1.30 g (3.6 mmol, 81%).

NMR: ¹H (CD₃CN, 400 MHz, 25 °C) δ 5.07 (η^{5} -C₅H₅) ppm; ¹³C{¹H} (CD₃CN, 201 MHz, 25 °C) δ 205.4 (CO), 133.1 (CN), 82.9 (η^{5} -C₅H₅) ppm. IR (THF) v_{CO} 1905(vs), 1836(vs) cm⁻¹, v_{CN} 2080(m) cm⁻¹; IR (ATR) v_{CO} 2058(s), 1890(vs), 1812(s), 1773(s) cm⁻¹, v_{CN} 2065(s) cm⁻¹.

1.4 General observations on cyanometallates

In CD₃CN solution the presumably nitrile-solvated Na[**1**_M] salts display ¹³C signals for the cyanide carbon nuclei in the neighbourhood of ~165—130 ppm (**Table**), with a lower chemical shift loosely correlating with increasing metal basicity *i.e.*, $[\mathbf{1}_{Mn}]^- > [\mathbf{1}_{cr}]^- > [\mathbf{1}_{Fe}]^- \approx [\mathbf{1}_{Fe}]^- > [\mathbf{1}_{Mo}]^- > [\mathbf{1}_{Re}]^- > [\mathbf{1}_W]^-$. The same overall trend is observed for the carbonyl ¹³C resonances. One-bond ¹⁴N, ¹³C couplings were not resolved (at 201 MHz) and

these signals appeared with moderate line-broadening, although for Na[1_w] ^{183}W satellites (l = $^{1}/_{2}$) are observed with $^{1}J_{WC}\approx$ 90 Hz (cf. $^{1}J_{WC}\approx$ 140—120 Hz for the carbonyl signals). Solution IR spectra (in THF) reveal a subtle but monotonous increase in v_{CN} energies with increasing metal d-occupancy, though the presence of an additional cyclopentadienyl ligand shifts v_{CN} to appreciably lower wavenumbers for $[1_{Mn}]^{-}$ and $[1_{Re}]^{-}$.

Table 31. Science specific scopic data for an examplification of the parent interest of the second s

	$\delta_{CN}{}^a$	δ _{co} ª	Vcn ^b	Vco ^b
Na[1 _{cr}]	153.0	222.0,	2112(w)	2054(w),
		219.0		1928(vs),
				1898(s)
Na[1 м₀]	148.5	211.7,	2114(w)	2060(w),
		207.3		1930(vs),
				1899(s)
Na[1w]	139.8 (¹ J _{WC}	201.0 (¹ J _{WC}	2117(w)	2058(w),
	= 92.6 Hz)	= 140.6 Hz),		1922(vs),
		197.5 (¹ J _{WC}		1896(s)
		= 123.7 Hz)		
$Na[1_{Fe}]$	144.1	217.0	2120(w)	2038(s),
				1950(s),
				1930(vs)
Na[1 _{Fe} ^P]	152.2 (² J _{PC} =	218.8 (² J _{PC} =	2117(w)	1780(vs),
	6.8 Hz)	27.3 Hz)		1726(m)
Na[1 _{Mn}]	165.3	236.4	2075(m)	1915(vs),
				1845(vs)
$Na[1_{Re}]$	133.1	205.4	2080(m)	1905(vs),
				1836(vs)

a) CD₃CN solution, 25 °C, ppm; b) THF solution, 25 °C, cm⁻¹.

1.4 Synthesis of pnictogeno-isonitrile complexes

1.4.1 Synthesis of $[M(CNA^tBu_2)(CO)_5]$ (M = Cr, Mo, W; A = P, As, Sb)

The procedure given here is broadly general for all combinations of metal "M" and pnictogen "A" described here. To a solution of Na[M(CO)₅(CN)] (Na[1_M]) in ca 50 mL THF cooled to 0 °C was added one equivalent of ClE^tBu₂, also dissolved in *ca* 5 mL THF. Mixtures were allowed to warm with stirring overnight to ambient temperature, becoming turbid although their colours did not noticeably change. After this time volatiles were removed in vacuo and the residues were extracted with 2:1 nhexane/Et₂O and purified by anaerobic flash chromatography on silica gel (10 x 5 cm; see note in General Considerations), eluting with the same solvent mixture (approximately 200-400 mL eluent was typically used depending on the scale of the reaction; the solvent should be rigorously deoxygenated). Slow concentration of the eluate under reduced pressure deposited the products as large colourless (A = P) or pale-yellow (A = As, Sb) crystals which were collected and dried. All [M(CNA^tBu₂)(CO)₅] are encountered as air-sensitive crystalline solids which are readily soluble in common organic solvents. All were stored at -30 °C in an argon-filled glovebox where they were indefinitely stable.

1.4.2 [Cr(CNP^tBu₂)(CO)₅]

Quantities used: 2.00 g Na[Cr(CO)₅(CN)] (8.30 mmol), 1.50 g ClP^tBu₂ (8.30 mmol). Isolated yield: 2.30 g (6.30 mmol, 76%).

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H} = 0.92$ (d, ³*J*_{PH} = 13.0 Hz, 18H, C(*CH*₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{\rm C} = 216.6$ (*CO*_{ax}), 215.0 (*CO*_{eq}) 189.0 (¹*J*_{NP} = 21.6 Hz, ²*J*_{PC} = 29.9 Hz, *C*N), 34.9 (d, ¹*J*_{PC} = 25.4 Hz, *C*(*CH*₃)₃), 27.3 (d, ²*J*_{PC} = 15.9 Hz, C(*CH*₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) $\delta_{\rm P} = 104.6$ (t, ¹*J*_{NP} = 59.2 Hz) ppm. IR (*n*-hexane, 25 °C): v_{CO} 2023(s), 1961(vs), 1932(s) cm⁻¹, v_{CN} 2102(w) cm⁻¹; IR (ATR, 25 °C): v_{CO} 2035(s), 1947(s), 1906(vs, br) cm⁻¹, v_{CN} 2105(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m/z* 364.0396 (calc. for C₁₄H₁₉NO₅P⁵²Cr [*M* + H]⁺: 364.0400). Analysis found 46.26% C, 5.63% H, 3.69% N (calc. for C₁₄H₁₈CrNO₅P: 46.29% C, 4.99% H, 3.86% N).

Single crystals were grown by slow evaporation of a benzene solution. The asymmetric unit comprises one-half of a molecule. *Crystal data for* $C_{14}H_{18}NO_5PCr$ ($M_w = 363.26 \text{ gmol}^{-1}$): colourless prism 0.547 × 0.244 × 0.118 mm, orthorhombic, space group *P*nma (no. 62), a = 21.7679(3) Å, b = 13.5735(2) Å, c = 5.92480(10) Å, V = 1750.58(5) Å³, Z = 4, spherical correction $T_{min}/T_{max} = 0.279/0.358$, $\mu(Cu-K\alpha) = 6.431 \text{ mm}^{-1}$, $\rho_{calc} = 1.378 \text{ Mgm}^{-3}$, 7056 reflections measured ($8.124^{\circ} \le 2\Theta \le 155.768^{\circ}$), 1919 unique ($R_{int} = 0.0555$, $R_{sigma} = 0.0384$) which were used in all calculations against 112 parameters. The final R_1 was 0.0379 ($I > 2\sigma(I)$) and wR_2 was 0.1100 (all data), $GOF(F^2) = 1.101$, $D_{min}/D_{max} = -0.61/0.51 \text{ eÅ}^{-3}$. CCDC number 2403973.

Figure S3: The molecular structure of 2_{CP} in a crystal. Hydrogen atoms omitted for clarity and ellipsoids shown at 50% displacement. Only one half of the molecule is crystallographically unique (in *Pnma*) due to the presence of an internal symmetry plane which bifurcates the Cr1, C1, N1 and P1 atoms. Selected distances (Å) and angles (°): Cr1-C1 1.973(2), C1-N1 1.165(3), N1-P1 1.725(2), Cr1-C1-N1 177.5(2), C1-N1-P1 178.5(2).

1.4.3 [Mo(CNP^tBu₂)(CO)₅]

Quantities used: 1.00 g Na[Mo(CO)₅(CN)] (3.50 mmol), 0.63 g ClP^tBu₂ (3.50 mmol). Isolated yield: 1.00 g (2.45 mmol, 71%).

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ = 0.91 (d, ³J_{PH} = 13.0 Hz, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{\rm C}$ = 206.4 (CO_{ax}), 204.0 (CO_{eq}), 179.9 (²J_{PC} = 30.7 Hz, CN; ¹J_{NC} unresolved), 34.8 (d, ¹J_{PC} = 24.6 Hz, C(CH₃)₃), 27.3 (d, ²J_{PC} = 15.4 Hz, C(CH₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) $\delta_{\rm P}$ = 103.5 (¹J_{NP} = 58.9 Hz)

ppm. IR (*n*-hexane, 25 °C) v_{C0} 2025(s), 1963(vs), 1934(s) cm⁻¹, v_{CN} 2104(w) cm⁻¹; IR (ATR, 25 °C) v_{C0} 2039(s), 1948(s), 1897(vs, br) cm⁻¹, v_{CN} 2107(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m/z* 410.0044 (calc. for C₁₄H₁₉NO₅P⁹⁸Mo [M + H]⁺: 410.0049). Analysis found 39.80% C, 5.10% H, 2.80% N (calc. for C₁₄H₁₈MoNO₅P: 41.29% C, 4.49% H, 3.44% N). Satisfactory microanalytical data not acquired, most likely due to adventitious oxidation.

Single crystals were grown by slow evaporation of benzene solution. The asymmetric unit comprises one-half of a molecule. *Crystal data for* $C_{14}H_{18}Mo_1N_1O_5P_1$ ($M_w = 407.20$ gmol⁻¹): colourless block $0.45 \times 0.319 \times 0.169$ mm, orthorhombic, space group *P*nma (no. 62), a = 22.1456(2) Å, b = 13.6345(2) Å, c = 5.93730(10) Å, V = 1792.73(4) Å³, Z = 4, spherical correction $T_{min}/T_{max} = 0.183/0.277$, $\mu(Cu-K\alpha) = 7.016$ mm⁻¹, $\rho_{calc} = 1.509$ Mgm⁻³, 7801 reflections measured ($7.984^\circ \le 2\Theta \le 156.02^\circ$), 1971 unique ($R_{int} = 0.0377$, $R_{sigma} = 0.0240$) which were used in all calculations against 112 parameters. The final R_1 was 0.0328 ($I > 2\sigma(I)$) and wR_2 was 0.0904 (all data), $GOF(F^2) = 1.111$, $D_{min}/D_{max} = -1.11/0.43$ eÅ⁻³. CCDC number 2403976.

Figure S4: The molecular structure of 2_{MoP} in a crystal. Hydrogen atoms omitted for clarity and ellipsoids shown at 50% displacement. Only one half of the molecule is crystallographically unique (in *Pnma*) due to the presence of an internal symmetry plane which bifurcates the Mo1, C1, N1 and P1 atoms. Selected distances (Å) and angles (°): Mo1-C1 2.130(3), C1-N1 1.156(4), N1-P1 1.728(3), Mo1-C1-N1 176.6(3), C1-N1-P1 178.4(3)

1.4.4 [W(CNP^tBu₂)(CO)₅]

Quantities used: 2.60 g Na[W(CO)₅(CN)] (6.90 mmol), 1.25 g ClP^tBu₂ (6.90 mmol). Isolated yield: 2.40 g (4.8 mmol, 70%). The reaction was repeated a further three times (on smaller scales) with isolated yields typically 60-70%.

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{H} = 0.89$ (d, ³J_{PH} = 12.9 Hz, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{C} = 196.1$ (¹J_{WC} = 132.2 Hz, CO_{ax}), 194.3 (¹J_{WC} = 124.2 Hz, CO_{eq}), 168.9 (¹J_{NC} = 25.9 Hz, ²J_{PC} = 29.3 Hz, CN; ¹J_{WC} unresolved), 35.0 (d, ¹J_{PC} = 15.0 Hz, C(CH₃)₃), 27.3 (d, ²J_{PC} = 15.4 Hz, C(CH₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) $\delta_{P} = 103.4$ (¹J_{NP} = 59.5 Hz) ppm. IR (*n*-hexane, 25 °C): v_{CO} = 2020(s), 1957(vs), 1928(w) cm⁻¹, v_{CN} = 2107(w) cm⁻¹. IR (ATR, 25 °C): v_{CO} 2035(s), 1942(s), 1894(vs, br) cm⁻¹, v_{CN} 2109(s) cm⁻¹. HR-MS (EI, MeCN, +ve ion) found *m*/*z* 495.0442 (calc. for C₁₄H₁₈NO₅P¹⁸⁴W [*M*]⁺: 495.0432). Analysis found 34.56% C, 3.85% H, 2.72% N (calc. for C₁₄H₁₈NO₅PW: 33.96% C, 3.66% H, 2.83% N). Satisfactory microanalytical data not acquired, most likely due trace contamination with HPO'Bu_2 (see Figure S53 Calc for $C_8H_{19}PO$: 59.24% C, 11.81% H).

Single crystals were grown by slow evaporation of *n*-pentane solution at -30 °C. The asymmetric unit comprises onehalf of a molecule. *Crystal data for* C₁₄H₁₈NO₅PW (M_w = 495.11 gmol⁻¹): colourless plate 0.26 × 0.1 × 0.02 mm, orthorhombic, space group *P*nma (no. 62), *a* = 22.1015(3) Å, *b* = 13.5912(2) Å, *c* = 5.92670(10) Å, *V* = 1780.30(5) Å³, *Z* = 4, Gaussian correction T_{min}/T_{max} = 0.127/1.000, μ (Cu-K α) = 13.064 mm⁻¹, ρ_{calc} = 1.847 Mgm⁻³, 21172 reflections measured (8° ≤ 2Θ ≤ 156.164°), 1978 unique (R_{int} = 0.0851, R_{sigma} = 0.0408) which were used in all calculations against 112 parameters. The final R_1 was 0.0338 ($I > 2\sigma(I)$) and wR_2 was 0.0902 (all data), $GOF(F^2)$ = 1.052, D_{min}/D_{max} = -1.65/1.29 e/Å³. CCDC number 2403979. For the molecular geometry see Figure 2 in main article.

1.4.5 [W(CNAs^tBu₂)(CO)₅]

Quantities used: 1.60 g Na[W(CO)₅(CN)] (4.30 mmol), 0.90 g ClAs^tBu₂ (4.00 mmol). Isolated yield: 1.60 g (3.00 mmol, 75%).

NMR: ¹H (C_6D_6 , 400 MHz, 25 °C) δ_H = 0.91 (s, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C_6D_6 , 201 MHz, 25 °C) δ_C =196.6 (¹J_{WC} = 135.3 Hz, CO_{ax}), 194.9 (¹J_{WC} = 124.6 Hz, CO_{eq}), 165.3 (¹J_{WC} = 109.4 Hz, CN; ¹J_{NC} unresolved), 40.6 (*C*(CH₃)₃), 27.4 (C(CH₃)₃) ppm. IR (*n*-hexane, 25 °C) v_{CO} 2027(s), 1953(vs), 1924(s) cm⁻¹, v_{CN} 2108(w) cm⁻¹; IR (ATR, 25 °C) v_{CO} 2042(s), 1937(s), 1892(vs, br) cm⁻¹, v_{CN} 2112(s) cm⁻¹. HR-MS (EI, MeCN, +ve ion) found *m*/*z* 539.9973 (calc. for C₁₄H₁₉NO₅⁷⁵As¹⁸⁴W [*M* + H]⁺: 539.9983). Analysis found 31.23% C, 3.60% H, 2.30% N (calc. for C₁₄H₁₈AsNO₅W: 31.19% C, 3.37% H, 2.60% N).

Single crystals were grown by slow evaporation of benzene solution. The asymmetric unit comprises one-half of a molecule. *Crystal data for* C₁₄H₁₈NO₅AsW ($M_w = 539.06 \text{ gmol}^{-1}$): yellow prism 0.33 × 0.231 × 0.049 mm, orthorhombic, space group *P*nma (no. 62), a = 22.2713(2) Å, b = 13.80740(10) Å, c = 5.94700(10) Å, V = 1828.75(4) Å³, Z = 4, spherical correction $T_{min}/T_{max} = 0.269/0.349$, μ (Cu-K α) = 13.901 mm⁻¹, $\rho_{calc} = 1.958$ Mgm⁻³, 7592 reflections measured (7.94° $\leq 2\Theta \leq 156.102°$), 2010 unique ($R_{int} = 0.0292$, $R_{sigma} = 0.0225$) which were used in all calculations against 112 parameters. The final R_1 was 0.0351 ($I > 2\sigma(I)$) and wR_2 was 0.0944 (all data), $GOF(F^2) = 1.124$, $D_{min}/D_{max} = -1.35/2.70$ eÅ⁻³. CCDC number 2403977. For the molecular geometry see Figure 2 in main article.

1.4.6 [W(CNSb^tBu₂)(CO)₅]

Quantities used: 1.00 g Na[W(CO)₅(CN)] (2.68 mmol), 0.73 g ClSb^tBu₂ (2.68 mmol). Isolated yield: 1.04 g (1.77 mmol, 66%).

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ =1.04 (s, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{\rm C}$ = 196.9 (¹*J*_{WC} = 135.2 Hz, CO_{ax}), 195.2 (¹*J*_{WC} = 125.1 Hz, CO_{eq}), 167.0 (¹*J*_{WC} = 96.6 Hz, CN; ¹*J*_{NC} unresolved), 41.2 (*C*(CH₃)₃), 28.7 (*C*(CH₃)₃) ppm. IR (*n*-hexane, 25 °C) v_{C0} 2023(s), 1951(vs), 1922(w) cm⁻¹, v_{CN} 2104(w) cm⁻¹; IR (ATR, 25 °C) v_{C0} 2039(s), 1933(vs), 1889(vs) cm⁻¹, v_{CN} 2109(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m/z* 584.9193 (calc. for C₁₄H₁₈NO₅¹²¹Sb¹⁸⁴W [*M*]⁺: 584.9732). Analysis found

28.71% C, 3.16% H, 2.31% N (calc. for $C_{14}H_{18}NO_5SbW$: 28.70% C, 3.10% H, 2.39% N).

Single crystals were grown by slow evaporation of benzene solution. The asymmetric unit comprises one-half of a molecule. *Crystal data for* C₁₄H₁₈NO₅SbW ($M_w = 585.89 \text{ gmol}^{-1}$): colourless prism 0.492 × 0.152 × 0.098 mm, orthorhombic, space group *P*nma (no. 62), a = 22.5380(2) Å, b = 14.13850(14) Å, c = 6.04179(5) Å, V = 1925.24(3) Å³, Z = 4, spherical correction $T_{min}/T_{max} = 0.043/0.143$, μ (Cu-K α) = 22.182 mm⁻¹, $\rho_{calc} = 2.021 \text{ Mgm}^{-3}$, 8281 reflections measured (7.846° $\leq 2\Theta \leq 156.078°$), 2113 unique ($R_{int} = 0.0385$, $R_{sigma} = 0.0269$) which were used in all calculations against 112 parameters. The final R_1 was 0.0362 ($I > 2\sigma(I)$) and wR_2 was 0.1003 (all data), $GOF(F^2) = 1.070$, $D_{min}/D_{max} = -0.74/1.55 \text{ eÅ}^{-3}$. CCDC number 2403980. For the molecular geometry see Figure 2 in main article.

1.4.7 [Fe(CNP^tBu₂)(CO)₄]

This compound was prepared similarly to the Group 6 congeners, however decomposes rapidly on contact with silica gel forming immobile materials. Instead, the dried reaction residue was extracted with portions of *n*-pentane and filtered through a Celite® plug (2.5 x 2.5 cm) under positive pressure of argon. Concentration of the filtrate and storage at -20 °C overnight deposited large dark orange crystals which were isolated and dried *in vacuo*. The product is air-sensitive and readily soluble in common organic solvents. The product was stored at -30 °C in an argon-filled glovebox; samples kept at ambient temperature for extended periods of time (> 24 h) slowly acquired a brown cast though without noticeable change to the NMR spectra.

Quantities used: $1.00 \text{ g Na}[Fe(CO)_4(CN)]$ (4.60 mmol), 0.80 g ClP⁴Bu₂ (4.4 mmol). Isolated yield: 0.75 g (1.6 mmol, 43%). The reaction was repeated a further two times (on smaller scales) with isolated yields *ca* 30—40%. The reduced yields here compared to the Group 6 complexes are probably due to losses incurred by fractional re-crystallisation.

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{H} = 0.92$ (d, ³ $J_{PH} = 13.1$ Hz, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{C} = 213.1$ (CO), 183.8 (¹ $J_{NC} = 29.9$ Hz, ² $J_{PC} = 29.7$ Hz, CN), 35.2 (d, ¹ $J_{PC} = 25.7$ Hz, C(CH₃)₃), 27.3 (d, ² $J_{PC} = 15.5$ Hz, C(CH₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) $\delta_{P} = 108.7$ (¹ $J_{NP} = 60.2$ Hz) ppm. IR (*n*-hexane, 25 °C): v_{CO} 2034(vs), 1998(s), 1970(vs), 1935(m) cm⁻¹, v_{CN} 2110(w) cm⁻¹; IR (ATR, 25 °C): v_{CO} 2033(vs), 1986(s), 1941(vs, br) cm⁻¹, v_{CN} 2114(s) cm⁻¹. HR-MS (EI, MeCN, +ve ion) found *m/z* 339.0331 (calc. for C₁₃H₁₈NO₄⁵⁶Fe³¹P, [*M*]⁺: 339.0323). Satisfactory elemental microanalysis could not be obtained due to thermal and aerobic instability such that samples consistently underestimated carbon content by ~5%.

Single crystals were grown by slow evaporation of *n*-pentane solution at -30 °C. *Crystal data for* C₁₃H₁₈FeNO₄P (M_w = 339.10 gmol⁻¹): orange prism 0.215 × 0.21 × 0.115 mm, orthorhombic, space group *P*bcn (no. 60), *a* = 20.8819(5) Å, *b* = 10.0111(3) Å, *c* = 16.0053(4) Å, *V* = 3345.92(15) Å³, *Z* = 8, spherical correction T_{min}/T_{max} = 0.308/0.383, μ (Cu-K α) = 8.237 mm⁻¹, ρ_{calc} = 1.346 Mgm⁻³, 13826 reflections measured (8.468°

 $\leq 2\Theta \leq 156.258^{\circ}$), 3503 unique ($R_{int} = 0.0508$, $R_{sigma} = 0.0435$) which were used in all calculations against 187 parameters. The final R_1 was 0.0461 ($I > 2\sigma(I)$) and wR_2 was 0.1360 (all data), $GOF(F^2) = 1.063$, $D_{min}/D_{max} = -0.55/0.40$ eÅ⁻³. CCDC number 2403975. For the molecular geometry, see Figure 5 in the main article.

1.4.8 trans-[Fe(CNP^tBu₂)(CO)₃(PPh₃)]

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ = 7.77—7.72 (m, 6H, C₆H₅), 7.00—6.98 (m, 9H, C₆H₅), 1.05 (d, ³J_{PH} = 12.7 Hz, 18H, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) $\delta_{\rm C}$ = 215.4 (d, ²J_{PC} = 27.5 Hz, CO), 194.2 (overlapping dd, ²J_{PtBu2C} ≈ ²J_{PPh3C} ≈ 28 Hz, CN), 136.2 (d, ¹J_{PC} = 46.2 Hz, *ipso*-P(C₆H₅)₃), 133.7 (d, ³J_{PC} = 10.6 Hz, *meta*-P(C₆H₅)₃), 130.5 (d, ⁴J_{PC} = 1.5 Hz, *para*-P(C₆H₅)₃), 128.6 (d, ²J_{PC} = 10.0 Hz, *ortho*-P(C₆H₅)₃), 35.1 (d, ¹J_{PC} = 25.1 Hz, C(CH₃)₃), 27.6 (d, ²J_{PC} = 15.6 Hz, C(CH₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) $\delta_{\rm P}$ = 102.6 (¹J_{NP} = 57.4 Hz, CNP), 77.7 (PPh₃) ppm. IR (*n*-hexane, 25 °C) v_{CO} 1974(s), 1962(m), 1934(s), 1921(vs) cm⁻¹, v_{CN} 2060(s), 2041(m) cm⁻¹; IR (ATR, 25 °C) v_{CO} 1969(s), 1899(vs), 1872(s) cm⁻¹, v_{CN} 2061(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m*/*z* 574.1343 (calc. for C₂₀H₃₄NO₃P₂⁵⁶Fe [*M* + H]⁺: 574.1357). Analysis found 62.68% C, 6.08% H, 2.19% N (calc. for C₃₀H₃₃FeNO₃P₂: 62.84% C, 5.80% H, 2.44% N).

Single crystals were grown by layering a CH_2Cl_2 solution with *n*-hexane at -30 °C. The asymmetric unit contains one-half of an *n*-hexane solvate molecule. Crystal data for $C_{30}H_{33}NO_{3}P_{2}Fe \cdot 0.5C_{6}H_{14}$ (*M*_w = 616.45 gmol⁻¹): yellow prism $0.807 \times 0.299 \times 0.212$ mm, monoclinic, space group $P2_1/c$ (no. 14), a = 17.9002(17) Å, b = 10.5291(9) Å, c = 18.4283(19) Å, $\theta =$ 110.203(12)°, V = 3259.5(6) Å³, Z = 4, multi-scan correction $T_{\rm min}/T_{\rm max}$ = 0.919/1.000, μ (Mo-K α) = 0.593 mm⁻¹, $\rho_{\rm calc}$ = 1.256 Mgm⁻³, 34437 reflections measured (7.138° \leq 2 Θ \leq 59.228°), 7761 unique (*R*_{int} = 0.0527, *R*_{sigma} = 0.0508) which were used in all calculations against 368 parameters. The final R_1 was $0.0498 (I > 2\sigma(I))$ and wR_2 was 0.1348 (all data), $GOF(F^2) = 1.046$, D_{min}/D_{max} = -0.42/0.50 eÅ⁻³. CCDC number 2403974. For the molecular geometry, see Figure 5 in the main article

1.4.9 [Mn(CNP^tBu₂)(CO)₂(η⁵-C₅H₅)]

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) δ_{H} = 4.22 (s, 5H, η^{5} -C₅H₅), 1.07 (³J_{PH} = 12.5 Hz, C(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) δ_{C} = 229.5 (CO), 206.4 (d, ²J_{PC} = 26.6 Hz, CN), 82.2 (η^{5} -C₅H₅), 35.1 (d, ¹J_{PC} = 24.8 Hz, C(CH₃)₃), 27.6 (d, ²J_{PC} = 15.8 Hz, C(CH₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) δ_{P} = 100.2 (¹J_{NP} = 55.8 Hz) ppm. IR (*n*-hexane, 25 °C) v_{CO} 1937(vs), 1915(vs) cm⁻¹, v_{CN} 2027(s) cm⁻¹; IR (ATR, 25 °C) v_{CO} 1917(s), 1879(vs), 1853(s) cm⁻¹, v_{CN} 2066(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m*/*z* 348.0905 (calc. for C₁₆H₂₄NO₂P⁵⁵Mn [*M* + H]⁺: 348.0917). Analysis found 55.44% C, 6.60% H, 3.95% N (calc. for C₁₆H₂₃MnNO₂P: 55.34% C, 6.68% H, 4.03% N).

Single crystals were grown by evaporation of an *n*-hexane solution at -30 °C. *Crystal data for* C₁₆H₂₃NO₂PMn (*M* = 347.26 gmol⁻¹): yellow prism 0.36 × 0.23 × 0.09 mm, monoclinic, space group $P2_1/c$ (no. 14), a = 10.3531(6) Å, b = 6.3326(3) Å, c = 26.3915(13) Å, $b = 91.390(5)^\circ$, V = 1729.77(16) Å³, Z = 4, multiscan correction $T_{min}/T_{max} = 0.713/1.000$, μ (Mo-Kα) = 0.859 mm⁻

¹, $\rho_{calc} = 1.333 \text{ Mgm}^{-3}$, 22496 reflections measured (4.944° $\leq 2\Theta \leq 61.776^{\circ}$), 4339 unique ($R_{int} = 0.0881$, $R_{sigma} = 0.0641$) which were used in all calculations against 196 parameters. The final R_1 was 0.0444 ($I > 2\sigma(I)$) and wR_2 was 0.1017 (all data), $GOF(F^2) = 1.020$, $D_{min}/D_{max} = -0.34/0.51 \text{ e/Å}^3$. CCDC number 2403971. For the molecular geometry, see Figure 4 in the main article.

1.4.10 [Re(CNP^tBu₂)(CO)₂(η⁵-C₅H₅)]

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) δ_{H} = 4.66 (s, 5H, η^{5} -C₅H₅), 1.09 (d, ³*J*_{PH} = 12.5 Hz, 18H, C(*C*H₃)₃) ppm; ¹³C{¹H} (C₆D₆, 201 MHz, 25 °C) δ_{C} = 198.5 (*C*O), 172.3 (²*J*_{PC} = 24.4 Hz, *C*N), 83.5 (η^{5} -C₅H₅), 35.2 (d, ¹*J*_{PC} = 24.8 Hz, *C*(CH₃)₃), 27.7 (d, ²*J*_{PC} = 15.7 Hz, C(*C*H₃)₃) ppm; ³¹P{¹H} (C₆D₆, 162 MHz, 25 °C) δ_{P} = 98.7 (¹*J*_{NP} = 53.4 Hz) ppm. IR (*n*-hexane, 25 °C) ν_{CO} 1930(vs), 1909(vs) cm⁻¹, ν_{CN} 2031(s) cm⁻¹; IR (ATR, 25 °C) ν_{CO} 1904(vs), 1864(vs) cm⁻¹, ν_{CN} 2030(s) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m*/*z* 480.1102 (calc. for C₁₆H₂₃NO₂P¹⁸⁷Re [*M*]⁺: 480.1103). Analysis found 40.09% C, 4.70% H, 2.86% N (calc. for C₁₆H₂₃NO₂PRe: 40.16% C, 4.84% H, 2.93% N).

Single crystals were grown by slow evaporation of an *n*-hexane solution at -30 °C. *Crystal data for* C₁₆H₂₃NO₂PRe (M_w = 478.52 gmol⁻¹): colourless block 0.341 × 0.233 × 0.195 mm, triclinic, space group *P*-1 (no. 2), *a* = 6.5007(4) Å, *b* = 10.3978(6) Å, *c* = 12.9967(6) Å, *a* = 91.653(4)°, *b* = 94.080(4)°, *y* = 93.172(5)°, *V* = 874.44(8) Å³, *Z* = 2, Gaussian correction T_{min}/T_{max} = 0.182/0.367, μ (Mo-K α) = 7.043 mm⁻¹, ρ_{calc} = 1.817 Mgm⁻³, 7683 reflections measured (6.828° ≤ 20 ≤ 58.546°), 3780 unique (R_{int} = 0.0476, R_{sigma} = 0.0799) which were used in all calculations against 190 parameters. The final R_1 was 0.0404 ($I > 2\sigma(I)$) and wR_2 was 0.0824 (all data), *GOF*(F^2) = 1.040, D_{min}/D_{max} = -2.13/1.35 eÅ⁻³. CCDC number 2403972. For the molecular geometry, see Figure 4 in the main article.

1.5 Synthesis of model isocyanide and nitrile complexes

1.5.1 [W(CNMes)(CO)₅] (Mes = C₆H₂Me₃-2,4,6)

A yellow solution of $[W(THF)(CO)_5]$ was prepared by UVphotolysis of 0.25 g $[W(CO)_6]$ (7.1 mmol) in 30 mL THF. To this was added 0.12 g CNMes (8.2 mmol, ~1.1 eq.) and the mixture allowed to stir at ambient temperature overnight. After this time volatiles were removed by rotary evaporation and the residue purified by flash column chromatography on silica gel (25 x 2.5 cm) with petroleum ether eluent giving a faint yellow band which was collected and dried. Re-crystallisation from *n*hexane at 0 °C deposited large colourless plates. Isolated yield: 0.25 g (5.3 mmol, 75%). The product is readily soluble in common organic solvents and is air stable.

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ = 6.36 (s, 2H, 3,5-C₆H₂Me₃), 1.93 (s, 6H, 2,6-C₆H₂(CH₃)₃), 1.92 (s, 3H, 4-C₆H₂(CH₃)₃) ppm; ¹³C{¹H} (C₆D₆, 176 MHz, 25 °C) $\delta_{\rm C}$ = 196.4 (¹J_{WC} = 133.2 Hz, CO_{3x}), 194.1 (¹J_{WC} = 126.5 Hz, CO_{eq}), 153.5 (CN, ¹J_{WC} and ¹J_{NC} unresolved), 139.0 (4-C₆H₂Me₃), 134.9 (2,6-C₆H₂Me₃), 128.7 (3,5-C₆H₂Me₃), 124.9 (1-C₆H₂Me₃), 20.9 (4-C₆H₂(CH₃)₃), 18.2 (2,6-C₆H₂(CH₃)₃) ppm. IR (*n*-hexane, 25 °C) v_{co} 2054(s), 1957(vs),

1926(s) cm⁻¹, v_{CN} 2134(w) cm⁻¹; IR (ATR, 25 °C) v_{CO} 2059(s), 1895 (vs, br) cm⁻¹, v_{CN} 2143(s) cm⁻¹.

Crystal data for C₁₅H₁₁NO₅W (M_w = 469.10 gmol⁻¹): 0.245 × 0.196 × 0.098 mm, monoclinic, space group $P2_1/n$, a = 9.21210(10) Å, b = 15.24780(10) Å, c = 11.81920(10) Å, b = 103.5200(10)°, V = 1614.17(3) Å³, Z = 4, Gaussian correction, μ (Cu-K α) = 13.468 mm⁻¹, ρ_{calc} = 1.930 Mgm⁻³, 12081 reflections measured (9.638° ≤ 2 Θ ≤ 156.284°), 3408 unique (R_{int} = 0.0218, R_{sigma} = 0.0181) which were used in all calculations against 202 parameters. The final R_1 was 0.0208 (I > 2 σ (I)) and wR_2 was 0.0553 (all data), $GOF(F^2)$ = 1.089, D_{min}/D_{max} = -1.22/0.46 eÅ⁻³. CCDC number 2403978.

Figure S5: The molecular structure of $[W(CNMes)(CO)_5]$ in a crystal. Hydrogen atoms omitted for clarity and ellipsoids shown at 50% displacement. Selected distances (Å) and angles (°): W1-C1 2.124(3), C1-N1 1.165(4), W1-C1-N1 175.6(2).

1.5.2 [W(NCPh)(CO)₅]

Prepared and purified in an identical manner to that above (1.5.1). Quantities used: 0.25 g $[W(CO)_6]$ (7.1 mmol), 0.15 g NCPh (14.2 mmol, 2 eq.). Re-crystallisation from *n*-hexane at 0 °C deposited large light-yellow plates. Isolated yield: 0.16 g (3.7 mmol, 52%). The product is readily soluble in common organic solvents and is air stable in solution for short periods of time.

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ = 6.81—6.77 (m, 1H, 4-C₆H₅), 6.57—6.53 (m, 2H, 3,5-C₆H₅), 6.45—6.41 (m, 2H, 2,6-C₆H₅) ppm; ¹³C{¹H} (C₆D₆, 176 MHz, 25 °C) $\delta_{\rm C}$ = 199.9 (¹J_{WC} = 152.8 Hz, CO_{ax}), 196.9 (¹J_{WC} = 129.7 Hz, CO_{eq}), 133.4 (4-C₆H₅), 132.5 (2,6-C₆H₅), 128.8 (3,5-C₆H₅), 124.7 (1-C₆H₅), 109.8 (NC) ppm. IR (*n*-hexane, 25 °C) $v_{\rm CO}$ 1946(vs), 1928(s) cm⁻¹, $v_{\rm CN}$ 2075(w) cm⁻¹; IR (ATR, 25 °C) $v_{\rm CO}$ 1888(vs, br) cm⁻¹, $v_{\rm CN}$ 2074(w) cm⁻¹.

Crystal data for C₁₂H₅NO₅W (M_w = 427.02 gmol⁻¹): 0.17 × 0.13 × 0.06 mm, monoclinic, space group $P2_1/c$, a = 10.33250(10) Å, b = 10.33250(10) Å, c = 9.66530(10) Å, δ = 100.7130(10)°, V = 1320.61(3) Å³, Z = 4, Gaussian correction, μ (Cu-K α) = 16.379 mm⁻¹, ρ_{calc} = 2.148 Mgm⁻³, 9690 reflections measured (8.71° ≤ 20 ≤ 155.736°), 2774 unique (R_{int} = 0.0327, R_{sigma} = 0.0301) which were used in all calculations against 172 parameters. The final R_1 was 0.0339 (I > 2 σ (I)) and wR_2 was

0.0891 (all data), $GOF(F^2) = 1.071$, $D_{min}/D_{max} = -1.15/2.77 \text{ e}\text{Å}^{-3}$. CCDC number 2403981.

Figure S6: The molecular structure of $[W(NCPh)(CO)_5]$ in a crystal. Hydrogen atoms omitted for clarity and ellipsoids shown at 50% displacement. Selected distances (Å) and angles (°): W1-N1 2.175(4), N1-C1 1.166(7), W1-N1-C1 177.8(4).

2 Computational Studies

Computational studies were performed by using the SPARTAN24 suite of programs.⁹ In the first instance, geometry optimisations (gas phase) were performed at the DFT level of theory using the exchange functional (M06-2X) of Truhlar.¹⁰ The Los Alamos effective core potential type basis set (LANL2Dζ) of Hay and Wadt¹¹ was used for W, Sb and Bi; the Pople 6-31G* basis sets¹² were used for all other atoms. Geometry optimisations and single-point energy calculations were performed at the M06-2X/6-31G*/LANL2Dζ(W,Sb,Bi) level; frequency calculations were performed to confirm that the optimized structures were local minima and to identify vibrational modes of interest. For the method's typical reflection of phenomenological Lewis bonds, Löwdin bond orders,¹³ which emphasise covalency were also calculated. The calculations follow a very similar form to the Wiberg indices, except using the Löwdin symmetrically orthogonalized basis set instead of the natural basis.

Tab	le S2 Data	a calcula	ated for	the mo	del com	plexes	[W(CNAMe ₂)(CO) ₅]. ^a	
A	Zw e ^b	Zc e	Z _A	r wc Å	Σ°A ^c °	Vc№ ^d	ν co ^{d,e}	f (A)
N	-0.06	0.19	-0.30	2.149	334.5	2164	2075, 2010, 1987 , 1979	0.07
Ρ	-0.06	0.24	1.09	2.122	294.3	2032 ^f	2108, ^f 2011, 1986 , 1981	0.03
As	-0.06	0.23	1.21	2.133	287.7	2036 ^f	2108, ^f 2009, 1980 , 1978	0.02
Sb	-0.06	0.21	1.53	2.136	279.7	2030 ^f	2105, ^f 2010, 1979 , 1979	0.02
Bi	-0.06	0.19	1.53	2.146	277.1	2040 ^f	2108, ^f 2009, 1978 , 1977	0.02
^a DF	T:M06-2	(/6-310	6*/LAN	L2Dζ(W	/,Sb,Bi)	/gas ph	ase. ^b 1 a.u. (e) = 0.1602 aC.	^c Angle

sum at pnictogen A. $d\lambda = 0.9297$. eA_1 mode corresponding to *trans* v_{C0} in bold. /Pronounced Fermi resonance.

Table S3	Löwdin Bo	ond Orders	along the O	-C-W-C-	-N-A spines of [W(CNAMe ₂)(CO) ₅]. ^a
A	0-с	C–W	w–c	C–N	N–E
N	2.58	1.31	1.02	2.60	1.20
Р	2.59	1.28	1.07	2.62	0.95
As	2.59	1.30	1.05	2.67	0.90
Sb	2.59	1.29	1.03	2.71	0.84
Bi	2.58	1.30	1.01	2.75	0.78

^a DFT:M06-2X/6-31G*/LANL2Dζ(W,Sb,Bi)/gas phase.

Observations: The bonding in the carbonyl ligand *trans* to the CNAMe₂ ligand is essentially invariant down the series, as the W–C bond of the CNAMe₂ ligand. A rather monotonic decrease in the N–A bond order down the group is accompanied by a rather modest increase in the CN multiple bonding.

2.1 [W(CNNMe₂)(CO)₅]

Figure S7. Optimised geometry for $[W(CNNMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D ζ (W) level of DFT. Selected distances (Å) and angles (°): W–C 2.149, C–N 1.169, N–N 1.347, W–C–N 179.7. C–N–N 176.0.

Table S4. Cartesian Coordinates for [V	W(CNNMe ₂)(CO) ₅]
--	---

Atom	x	У	z
W	-2.036839	-0.076090	0.751499
Ν	2.131821	-0.078342	-1.338100
Ν	0.957037	-0.078318	-0.678845
0	-2.999844	2.197181	-1.297663
0	-1.059230	-2.343776	2.796775
С	-0.099225	-0.077654	-0.178816
С	-2.653290	1.384673	-0.569756
С	-1.404547	-1.533062	2.065169
С	3.044446	-1.070410	-0.761811
0	-4.910753	-0.071626	2.123501
С	-3.875396	-0.073120	1.628139
0	-3.004644	-2.348421	-1.296806
0	-1.056367	2.191223	2.796000
С	-2.656523	-1.536028	-0.569331
С	-1.402067	1.380809	2.064338
С	2.693756	1.274809	-1.385814
Н	1.965488	1.941872	-1.848021
Н	2.954741	1.645592	-0.385658
Н	3.588503	1.234658	-2.009413
Н	3.936360	-1.096710	-1.389857
Н	3.324510	-0.819359	0.269926
н	2.562062	-2.047902	-0.785457

ELECTRONIC SUPPORTING INFORMATION

Table S5. Thermodynamic data (298.15 K) for $[W(CNNMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D_2(W)

Zero Point Energy :	358.26 kJ/mol
Temperature Correction :	42.79 kJ/mol
Enthalpy Correction :	401.05 kJ/mol
Enthalpy :	-861.354002 au
Entropy :	514.56 J/mol•K
Gibbs Energy :	-861.412434 au
C _v :	267.22 J/mol•K

Table S7. Thermodynamic data (298.15 K) for $[W(CNPMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D_2(W)

Zero Point Energy :	340.74 kJ/mol
Temperature Correction :	44.76 kJ/mol
Enthalpy Correction :	385.50 kJ/mol
Enthalpy :	-1148.012082 au
Entropy :	529.21 J/mol•K
Gibbs Energy :	-1148.072179 au
C _v :	281.58 J/mol•K

2.3 [W(CNAsMe₂)(CO)₅]

2.2 [W(CNPMe₂)(CO)₅]

Figure S8. Optimised geometry for $[W(CNPMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D ζ (W) level of DFT. Selected distances (Å) and angles (°): W–C 2.122, C–N 1.175, N–P 1.730, W–C–N 179.3, C–N–P 176.2.

Table S6. Cartesian Coordinates for [W(CNPMe₂)(CO)₅] Atom х у z -2.125643 0.000476 0.720791 W Р 2.174463 0.001201 -1.879685 Ν 0.729651 -0.000072 -0.927399 0 -3.253466 2.281855 -1.235334 0 -0.967159 -2.271124 2.665679 C C -0.001245 -0 292799 -0 347623 -0.541641 -2.849615 1.466391 С -1.381686 -1.460489 1.971996 С 3.015694 -1.410672 -1.036253 0 C 0 -4.890349 0.001727 2.323162 0.001152 -3.898253 1 748562 -3.256890 -2.271753 -1 243763 0 -0.963204 2.266123 2.670452 С -2.852402 -1.458868 -0.547544 С -1.377751 1.456638 1.975399

-1 032185

-1.276103

0.052488

-1.410791

-1.418078

0.048934

-1.281475

Figure S9. Optimised geometry for $[W(CNAsMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D ζ (W) level of DFT. Selected distances (Å) and angles (°): W–C 2.133, C–N 1.174, N–As 1.881, W–C–N 179.3, C–N–As 176.2.

Table S8. Cartesian Coordinates for [W(CNAsMe₂)(CO)₅]

Atom	x	У	z	
W	2.173192	-0.027673	0.734633	
As	-2.228205	-0.029516	-2.006928	
Ν	-0.670578	-0.028526	-0.952339	
0	3.320481	-2.300913	-1.218050	
0	0.985329	2.239934	2.666121	
С	0.343337	-0.028169	-0.360937	
С	2.910379	-1.488280	-0.524225	
С	1.410008	1.429759	1.977383	
С	-3.045659	1.510068	-1.112137	
0	4.918842	-0.025981	2.362224	
С	3.931087	-0.026637	1.778890	
0	3.318094	2.250871	-1.213391	
0	0.991933	-2.301442	2.663071	
С	2.908971	1.435864	-0.521695	
С	1.413753	-1.488444	1.975780	
С	-3.133357	-1.431579	-0.980197	
н	-2.649392	-2.391844	-1.165713	
н	-3.109942	-1.207393	0.087746	
н	-4.170826	-1.489925	-1.320812	
Н	-4.078578	1.599320	-1.459733	
Н	-3.033130	1.381214	-0.028429	
H	-2.505739	2.419293	-1.381262	

1.407610

2.342309

1.278054

1.470363

-1.474523

-1.282685

-2.342694

С

н

Н

н

н

н

н

3.017826

2.507962

3.039581

4.042545

4.039196

3 040383

2.501708

ELECTRONIC SUPPORTING INFORMATION

Table S9. Thermodynamic data (298.15 K) for $[W(CNPMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D_2(W)

Zero Point Energy :	335.60 kJ/mol
Temperature Correction :	45.69 kJ/mol
Enthalpy Correction :	381.28 kJ/mol
Enthalpy :	-3042.290376 au
Entropy :	540.20 J/mol•K
Gibbs Energy :	-3042.351721 au
C _v :	287.61 J/mol•K

Table S11. Thermodynamic data (298.15 K) for $[W(CNSbMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D $\zeta(W,Sb)$

Zero Point Energy :	329.53 kJ/mol
Temperature Correction :	46.28 kJ/mol
Enthalpy Correction :	375.81 kJ/mol
Enthalpy :	-812.080457 au
Entropy :	549.47 J/mol•K
Gibbs Energy :	-812.142854 au
C _v :	289.45 J/mol•K

2.4 [W(CNSbMe₂)(CO)₅]

Figure S10. Optimised geometry for $[W(CNSbMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D ζ (W,Sb) level of DFT. Selected distances (Å) and angles (°): W–C 2.136, C–N 1.175, N–Sb 2.071, W–C–N 178.9, C–N–Sb 174.8.

Table S10. Cartesian Coordinates for [W(CNSbMe₂)(CO)₅] Atom у х z W -0.289241 -0.024141 2.342624 -0 993938 0 130634 -2 985494 Sb 0.035529 -0.949332 Ν -0.628926 0 -2.750591 2.014562 2.628358 -2.060376 2.000993 0 2.165778 С -0.522949 0.015006 0.220236 С -1.872542 1.286917 2.525795 С 1.289106 -1.333928 2.124055 С 0.289818 -1.539496 -3.392927 0 -0.076553 0.068616 5.512856 С -0.060759 -0.058414 4.372860 0 -2.327410-2.497221 2.504094 0 1.740837 2.450433 2.129784 С -1.599300 -1.615525 2.445602 С 1.567566 1.015560 2.206905 С 0.535641 1.605959 -3.278434 2.583069 -2.928301 н 0.196754 Н 1.432651 1.314571 -2.728344 Н 0.773292 1.678126 -4.343807 Н 0.505176 -1.576958 -4.464881 1.225595 -1.425751 -2.841750 н -0.193167 -2.474010 -3.100892 Н

2.5 [W(CNBiMe₂)(CO)₅]

Figure S11. Optimised geometry for $[W(CNBiMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2D ζ (W,Bi) level of DFT. Selected distances (Å) and angles (°): W–C 2.136, C–N 1.175, N–Bi 2.071, W–C–N 178.9, C–N–Bi 174.8.

Table S12. Cartesian Coordinates for [W(CNBiMe₂)(CO)₅]

Atom	x	у	z
w	-0 441627	0 041977	-2 375895
c	1.619729	0.069671	-2.317797
0	2.764572	0.083612	-2.288879
С	-0.468860	2.103579	-2.370254
0	-0.482734	3.248883	-2.369057
С	-0.403714	0.031538	-4.415314
0	-0.383630	0.025340	-5.563277
С	-2.502481	0.013062	-2.398146
0	-3.647784	-0.001616	-2.411277
С	-0.412727	-2.019391	-2.347195
0	-0.398532	-3.164597	-2.333408
С	-0.490389	0.055274	-0.230715
Ν	-0.510663	0.062085	0.942728
Bi	-0.843249	0.103595	3.073538
С	0.813907	1.540493	3.387688
Н	1.634755	1.278487	2.717784
Н	1.156837	1.472089	4.423911
Н	0.486262	2.561532	3.184623
С	0.463013	-1.659855	3.382476
Н	1.397313	-1.509678	2.838438
н	-0.028295	-2.564928	3.021084
<u>H</u>	0.678295	-1.771151	4.448944

Table S13. Thermodynamic data (298.15 K) for $[W(CNSbMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2Dζ(W,Sb)

Zero Point Energy :	327.80 kJ/mol
Temperature Correction :	46.43 kJ/mol
Enthalpy Correction :	374.23 kJ/mol
Enthalpy :	-812.115692 au
Entropy :	554.41 J/mol•K
Gibbs Energy :	-812.178650 au
C _v :	295.29 J/mol•K

Figure S12. Optimised geometry for [W(CNBiMe₂)(CO)₅] at the M06-2X/6- $31G^*/LANL2D\zeta(W,Bi)$ level of DFT showing the $\sigma\text{-hole}$ on bismuth opposite to the N–Bi bond.

Figure S13. Optimised geometry for [W(CNBiMe2)(CO)5] at the M06-2X/6-31G*/LANL2Dζ(W,Bi) level of DFT showing LUMO predominately comprising the N-Bi σ^* -antibond.

2.6 [Mo(CNPMe₂)(CO)₅]

Figure S14. Optimised geometry for [Mo(CNPMe2)(CO)5] at the M06-2X/6-31G*/LANL2Dζ(Mo) level of DFT. Selected distances (Å) and angles (°): Mo-C 2.145, C-N 1.175, N-P 1.733, Mo-C-N 178.9, C-N-Bi 174.0.

Table S14. Cartesian Coordinates for [Mo(CNPMe₂)(CO)₅]

Atom	x	у	z
Мо	-2.143848	-0.000921	0.734467
Р	2.175986	-0.002229	-1.876764
Ν	0.750290	0.002130	-0.891584
0	-3.253724	2.291560	-1.237918
0	-0.999994	-2.288536	2.687000
С	-0.281384	0.000881	-0.328707
С	-2.860016	1.474964	-0.542223
С	-1.408941	-1.474514	1.996348
С	3.035302	-1.408315	-1.043529
0	-4.930784	0.007949	2.308581
С	-3.933274	0.003843	1.746435
0	-3.260253	-2.281102	-1.248694
0	-0.978330	2.270118	2.693474
С	-2.863340	-1.470295	-0.548138
С	-1.395613	1.463650	1.998889
С	3.038008	1.408086	-1.053718
Н	2.519476	2.340686	-1.287216
н	3.087464	1.280506	0.030779
Н	4.053072	1.471953	-1.458307
Н	4.050338	-1.475159	-1.447315
н	3.084013	-1.273790	0.040132
н	2.515553	-2.341468	-1.271992

Table S15. Thermodynamic data (298.15 K) for $[Mo(CNPMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2Dζ(Mo)

Zero Point Energy :	338.57 kJ/mol
Temperature Correction :	45.66 kJ/mol
Enthalpy Correction :	384.23 kJ/mol
Enthalpy :	-1147.719987 au
Entropy :	531.68 J/mol•K
Gibbs Energy :	-1147.780365 au
C _v :	284.72 J/mol•K

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

2.7 [Cr(CNPMe₂)(CO)₅]

Figure S15. Optimised geometry for [Cr(CNPMe₂)(CO)₅] at the M06-2X/6-31G*/LANL2Dζ(Cr) level of DFT. Selected distances (Å) and angles (°): Cr-C 1.992, C-N 1.175, N-P 1.732, Cr-C-N 178.8, C-N-P 173.9.

Table S16. Cartesian Coordinates for [Cr(CNPMe₂)(CO)₅]

Atom х у z Cr -2.091664 0.000524 0.711172 Ρ 2.087133 0.001517 -1.837171 Ν 0.665851 0.001286 -0.847659 0 -3.141594 2.181829 -1.175202 0 -0.973660 -2.175248 2.560715 С -0.364700 0.001111 -0.282428 С -2.751753 1.367631 -0.474358 C C -1.394258 -1.363839 1.873696 -1.408457 2.950409 -1.016185 0 -4.737306 0.000903 2.232425 С -3.744266 0.000457 1.663157 0 -3.147077 -2.170518 -1.184200 0 C -0.968146 2.164664 2.570967 -2.755763 -1.359130 -0.480945 С -1.390551 1.356859 1.880793 С 2.952671 1.407280 -1.010133 н 2.434443 2.341442 -1.238313 н 3.005116 1.275369 0.073740 н 3.966366 1.471560 -1.417436 Н 3.964733 -1.472390 -1.422268 Н 3.002007 -1.281434 0.068296 н 2.432009 -2.341416 -1.248664

Table S17. Thermodynamic data (298.15 K) for $[Cr(CNPMe_2)(CO)_5]$ at the M06-2X/6-31G*/LANL2Dζ(Cr)

Zero Point Energy :	341.35 kJ/mol
Temperature Correction :	44.90 kJ/mol
Enthalpy Correction :	386.25 kJ/mol
Enthalpy :	-2124.556700 au
Entropy :	524.07 J/mol•K
Gibbs Energy :	-2124.616213 au
C _v :	281.20 J/mol•K

2.8 [Mn(CNPMe₂)(CO)₂(η⁵-C₅H₅)]

Figure S16. Optimised geometry for $[Mn(CNPMe_2)(CO)_2(\eta^5\text{-}C_5H_5)]\,$ at the M06-2X/6-31G*/LANL2Dζ(Mn) level of DFT. Selected distances (Å) and angles (°): Mn–C 1.876, C– N 1.179, N-P 1.723, Mn-C-N 175.5, C-N-P 172.7.

Table S18. Cartesian Coordinates for $[Mn(CNPMe_2)(CO)_2(\eta^5-C_5H_5)]$ 7

Atom	х	у	z
Mn	1.042289	1.248208	-0.098497
Н	3.146967	2.336523	-1.818362
С	2.149074	1.920726	-1.864777
С	0.944922	2.651163	-1.776097
Н	2.527772	-0.271134	-2.141751
Н	0.860440	3.722532	-1.650837
С	-0.141473	1.731332	-1.881731
Н	-1.193191	1.981213	-1.866208
С	0.411037	0.438154	-2.042338
Н	-0.152974	-0.480981	-2.135556
С	1.824115	0.541096	-2.025303
С	0.244275	2.430319	1.023630
0	-0.302264	3.214650	1.658100
С	2.571308	1.120741	0.880449
0	3.579179	1.052966	1.422893
С	0.250906	-0.226869	0.747743
Ν	-0.291317	-1.171038	1.199830
Р	-0.902028	-2.579728	1.982391
С	-1.630340	-3.394558	0.491318
Н	-0.829578	-3.747870	-0.162466
Н	-2.282296	-2.716734	-0.066270
Н	-2.208759	-4.263081	0.821270
С	-2.437811	-1.831562	2.685863
Н	-2.169687	-1.136568	3.484915
Н	-3.045877	-2.631799	3.118997
Н	-3.019050	-1.302929	1.925640

ELECTRONIC SUPPORTING INFORMATION

$2.9\,[\text{Re}(\text{CNPMe}_2)(\text{CO})_2(\eta^5\text{-}\text{C}_5\text{H}_5)]$

Figure S17. Optimised geometry for $[Re(CNPMe_2)(CO)_2(\eta^5-C_5H_5)]$ at the M06-2X/6-31G*/LANL2D ζ (Re) level of DFT. Selected distances (Å) and angles (°): Re–C 1.945, C–N 1.185, N–P 1.719, Re–C–N 176.8, C–N–P 166.0.

Table S19. Cartesian Coordinates for $[Re(CNPMe_2)(CO)_2(\eta^5-C_5H_5)]$

Atom	х	У	Z
Re	-0.178390	-1.012593	-1.231057
н	-1.897018	-3.285684	-2.316331
С	-2.025685	-2.282980	-1.932461
С	-2.012104	-1.089456	-2.697616
н	-2.338037	-2.628099	0.261954
н	-1.871887	-1.023917	-3.767733
С	-2.233211	0.012434	-1.809263
Н	-2.294465	1.053493	-2.092293
С	-2.372134	-0.518750	-0.499071
Н	-2.534385	0.062593	0.398887
С	-2.254684	-1.934741	-0.562614
С	1.047770	-0.159047	-2.405245
0	1.748302	0.381921	-3.147706
С	1.033488	-2.463687	-1.026714
0	1.727968	-3.379948	-0.916092
С	0.664069	-0.121666	0.278503
Ν	1.118671	0.451581	1.210651
Р	1.899122	0.898460	2.675362
С	0.631310	2.089798	3.294487
н	-0.260975	1.544994	3.611346
н	0.356981	2.823720	2.531972
н	1.040156	2.609709	4.166739
С	3.104202	2.105174	1.964940
н	3.864950	1.567344	1.394227
н	3.599571	2.625651	2.790494
н	2 614000	2 834859	1 315008

2.10 [Fe(CNPMe₂)(CO)₄]

Figure S18. Optimised geometry for $[Fe(CNPMe_2)(CO)_4]$ at the M06-2X/6-31G*/LANL2D ζ (Fe) level of DFT. Selected distances (Å) and angles (°): Fe–C 1.916, C–N 1.172, N–P 1.735, Fe–C–N 179.5, C–N–P 173.1.

Table S20. Cartesian Coordinates for [Fe(CNPMe₂)(CO)₄]

Atom	х	У	z	
Fe	-0.356387	-0.001311	-	2.379522
С	-0.305721	-0.021292	-4	4.227439
0	-0.275645	-0.034661		5.365823
С	-1.941801	-0.885782	-2	2.386660
0	-2.945469	-1.436272	-3	2.354131
С	-0.353890	1.807392	-2	2.360137
0	-0.349771	2.952269	-:	2.319691
С	1.222573	-0.887623	-2	2.296639
0	2.223013	-1.440075	-:	2.213524
С	-0.418713	-0.002294	-(0.464048
Ν	-0.447329	-0.004143	(0.707301
Р	-0.697102	-0.008713	2	2.424410
С	0.426394	-1.417341	2	2.828261
н	-0.011581	-2.350105	2	2.466049
Н	0.510723	-1.480499	3	3.917523
н	1.421341	-1.289140	2	2.394481
С	0.416217	1.407142	2	2.833297
Н	-0.026651	2.337499	2	2.470753
н	1.413346	1.285692	2	2.402624
Н	0.496453	1.469258	3	3.922915
	0.400400	1.403200		

Table S21. Thermodynamic data (298.15 K) for $[Fe(CNPMe_2)(CO)_4]$ at the M06-2X/6-31G*/LANL2D $\zeta(Fe)$

Zero Point Energy :	315.93 kJ/mol
Temperature Correction :	41.15 kJ/mol
Enthalpy Correction :	357.07 kJ/mol
Enthalpy :	-2230.402717 au
Entropy :	499.27 J/mol•K
Gibbs Energy :	-2230.459414 au
C _v :	252.12 J/mol•K

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

2.11 trans-[Fe(CNPMe₂)(CO)₃(PMe₃)]

Figure S19. Optimised geometry for trans-[Fe(CNPMe₂)(CO)₃(PMe₃)] at the M06-2X/6-31G*/LANL2D ζ (Fe) level of DFT. Selected distances (Å) and angles (°): Fe–C 1.880, C–N 1.175, N–P 1.726, Fe–C–N 178.8, C–N–P 174.0.

Table S22. Cartesian Coordinates for trans-[Fe(CNPMe₂)(CO)₃(PMe₃)]

Atom	x	У	Z	
Fe	-0.233753	0.198534	-0.311907	
С	-1.953564	-0.321375	-0.388813	
0	-3.053657	-0.644876	-0.490426	
С	0.157420	1.946332	-0.375028	
0	0.420397	3.064569	-0.456782	
С	1.103959	-0.998707	-0.293715	
0	1.965655	-1.762780	-0.320263	
С	-0.278391	0.222980	1.567064	
Ν	-0.283213	0.232892	2.741967	
Ρ	-0.460104	0.304034	4.457102	
С	-0.401993	-1.512383	4.784385	
Н	-1.320158	-1.979835	4.421395	
н	-0.345908	-1.664258	5.866792	
Н	0.459426	-1.985336	4.305695	
С	1.290983	0.734199	4.862074	
Н	1.502122	1.755740	4.537684	
н	1.998050	0.049295	4.386751	
Н	1.413777	0.687740	5.948570	
Р	-0.174998	0.148030	-2.621746	
С	0.253633	1.722434	-3.462010	
н	-0.464359	2.495178	-3.173381	
Н	0.246280	1.606947	-4.550119	
Н	1.246105	2.050072	-3.139819	
С	-1.735754	-0.311840	-3.471408	
Н	-2.052230	-1.305779	-3.143397	
Н	-1.609831	-0.311101	-4.558327	
Н	-2.521305	0.398011	-3.197338	
С	1.021951	-1.021907	-3.375582	
н	0.790793	-2.039155	-3.046793	
н	2.032365	-0.780181	-3.034485	
н	0.986302	-0.977474	-4.468140	

Table S23. Thermodynamic data (298.15 K) for trans-[Fe(CNPMe₂)(CO)₃(PMe₃)] at the M06-2X/6-31G*/LANL2D ζ (Fe)

Zero Point Energy :	603.46 kJ/mol
Temperature Correction :	52.10 kJ/mol
Enthalpy Correction :	655.56 kJ/mol
Enthalpy :	-2578.003465 au
Entropy :	571.69 J/mol•K
Gibbs Energy :	-2578.068386 au
Cv:	332.80 J/mol•K

References

- 1 H. L. Conder and M. Y. Darensbourg, J. Organomet. Chem., 1974, 67, 93-97.
- 2 R. R. Cesati and J. A. Katzenellenbogen, J. Am. Chem. Soc., 2001, **123**, 4093-4094.
- 3 R. B. King, Inorg. Chem., 1967, 6, 25-29.
- 4 CrysAlisPRO[®], Oxford Diffraction/Agilent Technologies UK Ltd., Yarton, England, 2010.
- 5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339-341.
- 6 G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- 7 ORTEP3
- 8 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466-470.
- 9 Spartan 24[®] (2024) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 10 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- a) P. J. Hay and W.R. Wadt, *J. Chem. Phys.*, 1985, 82, 270-283;
 b) W. R. Wadt and P. J. Hay, *J. Chem. Phys.* 1985, 82, 284-298;
 c) P. J. Hay, W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 299-310.
- 12 a) W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261. b) Hariharan, P. C., Pople, J. A., Theor. Chim. Acta., 1973, 28, 213-222
- 13 a) Löwdin, P.-O., J. Mol. Spec., 1963, 10, 12-33; b) Löwdin, P.-O., J. Mol. Spec., 1964, 13, 320-337; c) Löwdin, P.-O., J. Math. Phys., 1962, 3, 969–982; d) Löwdin, P.-O., J. Mol. Spec., 1964, 14, 112-118.

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S21: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[Cr(CN)(CO)_5]$ in the carbonyl region (25 °C).

__nal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 17

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S23: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[Mo(CN)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

^{18 |} Dalton Trans., 2025, 54, 1-3

Please do not adjust margins

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 19

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S25: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[W(CN)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

^{20 |} Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 21

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

22 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S28: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[Mn(CN)(CO)_2Cp]$ in the carbonyl region (25 °C). * = oxidation impurity.

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 23

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

24 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 25

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S31: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[Re(CN)(CO)_2Cp]$ in the carbonyl region (25 °C).

26 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 27

Na

OC

ELECTRONIC SUPPORTING INFORMATION

CO

Figure S33: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of Na[Fe(CN)(CO)₄] in the carbonyl region (25 °C). A totally clean ATR spectrum could not be acquired due to rapid sample oxidation (hashed red trace: ~5 min air exposure).

This journal is © The Royal Society of Chemistry 2025

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

30 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 31

ELECTRONIC SUPPORTING INFORMATION

Figure S37: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $Na[Fe(CN)(CO)_3(PPh_3)]$ in the carbonyl region (25 °C).

32 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 33

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

34 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

"co

-CO

Figure S40: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $[LiW(CN)(CO)_5 \cdot TMEDA]_2$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 35

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

36 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025
Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 37

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S43: The solid state ATR-IR (top) and solution FT-IR (THF; bottom) spectra of $[LiFe(CN)(CO)_4$ ·TMEDA] in the carbonyl region (25 °C).

THIS JOUTHALIS STILL ROYAL SUCIETY OF CHEMISTRY 2023

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

40 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S46: The ³¹P{¹H} NMR spectrum of [Cr(CNP^tBu₂)(CO)₅] (C₆D₆, 162 MHz, 25 °C).

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S47: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[Cr(CNP^tBu_2)(CO)_5]$ in the carbonyl region (25 °C).

42 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

Dalton Transactions

Figure S48: The HR-MS of [Cr(CNP^tBu₂)(CO)₅] (ESI, positive ion mode, MeCN).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 43

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

44 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 45

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

46 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S52: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[Mo(CNP^tBu_2)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 47

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S53: The HR-MS of [Mo(CNP^tBu₂)(CO)₅] (ESI, positive ion mode, MeCN).

48 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 49

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

50 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 51

Figure S57: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[W(CNP^tBu_2)(CO)_5]$ in the carbonyl region (25 °C).

Figure S58: The HR-MS of [W(CNP^tBu₂)(CO)₅] (EI, positive ion mode, MeCN).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 53

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

54 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 55

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

56 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S62: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[Mn(CNP^tBu_2)(CO)_2Cp]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 57

^{////}t-Bu

Bu

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

58 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 59

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

60 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 61

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

^{′′′′//}t-Bu

Bu

Figure S67: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[\text{Re}(\text{CNP}^{t}\text{Bu}_{2})(\text{CO})_{2}\text{Cp}]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

ELECTRONIC SUPPORTING INFORMATION

Figure S68: The HR-MS of [Re(CNP^tBu₂)(CO)₂Cp] (ESI, positive ion mode, MeCN).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 63

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

64 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 65

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

66 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Figure S72: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of [Fe(CNP^tBu₂)(CO)₄] in the carbonyl region (25 °C). Calculated Infrared spectrum (Gas Phase) for *axial*-[Fe(CNPMe₂)(CO)₄] isomer (M06-2X/6-31G^{*})

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

Dalton Trans., 2025, 54, 1-3 | 67

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S73: The HR-MS of [Fe(CNP^tBu₂)(CO)₄] (EI, positive ion mode, MeCN).

68 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 69

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

70 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 71

ELECTRONIC SUPPORTING INFORMATION

1900

v (cm⁻¹)

2000

1800

1700

1600

Dalton Transactions

Figure S77: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of [Fe(CNP^tBu₂)(CO)₃(PPh₃)] in the carbonyl region (25 °C). Calculated infrared spectrum for *trans*-[Fe(CNPMe₂)(CO)₃(PMe₃)] (M06-2X/6-315^{*}).

1500

72 | Dalton Trans., 2025, 54, 1-3

2100

2200

This journal is © The Royal Society of Chemistry 2025
Please do not adjust margins

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 73

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

74 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 75

ELECTRONIC SUPPORTING INFORMATION

Figure S81: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[W(CNAs^tBu_2)(CO)_5]$ in the carbonyl region (25 °C).

76 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

Please do not adjust margins

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 77

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

78 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Please do not adjust margins

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 79

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S85: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[W(CNSb^tBu_2)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, **54**, 1-3 | **81**

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

82 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

Figure S88: The ¹³C{¹H} NMR spectrum of [W(CNMes)(CO)₅] (C₆D₆, 176 MHz, 25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 83

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S89: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[W(CNMes)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, 54, 1-3 | 85

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

86 | Dalton Trans., 2025, 54, 1-3

This journal is © The Royal Society of Chemistry 2025

Dalton Transactions

Figure S92: The solid state ATR-IR (top) and solution FT-IR (*n*-hexane; bottom) spectra of $[W(NCPh)(CO)_5]$ in the carbonyl region (25 °C).

This journal is © The Royal Society of Chemistry 2025

Dalton Trans., 2025, **54**, 1-3 | **87**