Supporting Information

Thermometer or Freezer: Dual Functionality in a 2D Mixed-Anion Terbium (III) Oxide Carbodiimide

Juan Medina-Jurado,^a YiXu Wang,^a Hicham Bourakhouadar,^a Moritz Köller,^a Alex J. Corkett,^b David Enseling,^c Thomas Jüstel^c, and Richard Dronskowski^{*a}

^a Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

^b Jülich Center for Neutron Science-2 (JCNS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

[°] Department of Chemical Engineering, FH Münster University of Applied Sciences, 48565 Steinfurt, Germany

E-mail: drons@HAL9000.ac.rwth-aachen.de

http://www.ssc.rwth-aachen.de

Figure S1. Rietveld fit of Tb₂O₂NCN to PXRD data, showing observed (red), calculated (black) and difference (blue) intensities. Bragg positions of Tb₂O₂NCN (violet) are denoted by vertical markers.

Trigonal
<i>P</i> 3 <i>m</i> 1, No. 164
1
3.7483(5)
8.1999(1)
99.7(7)

Table S1. Crystal data and structure refinement parameters of Tb_2O_2NCN

Table S2. Fractional atomic coordinates for Tb₂O₂NCN. Standard deviations are given in parentheses.

atom		X	У	Z	<i>U</i> _{iso} (10² Ų)
Tb	2d	1/3	2/3	0.1814(1)	0.87(1)
С	1 <i>b</i>	0	0	1/2	0.10(2)
0	2d	1/3	2/3	0.8833(1)	33
Ν	2c	0	0	0.3506(1)	"

Fitting parameters

electronic transition	thermometric parameter (Δ)	Δ_0	α1	$\Delta E_1/k_{\rm B}$	α2	$\Delta E_2/k_{\rm B}$
${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{4}$	Iarea ∣Iarea I552 nm / I580 nm	12.49	2.25	36.77	_	-
${}^{5}D_{4} \rightarrow {}^{7}F_{4}$	I ^{area} / I ^{area} I₅97 nm / I₅94 nm	5.19	1.94	225.36	0.91	38.43
$5D_4 \rightarrow 7F_5$ and $5D_4 \rightarrow 7F_4$	I _{552 nm} / I _{580 nm}	15.14	6.28	75.76	0.62	1.48
${}^{5}D_{4} \rightarrow {}^{7}F_{4}$	I _{597 nm} / I _{594 nm}	6.10	5.84	77.94	0.71	1.72

Table S3. Fitting parameters of the ratiometric thermometry calibration using the Mott–Seitz model.

Table S4. Fitting parameters (β_0 = intercept and β_1 = slope) of the linear ratiometric thermometry calibration.

thermometric parameter (Δ)	βο	β1	r ²
I _{594 nm} / I₅97 nm	-108.4 ± 6.3	583.5 ± 21.0	0.99358
I area I 580 nm / I area I 597 nm	-169.3 ± 23.6	894.9 ± 67.8	0.9721
I ^{area} / I ^{area} I _{622 nm} / I _{597 nm}	-38.3 ± 8.4	395.4 ± 11.4	0.99505

Table S5. Fitting parameters (β_0 = intercept and β_i = slopes) of the multivariate linear regression for the PCA-thermometry.

βο	β1	β2	β3	r ²
147.5 ± 3.9	-50.9 ± 2.6	92.4 ± 7.0	-7.02 ± 4.7	0.99544

Comments on the determination of performance parameters S_r and δT

For ratiometric thermometry, the thermometric parameter (Δ) used for calibration defined as $\Delta = I_2 / I_1$ has been fitted to the Mott–Seitz model according to:

$$\Delta_T = \frac{\Delta_0}{\left[1 + \alpha_1 \exp\left(-\frac{\Delta E_1}{k_B T}\right) + \alpha_2 \exp\left(-\frac{\Delta E_2}{k_B T}\right)\right]}$$

Thus, the relative thermal sensitivity (S_r) can be determined analytically according to:

$$S_{T} = \left| \frac{1}{\Delta_{T}} \left(\frac{\partial \Delta_{T}}{\partial T} \right) \right| = \frac{\alpha_{1} \frac{\Delta E_{1}}{k_{B}T^{2}} \exp\left(-\frac{\Delta E_{1}}{k_{B}T} \right) + \alpha_{2} \frac{\Delta E_{2}}{k_{B}T^{2}} \exp\left(-\frac{\Delta E_{2}}{k_{B}T} \right)}{\left[1 + \alpha_{1} \exp\left(-\frac{\Delta E_{1}}{k_{B}T} \right) + \alpha_{2} \exp\left(-\frac{\Delta E_{2}}{k_{B}T} \right) \right]}$$

The δT is calculated by:

$$\delta T = \frac{1}{S_r} \left(\frac{\delta \Delta}{\Delta} \right)$$

where $\delta\Delta$ is the uncertainty of Δ which can be estimated from Δ_{obs} and Δ_{calc} by the expression:

$$\delta \Delta = \sqrt{\frac{\sum (\Delta_{obs} - \Delta_{calc})^2}{(\sum \Delta_{obs})^2}}$$

This method can be applied for intensity- and area-based thermometry.

In the case of multivariable thermometry, the thermometric parameters are the principal components (PC) and the regression equation has been used as the basis for the calculations:

$$T = \beta_0 + \beta_1 P C_1 + \beta_2 P C_2 + \beta_3 P C_3$$

Then, the thermal sensitivity (S_r) has been calculated as follows:

$$S_r = \sqrt{\sum \left|\frac{1}{PC_i} \left(\frac{\partial PC_i}{\partial T}\right)\right|^2} = \sqrt{\sum \left|\frac{1}{PC_i} \left(\frac{1}{\beta_i}\right)\right|^2}$$

Since the values of the principal components can change from positive to negative, this can lead to values above 100% for S_r , so a different definition has been used for the calculation of an average value of the precision (δT) based on the number of observations (*n*) and the difference between the temperature according to the linear regression (T_{calc}) and the nominal temperature (T_{obs}). Thus, δT can be estimated as follows:

$$\delta T = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (T_{calc} - T_{obs})^2}$$

Applying this equation, we obtain the value of $\delta T = 1.036$ K.

Figure S2. Top: Thermometric calibration curves $\Delta(T)$ involving the maximum of the emission for the peaks and their relative sensitivity dependence, $S_r(T)$. Red squares are the experimental data while solid curves are the best fit to the Mott–Seitz model. Bottom: temperature uncertainty curves $\delta T(T)$.

Figure S3. Magnetization hysteresis of Tb₂O₂NCN between -9 T and 9 T.

Comments on the determination of χ' and χ''

The generalized Debye model describes the frequency (v) dependence of in-phase (χ') and out-of-phase (χ'') parts of the susceptibility as:

$$\chi'(\nu) = \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \frac{1 + (2\pi\nu\tau_0)^{1-\alpha} \sin(\frac{\alpha\pi}{2})}{1 + 2(2\pi\nu\tau_0)^{1-\alpha} \sin(\frac{\alpha\pi}{2}) + (2\pi\nu\tau_0)^{2(1-\alpha)}}$$

$$\chi''(\nu) = (\chi_{\rm T} - \chi_{\rm S}) \frac{(2\pi\nu\tau_0)^{1-\alpha}\cos(\frac{\alpha\pi}{2})}{1 + 2(2\pi\nu\tau_0)^{1-\alpha}\sin(\frac{\alpha\pi}{2}) + (2\pi\nu\tau_0)^{2(1-\alpha)}}$$

Here, χ_T = is the isothermal susceptibility, χ_S = represents the adiabatic susceptibility, α = phenomenological parameter (0–1) and τ_0 is the average relaxation time.

Figure S4. Scree plot showing the eigenvalues for the principal components.