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1. General and Materials.

All chemicals and materials mentioned on the synthesis procedure below were used without any
further treatments. Triphenylborane (BPh;), 8-hydroxyquinoline (QOH) and halogeno substituted
derivatives (5-chloro/CIQOH, 5,7-dichloro/CI,QOH, 5,7-dibromo/Br,QOH, 5,7-diiodo/I,QOH, 5-
chloro-7-10do/ICIQOH and 5,7-dichloro-2-methyl/MeCl,QOH) were procured from Sigma—Aldrich.
Metal ions used were stored as aqueous solutions of MgCl,, ZnCl,, CdCl,, CuCl,, NiCl,, CoCl,,
CrCl;, AIClL;, MnCl,, FeCl;; Pb(NOs),. The stock solutions of aforementioned were prepared in
distilled water. Glass backed thin layer chromatography (TLC) plates, coated 0.25 mm silica gel 60
and indicator F254, were obtained from Merck. All TLC experiments were visualized under UV-light
at 254 nm. UV-Vis absorption spectra were recorded on a PerkinElmer Lambda 40 spectrophotometer
using blank correction. Fluorescence spectra were recorded on a HORIBA Jobin Yvon Fluorolog
FL3-22 fluorimeter and corrections for the excitation beam intensity, the wavelength dependent
sensitivity of the detector and the optical path were applied. The infrared spectra were recorded on
IMPACK-410 NICOLET spectrometer in KBr discs in the range 4000-400 cm™!. Mass spectra were
measured using a UPLC-MS spectrometer (Waters). The 'H NMR measurements were conducted on
a Bruker AVANCE 500 MHz at 298-300 K using TMS as the internal chemical shift reference. The
abbreviations are used to designated the multiplicities: s = singlet, d = doublet, dd = doublet of
doublets, t = triplet, m = multiplet.

2. Synthetic process

A mixture of triphenylborane (121 mg, 0.5 mmol) and 8-hydroxyquinoline derivatives (RQOH/0.5
mmol) in 15 mL chloroform was stirred at ambient temperature (AT) and filtered after 30 minutes to
eliminate the insoluble part. Then, the resulting clear solution evaporated slowly at AT within 24 h
afforded the products BQ1-BQ7 as greenish-yellow crystals, of which the single crystals of BQ2,
BQ6 and BQ7 were suitable for X-ray diffraction analysis.

The complexes were obtained as green crystalline solids with a high yield of 85-95%. They exhibit
excellent stability towards air and moisture and have slight solubility in water while being soluble in
certain organic solvents, particularly halogenated solvents like CHCl; and CH,Cl,. The structures of
the new complexes including BQ2, BQ3 and BQ5-BQ7, have been characterized by ESI mass
spectrometry, IR and 'H NMR spectroscopy. In the positive-mode ESI mass spectra of all complexes,
the [M + Na]" ions are observed with intensity of 25-100%, which provides evidence for the proposed
RQO coordination. In the IR spectra there is no evidence for a VOH band, indicating that the RQOH
have been deprotonated to form a bidentate ligand and are chelated with B(III) through the N and O
atoms. Furthermore, the data of the 'H NMR spectra of all complexes (see experimental) show the
presence of the phenyl groups and the RQO in a 2:1 ratio, which shows good agreement with the
results obtained from ESI mass spectrometry. In particular, the absence of a proton of the phenol OH
group again confirms the chelating coordination of RQO with B(III).

BQ1: Yield: 139 mg (90%). '"H NMR (600 MHz, chloroform-d;): 8 8.57 (dd, 3J(H,H) = 5.0 Hz,
4J(H,H) = 1.0 Hz, 1H, Ar—H), 8.39 (d, *J(H,H) = 8.5 Hz, 1H, Ar-H), 7.65 (t, *J(H,H) = 8.5 Hz, 1H,
Ar-H), 7.60 (dd, 3J(H,H) = 5.0 Hz, 8.5 Hz, 1H, Ar—H), 7.45 (dd, 3J(H,H) = 8.0 Hz, “*(H,H) = 1.0
Hz, 4H, Ar—H), 7.28-7.25 (m, 4H, Ar-H), 7.24-7.21 (m, 3H, Ar—H), 7.17 (d, 3*J(H,H) = 8.5 Hz, 1H,
Ar-H). BC NMR (151 MHz, CDCl3) 6 158.81, 139.31, 138.75, 137.63, 132.94, 132.02, 128.48,
127.62, 127.01, 122.78, 112.23, 109.75. FT-IR (cm):3068 (CH), 1612, 1578 (C=C). Elemental
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analysis for C;;H;(BNO: Calcd. C 81.55, H 5.18, N 4.53; Found C 81.64, H 5.25, N 4.36. (MAD =
0.11)

BQ2: Yield: 146 mg (85%). '"H NMR (600 MHz, chloroform-d;): 4 8.64 (d, 3J(H,H) = 8.5 Hz, 1H,
Ar-H), 8.63 (d, 3J(H,H) = 5.0 Hz, 1H, Ar-H), 7.73 (dd, 3J(H,H) = 5.0 Hz, 8.5 Hz, 1H, Ar—H), 7.68
(d, 3J(H,H) = 8.0 Hz, 1H, Ar—-H), 7.44 (d, 3J(H,H) = 8.0 Hz, 4H, Ar—H), 7.29-7.23 (m, 6H, Ar—H),
7.10(d,3J(H,H)=8.0 Hz, 1H, Ar—H). *C NMR (101 MHz, CDCl5) 8 157.92, 140.11, 138.05, 136.61,
132.25, 131.97, 127.72, 127.22, 126.50, 123.55, 115.39, 109.88. MS (ESI) Calcd for [M + Na]*,
BC,HsNOCI: m/z 366. Found (%): m/z 366 (40). FT-IR (v, cm'!): 3055, 3008 (CH), 1610, 1578,
1503 (C=C). : Elemental analysis for C,;H;sBCINO: Calcd. C 73.36, H 4.37, N 4.08; Found C 73.58,
H 4.68, N 4.16 (MAD = 0.20).

BQ3: Yield: 174 mg (92%). 'H NMR (600 MHz, chloroform-d;): 4 8.67 (d, 3J(H,H) = 5.0 Hz, 1H,
Ar-H), 8.64 (d, 3J(H,H) = 8.5 Hz, 1H, Ar-H), 7.75 (dd, 3J(H,H) = 5.0 Hz, 8.5 Hz, 1H, Ar—H), 7.74
(s, IH, Ar—H), 7.44 (dd, 3J(H,H) = 8.5 Hz, *J(H,H) = 1.5 Hz, 4H, Ar—H), 7.29-7.26 (m, 4H, Ar—H),
7.25-7.23 (m, 2H, Ar—H). 3C NMR (151 MHz, CDCl;) 6 153.90, 141.08, 137.83, 136.94, 132.67,
131.99, 127.72, 127.35, 125.23, 123.37, 115.98, 114.48. MS (ESI) Calcd for [M + Na]*,
BC,;H{4NOCI,Na: m/z 400. Found (%): m/z 400 (25). FT-IR (v, cm™): 3055, 3014 (CH), 1608, 1578,
1499 (C=C). Elemental analysis for C,;H4BCI,NO: Calcd. C 66.67, H 3.70, N 3.70; Found C 66.42,
H 3.78, N 3.62 (MAD = 0.14).

BQ4: Yield: 205 mg (88%). 'H NMR (600 MHz, chloroform-d;): 6 8.64 (d, 3J(H,H) = 5.0 Hz, 1H,
Ar—H), 8.58 (d, 3J(H,H) = 8.5 Hz, 1H, Ar-H), 8.03 (s, 1H, Ar—H), 7.74 (dd, *J(H,H) = 5.0 Hz, 8.5
Hz, 1H, Ar-H), 7.43 (dd, 3J(H,H) = 8.0 Hz, *J(H,H) = 1.0 Hz, 4H, Ar—H), 7.29-7.27 (m, 4H, Ar—-H),
7.25-7.24 (m, 2H, Ar—H). 3C NMR (101 MHz, CDCl;) 6 140.98, 139.10, 137.91, 132.00, 127.71,
127.34, 126.97, 123.66, 103.96, 102.58. FT-IR (v, cm™): 3049 (CH), 1598, 1573 (C=C). Elemental
analysis for C,;H4BBr,NO: Calcd. C 53.96, H 3.0, N 3.0; Found C 53.72, H 3.08, N 2.96 (MAD =
0.12).

BQS5: Yield: 244 mg (87%). '"H NMR (600 MHz, chloroform-d;): & 8.59 (dd, 3J(H,H) = 5.0 Hz,
4J(H,H) = 1.0 Hz, 1H, Ar-H), 8.42 (dd, 3J(H,H) = 8.5 Hz, “*/(H,H) = 1.0 Hz, 1H, Ar—-H), 7.99 (s, 1H,
Ar-H), 7.72 (dd, 3J(H,H) = 5.0 Hz, 8.5 Hz, 1H, Ar—H), 7.43 (dd, 3J(H,H) = 8.0 Hz, “*(H,H) = 1.0
Hz, 4H, Ar—H), 7.29-7.26 (m, 4H, Ar—H), 7.25-7.23 (m, 2H, Ar—H). MS (ESI) Calcd for [M + Na]*,
BC;H4NOI,Na: m/z 584. Found (%): m/z 584 (100). FT-IR (v, cm™): 3045, 3008 (CH), 1601, 1588,
1569 (C=C). Elemental analysis for C,;H4BI;NO: Calcd. C 45.0, H 2.50, N 2.50; Found C 44.95, H
2.71,N 2.48 (MAD = 0.09).

BQ6: Yield: 211 mg (90%). 'H NMR (600 MHz, chloroform-d;): 6 8.64 (d, 3J(H,H) = 5.0 Hz, 1H,
Ar-H), 8.62 (d, *J(H,H) = 8.5 Hz, 1H, Ar—H), 7.99 (s, 1H, Ar-H), 7.74 (dd, 3J(H,H) = 5.0 Hz, 8.5
Hz, 1H, Ar—H), 7.44 (d, 3J(H,H) = 8.5 Hz, “*/(H,H) = 1.0 Hz, 4H, Ar-H), 7.29-7.24 (m, 6H, Ar—H).
3C NMR (101 MHz, CDCl3) 6 159.26, 140.90, 139.28, 136.99, 135.52, 132.01, 127.71, 127.31,
127.20, 126.20, 123.57, 116.19. MS (ESI) Calcd for [M + Na]*, BC,H;4NOICINa: m/z 492. Found
(%): m/z 492 (50). FT-IR (v, cm™): 3065, 3047, 3008 (CH), 1610, 1595, 1570 (C=C). Found C 53.48,
H3.16, N 3.21 (MAD =0.21).

BQ7: Yield: 186 mg (95%). 'H NMR (600 MHz, chloroform-d;): 6 8.53 (d, 3J(H,H) = 8.0 Hz, 1H,
Ar-H), 7.65 (s, 1H, Ar-H), 7.48 (d, *J(H,H) = 8.0 Hz, 1H, Ar—H), 7.37 (dd, 3J(H,H) = 8.5 Hz, *J(H,H)
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= 1.5 Hz, 4H, Ar—H), 7.29-7.24 (m, 6H, Ar—H), 2.57 (s, 3H, CH3). 3C NMR (101 MHz, CDCls) §
155.52, 153.69, 138.07, 136.84, 133.33, 131.39, 127.58, 127.30, 125.86, 123.52, 115.85, 114.27,
21.55. MS (ESI) Calcd for [M + Na]*, BC,,H(NOCI,Na: m/z 414. Found (%): m/z 414 (100). FT-IR
(v, cm™): 3071 (CH), 1608, 1578, 1499 (C=C). Elemental analysis for C,,H;sBCL,NO: Calcd. C
67.35,H4.08, N 3.57; Found C 67.72, H 4.39, N 3.59 (MAD = 0.23).

3. Crystallographic Measurements. X-ray intensity data for BQ2 and BQ6 were collected at
293(2) K on an Agilent SuperNova diffractometer, equipped with an Eos CCD detector, using MoKa
radiation (A = 0.71073 A). The images were interpreted and processed with the CrysAlisPro software
from Agilent Technologies. Using Olex2, the structures were solved with the ShelXT structure
solution program using Intrinsic Phasing and refined with the ShelXL refinement package using full-
matrix least squares minimization on F?. Intensities for the X-ray determination of BQ7 were
collected on a Bruker D8 Quest instrument at 273(2) K with Mo Ka radiation (A = 0.71073 A) using
a TRIUMPH monochromator. Standard procedures were applied for data reduction and absorption
correction. Using Olex2, the structure was solved with the olex2.solve structure solution program
using Charge Flipping and refined with the ShelXL [D] refinement package using full-matrix least
squares minimization on F2. Non-hydrogen atoms were refined anisotropically. All H-atoms were
included in calculated positions and treated as the riding atoms with C-H = 0.93 (aromatic H) and
0.96 (methyl group) A and with isotropic temperature factors fixed at 1.2 times U, of the parent
atoms (1.5 for methyl group). A summary of the crystal data for BQ2, BQ6 and BQ7 is given in
Table S2. Crystal structure validations and geometrical calculations were performed using the Platon
software [31]. Crystallographic data for the structures reported herein have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 2247826-
2247828. The i
http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data
Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +441223 336 033; or e-mail:
deposit@ccdc.cam.ac.uk

data can be obtained free of charge via

Table S1. Selected bond parameters of complexes of BQ2, BQ6 and BQ7*

B-C B-N B-O CBC | CBO | OBN | CBN
1.607(3) 110.53(16) 107.58(16)
BQ2 1.641(3) | 1.537(2) | 117.89(17) 97.94(14)
1.612(3) 110.20(17) 110.84(15)
1.600(4) 117.42) | 108.3(2) 108.4(2)
BQ6 1.635(4) | 1.545(4) 98.21(19)
1.605(4) 111.6(2) 111.4(2)
1.598(3) 109.44(19) 108.21(19)
BQ7 1.490(4) | 1.533(3) | 117.7(2) 97.86(17)
1.616(4) 110.30(19) 111.52(19)

[a] Bond lengths (A) and angles (°).

BQ?2 crystallizes in the monoclinic space group P2,/c. The planar quinoline ring (r.m.s. deviation =
0.004 A) makes an angle of 80.27(8)° and 74.51(9)° with phenyl rings C10-C15 and C16-C21,
respectively. The substituents of the quinoline ring are coplanar with deviations from the mean plane
through the quinoline ring being -0.015(1) A for O1 and -0.007(1) A for Cl1, and atom B1 showing
the highest deviation of -0.067 (2) A. Due to the orientation of the C10-C15 ring a short H11---O1
interaction is possible (2.57 A). The crystal packing of BQ2 exhibits C-H---n and partial n---7t
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interactions as illustrated in Figure 1a [H6--Cg4i = 2.77 A, Cg2--Cg2' = 3.9712(12) A, slippage
2.077 A, Cg2 and Cg4 are the centroids of rings N1/C5-C9 and C10-C15, respectively, symmetry
code: (i) 1-x, 1-y, 1-z]. Compound BQ6 crystallizes in the monoclinic space group P2,/n. The
quinoline ring is less planar (r.m.s. deviation = 0.024 A) and makes an angle of 73.08(13)° and
81.04(13)° with phenyl rings C10-C15 and C16-C21, respectively. The 11 substituent deviates most
from the quinoline plane (0.109 A), followed by C11 (-0.091 A), O1 (0.082 A) and B1 (-0.048 A).
Several C-H.--m interactions are observed in the crystal packing of BQ6: H3--Cg4i (3.00 A),
H6---Cg5t (2.79 A), and H12---Cg5iii (2.95 A) [Figure 1b, Cg4 and Cg5 are the centroids of rings
C10-C15 and C16-C21, respectively, symmetry codes: (1), (ii), (ii1)]. Compound BQ7 crystallizes in
the orthorhombic space group Pbca. The planar quinoline ring (r.m.s. deviation = 0.006 A) makes an
angle of 78.63(10)° and 74.14(9)° with phenyl rings C10-C15 and C16-C21, respectively. Deviations
from the mean plane through the quinoline ring are 0.015(2) A for O1, 0.008(1) A for CI1, -0.018(1)
A for CI2 and the highest deviation of -0.061 (2) A for B1. A short intramolecular H15---O1
interaction is observed (2.50 A). The crystal packing of BQ7 is characterized by C-H...w interactions
[Figure 1c, H7...Cg4i = 2.74 A, H21...Cg4ii = 2.98 A, Cg4 is the centroid of the C10-C15 ring,
symmetry codes: (i) -1/2+x, y, 3/2-z, (i1) 1-x, 1/2+y, 3/2-z].
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4. Photophysical characteristics
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Figure S1. a) Normalized UV-Vis absorption (solid line) and PL emissions spectra (dash line, RT;
dot line, 77K) of BQ1-BQ4 ; b) UV-Vis absorption spectra of BQ1-BQ4 at in solvents at RT (10
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Figure S2. a) Normalized UV-Vis absorption (solid line) and PL emissions spectra (dash line, RT;
dot line, 77K) of BQ5-BQ7 (10 uM, A, = 390 nm); b) UV-Vis absorption spectra of BQ5-BQ7 at in
solvents at RT (10 uM, A = 390 nm); ¢) Fluorescence decay trace of BQS-BQ7 in toluene (A =
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Table S2. Fluorescence lifetime (1) and amplitude (o) of BQ1-BQ7 in film and solid state.

Film Solid
71 (ns)/oy (%) T, (ns)/a, (%) 71 (ns)/ oy (%) T, (ns)/ay (%)

BQ1 3.2/21.9 25.7/78.1 23.5/100 -

BQ2 3.6/10.6 20.6/89.4 2.9/20.9 14.7/79.1
BQ3 20.1/100 - 3.6/16.5 19.1/83.5
BQ4 5.23/38.9 9.75/61.1 2.0/30.6 7.2/69.4
BQ5 2.00/33.0 6.85/67.0 0.5/20.5 1.32/79.5
BQ6 2.5/30.7 5.6/69.3 1.3/39.8 3.4/60.2
BQ7 2.04/1.3 22.9/98.7 2.4/10.2 17.6/89.8

BQ1 BQ2

BQ3 BQ4

BQ5

BQ6

BQ7

Figure S6. Fluorescence emission image of BQ1 — BQ7 in solid state under 365 nm light.
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Figure S7. Fluorescence emission spectra (a) and image (b) of BQ7 (10 uM) in THF/DW (0 -
99%); c) Fluorescence decay trace of BQ7 (10 uM) in THF/DW (5/95).

Figure S8. Fluorescence image of BQ7 (10 uM) in the presence of metal cation (10.0 eq) in THF/DW
(5/95)

BQ1 +Al¥*  +Zn?* +Cu? +Fe¥* +Cr** +Co* +Ni* +Mn? +Cd** +Pb*

BQ2 +Cu? BQ3 +Cu? BQ4 +Cu? BQ5 +Cu? BQé +Cu?

Figure S9. Fluorescence image of BQ1 (10 uM) with various cation (10.0 eq) and BQ2-BQ6 (10
uM) with Cu?* cation (10.0 eq) in THF/DW (5/95).
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Figure S10. Fluorescence image of BQ7 (10 uM) in the presence of Cu?* (0 - 1.0 eq) in THF/DW
(5/95)
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Figure S11. a) Proposal Cu?" sensing mechanism of BQ7; b) Image of BQ7 (2.5 mM) in acetone-dg
in the presence of Cu?* (0 — 1.0 eq) under white light and 365 nm light; ¢) "TH-NMR spectra of BQ7

(2.5 mM) in acetone-dg in the presence of Cu?* (0 — 1.0 eq).
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patterns for fragments (d) [BQ7] and (e) [Cu(Q7),] .
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5. Computational investigations.

The geometries of the ground states (S;) of BQ1-BQ7 were optimized with Density Functional
Theory (DFT).! To model the UV-Vis absorption and emission spectra, the 6-31+G(d,p) basis set?
was employed in combination with the LanL.2DZ basis set® specifically for the iodine atom.18
functionals were tested and MPWIPW91 functional demonstrates the highest concordance of
computed excitation with experimental UV-Vis absorption wavelength (see Table S4). Subsequently,
the geometry of singlet and triplet excited states were optimized using Time-dependent DFT (TD-
DFT) in combination with the Tamm-Dancoff Approximation (TDA).* All these calculations were
conducted using the Gaussian 16 package. 3

Spin-orbit couplings (SOC) between the first singlet (S;) and triplet (T;) excited states were
computed at the T; optimized geometry. For these SOC calculations, the Spin-Orbit Mean-Field
(SOMF) method,’ in conjunction with the Resolution of Identity (RI),” was employed to expedite the
computation of Coulomb integrals. Furthermore, the intersystem crossing (ISC) rate constant from S;
to T; was calculated using the Adiabatic Hessian (AH) model,® incorporating the Franck-Condon
(FC) and Herzberg-Teller (HT) effects.® To enhance the accuracy of the SOC and ISC calculations, '
the CAM-B3LYP functional'! was applied due to accurate description of charge-transfer
excitations'? and balanced accuracy for valence and Rydberg state.! Salar relativistic effects were
included through the Zero-Order Relativistic Approximation (ZORA).'* The RIJCOSX
approximation was applied,'> with the ZORA-def2-TZVP basis sets and SARC-ZORA-TZVP basis
set for the iodine atom. ISC and SOC calculations were performed with the ORCA software.!'® In
addition, fluorescence rate constants were determined using FCclasses3,!” which also utilized the AH
model,® in the contribution of FC-HT effect.® These calculations were performed in Cartesian
coordinates under the TD approximation, and a Lorentzian half-width at half-maximum (HWHM)
broadening of 0.01 eV was applied. Finally, solvent effects of all above calculation were modelled
with the Polarizable Continuum Model (PCM).!8

We performed quantum mechanics/molecular mechanics (QM/MM) simulations utilizing a
multilayer ONIOM! within the Gaussian 16 computational package.’ In its crystalline form, BQ7
exhibits a m-m stacking interactions between the quinoline and phenyl moieties of two adjacent
molecules. Accordingly, these two interacting molecules (BQ7 dimer) were designated as the high-
layer QM region, while the surrounding molecular environment was treated as the low-layer MM
region. The initial molecular coordination structure for QM/MM optimizations was extracted from
single-crystal X-ray diffraction (SC-XRD) data. To approximately model the stacking arrangement
in the aggregated state, the BQ7 dimer in the QM layer was allowed to undergo unrestricted
fluctuations within the MM layer, whereas the motion of the remaining BQ7 molecules was
constrained during the simulation. The ground-state (S,) and excited-state (S; and T;) geometries of
the BQ7 dimer were optimized using DFT and TDA TD-DFT, employing the MPWI1PWO91
functional with the 6-31+G(d,p) basis set in PCM for water as the solvent. The MM layer was
parameterized using the universal force field (UFF) in conjunction with the charge equilibration (Qeq)
method.?® Additionally, spin-orbit coupling (SOC) between the S; and T, states of the BQ7 dimer
was computed using the same theoretical protocol as applied to the monomer.
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Table S3. Excitation wavelength (nm) of BQ1-BQ7 was computed by TDA TD-DFT using (1)
APFD, (2) B3LYP, (3) B3PW91, (4) BhandHLYP, (5) BVP86, (6) CAM-B3LYP, (7) HCTH, (8)
HSEHIPBE, (9) LC-oPBE, (10) LSDA, (11) M06, (12) M062X, (13) MO6HF, (14) MO6L, (15)
MPWI1PWO1, (16) PBE, (17) TPSSTPSS, (18) wB97XD at 6-31+G(d,p) basic set with PCM for
toluene. Mean absolute deviation (MAD). LanL.2DZ basis set is applied for the iodine atom.

BQ1 BQ2 BQ3 BQ4 BQ5 BQ6 BQ7 MAD
1 414 434 437 439 440 441 430 21
2 429 448 449 453 455 454 442 35
3 426 446 449 452 453 453 442 34
4 346 357 355 356 357 357 347 58
5 508 539 547 553 557 555 543 131
6 364 377 375 376 376 377 367 39
7 500 531 539 545 549 547 534 123
8 416 437 440 443 444 444 432 24
9 325 335 333 333 330 332 324 82
10 498 534 545 551 560 555 539 128
11 415 370 371 373 439 374 364 35
12 357 308 306 308 376 307 299 89
13 300 488 495 497 309 502 489 88
14 460 435 435 431 502 437 430 35
15 410 429 431 433 434 434 423 16
16 509 541 550 555 560 558 544 133
17 490 517 523 528 531 530 518 108
18 363 376 374 374 372 374 366 41

Exp.| 400 414 412 415 421 419 405

S15
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Figure S13. HOMO and LUMO image and energy along with its energy gap (ev) of BQ1-BQ7 at S,
geometry, which was optimized by DFT method using MPW1PWO1 functional and 6-31+g(d,p) in
PCM for toluene solvent (LanL2DZ basis set is applied for the iodine atom).

Table S4. Computed S; absorption and S; emission properties of BQ1 — BQ7 at Sy and S; geometry,
respectively, which was optimized by TD and TDA TD-DFT, respectively using MPW1PW91/6-
31+g(d,p) level of theory in PCM for toluene. BQ7%*: BQ7 dimer state in QM/MM calculations, their
Sp and S; geometry were optimized by DFT and TDA TD-DFT method, respectively using
MPW1PWO91/6-31+g(d,p) level of theory in PCM for water (see more detail in computational
method). Vertical energy (E,;); absorption wavelength (A, ); emission wavelength (Aeps ); oscillator
strength (f).

So — S; transition Sy — Sy transition
Evt | Aabs f Transition Ev Aems f Transition
(ev) | (nm) (ev) | (nm)

BQ1 [3.02] 410 [ 009 H—-L(985%) |238| 520 [0.07] H— L (99.0%)
BQ2 | 289 | 429 [ 010 | H—L(987%) |223| 556 |0.07| H—L(99.2%)
BQ3 | 288 | 431 [ 010 | H—L(98.6%) |223| 556 |0.07| H—L(99.1%)
BQ4 [ 286 | 433 [0.10| H—-L(98.6%) |224| 554 [0.07] H— L (99.2%)
BQ5 | 285 | 434 [ 009 H—-L(98.7%) |226| 549 [0.07| H— L (99.2 %)
BQ6 | 285 | 434 [ 009 | H—L(98.6%) |223| 556 |0.07| H—L99.1%)
BQ7 [293] 423 [ 009 H—-L(98.6%) |225| 551 |[0.07] H—L(99.2%)
BQ7* 246 | 504 [0.12] H— L (96.6 %)
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Table S5. Excited state properties of BQ1 — BQ7 at T, and T, geometry, which were optimized by
TDA TD-DFT method using MPW1PW91/6-31+g(d,p) level of theory in PCM for toluene. BQ7*:
BQ?7 dimer state in QM/MM calculations, their T, and T, geometry were optimized by TDA TD-
DFT, respectively using MPW1PW91/6-31+g(d,p) level of theory in PCM for water (see more detail
in computational method). Vertical energy (E,,); emission wavelength (Aeys ).

T, T,
Evi(ev) | Aems (nm) Transition Eyvi(ev) | Aems(nm) Transition
BQ1 1.28 970 H — L (98.5 %) 3.09 402 H-1—L (93.3 %)
BQ2 1.18 1050 H— L (99.5 %) 2.95 420 H-1 - L (95.1 %)
BQ3 1.20 1031 H — L (98.5 %) 291 427 H-1 - L (94.3 %)
H—L(2.5%)
BQ4 1.24 1003 H— L (97.6 %) 2.13 581 H— L (79.1 %)
H-1 — L (19.1 %)
BQ5 1.28 966 H — L (96.0 %) 2.14 581 H— L (79.8 %)
H-1 — L (18.5 %)
BQ6 1.22 1017 H— L (97.5 %) 2.13 582 H-1— L (79.7 %)
H— L+3 (2.1 %) H— L (19.5 %)
BQ7 1.22 1019 H— L (98.1 %) 2.93 423 H-1— L (94.7 %)
BQ7* | 1.66 749 H— L (95.1 %)
1.0 | | | | _IBQ1

Normalized Absorbance

Normalized PL emission

r I v : T :
200 400 500 600 700 800

Wavelength (nm)

Figure S14. Computed absorbance and emission intensity of BQ1 — BQ7 at S, and S; geometry,
respectively, which was optimized by TD and TDA TD-DFT, respectively using MPW1PW91/6-
31+g(d,p) level of theory in PCM for toluene.
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a) b) c)

{344 344

Figure S15. Partial crystal packing of a) BQ2, b) BQ6 and c) BQ7.

LUMO+1

Figure S16. MO image and energy level of BQ7 dimer at Sy, S;, and T, geometry, which were
optimized by TD and TDA TD-DFT, respectively using MPW1PW91/6-31+g(d,p) level of theory in
PCM for water (see more detail in computational method).
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6. In vitro experiments.
Cell culture

A human cervical adenocarcinoma cell line, HeLLa, was obtained from Korean Cell Line Bank and
were grown in Dulbecco's Modified Eagle Medium (DMEM, Welgene) supplemented with fetal
bovine serum (FBS, Welgene), 4 mM L-glutamine, 100 U/mL penicillin, 100 pg/mL streptomycin
and 0.25 pg/mL amphotericin B (Welgene) maintained at 37°C and 5% CO,. Cells were seeded on
confocal dish (SPL, #104350) overnight before the experiments.

Fluorescence staining and confocal laser scanning microscope (CLSM) imaging

The HeLa cells were incubated with 100 uM BQ7, 50 uM LysoTracker Deep Red, 100 uM
MitoTracker Deep Red, 100 nM MitoTracker Green, 2 uM/mL Hoechst 33342, 1 uM BODIPY
493/503 or 5 uM BODIPY 581/591 C11 (Invitrogen). The confocal images were obtained using
LSM 780, Axio observer.Z1 / 7 microscope with Plan-Apochromat 63x/1.40 Oil M27 objective lens
(Zeiss). 405 nm wavelength laser was used for BQ7 and Hoechst 33342 detection, 488 nm for
MitoTracker Green and BODIPY 493/503, and 640 nm for LysoTracker Deep Red and MitoTracker
Deep Red. For BODIPY 581/591 detection, 488 nm and 561 nm laser was used. When applicable, T-
PMT channel was obtained for brightfield images. The images were analyzed using ImagelJ, and the
Pearson colocalization coefficient was calculated using EzColocalization plugin.?!

Copper sensing of BQ7

The HeLa cells stained with BQ7 were imaged in DMEM cell culture medium, and then CuCl, was
added to the medium to the final concentration of 100 uM. The images were taken with the same
setting at 400 s after the CuCl, treatment.

ROS and superoxide anion generation

The BQ7-stained HeLa cells were irradiated with 400 nm light using LED panel. 20 uM DCFH-DA
(Sigma-Aldrich) and 10 uM DHE (Invitrogen) were stained for 30 minutes to probe for ROS and
superoxide anion, respectively. For delayed ROS detection, DCFH-DA was stained 270 minutes after
the light irradiation.

Photo(cytotoxicity) of BQ7 and (Q7),Cu

HeLa cells were seeded at 20,000 cells/cm? in 96-well cell culture plate. 0, 10, 30 and 100 uM BQ7
was treated to the cells. The 400 nm light was irradiated for 30 minutes for photodynamic experiment,
and the 0, 30 and 100 uM CuCl, was treated for chemotherapy experiment. After changing to fresh
cell culture medium, the cells were incubated at 37°C with 5% CO,. For hypoxia condition
experiment, all possible incubation processes were done in 1% O2, using the modular incubator
chamber (Embrient Inc). After 24 hours of incubation, the cells were incubated with CCK-8 solution
(Dojindo Laboratories) for 1 hour and optical density was measured using Synergy HTX Multimode
Microplate Reader (BioTek) at 450 nm.
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Figure S36. Part of the positive mode ESI mass spectrum of BQ6.
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Figure S38. '"H NMR spectrum of BQ6.
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Figure S39. 3C NMR spectrum of BQ6.
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Figure S42. '"H NMR spectrum of BQ7.
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Figure S43. 3C NMR spectrum of BQ7.
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Figure S44. Powder XRD from (a) SC-XRD and (b) powder XRD of BQ2, BQ6 and BQ7. The
powder XRD sample of BQ7 was obtained from crushed crystal fragments after SC-XRD
measurement. While the power XRD samples of BQ2 and BQ6 were obtained from available solid
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Table S6. Crystal data and structure refinement for BQ2, BQ6 and BQ7.

Complex BQ2 BQ6 BQ7
Empirical formula C,,H,;sBCINO C,H,,BCIINO C,,H,;(BCI,NO
Formula weight 343.60 469.49 392.07
Temperature/K 293(2) 293(2) 273(2)
Crystal system monoclinic monoclinic orthorhombic
Space group P2/c P2;/n Pbca

a/A 11.6261(9) 9.0115(3) 16.7740(9)
b/A 14.7545(10) 18.3724(8) 12.1914(7)
c/A 11.0120(9) 11.5145(5) 18.2466(10)
a/° 90 90 90

p/e 113.782(9) 100.784(4) 90

v/° 90 90 90
Volume/A3 1728.6(3) 1872.71(13) 3731.4(4)
V4 4 4 8
Peale@/cm’ 1.320 1.665 1.396
wmm-! 0.229 1.862 0.360
F(000) 712.0 920.0 1616.0
Crystal size/mm? 0.5%x0.5x%x0.25 0.35x0.35%x0.2 0.49 x 0.17 x 0.09

Radiation

Mo Ka (A =0.71073 A)

Mo Ka (A =0.71073
A)

Mo Ka (A=0.71073
A)

20 range for data collection/°

4.896 to 52.744

5.108 to 52.744

5.082 to 52.736

14<h<14,-18<k<18,

-11<h<11,-19<k

20<h<20,-14<k

Index ranges <22, <15,
-13<1<13
-13<1<14 22<1<22
Reflections collected 17521 11714 59884

Independent reflections

3527 [Rin = 0.0466,
Rigma = 0.0359]

3828 [Ri = 0.0277,
Rigma = 0.0315]

3811 [Ryy, = 0.0609,
Riigma = 0.0245]

Data/restraints/parameters 3527/0/226 3828/0/235 3811/0/245
Goodness-of-fit on F? 1.039 1.058 1.085
) . R;=0.0308, wR, = | R;=0.0481, wR, =0.
Final R indexes [[>=26 (I)] | R; =0.0471, wR, = 0.1098
0.0659 0963
, . R; =0.0404, wR, = R; =0.0728, wR, =
Final R indexes [all data] R, =0.0734, wR, =0.1280
0.0711 0.1102
Largest diff. peak/hole / e A3 0.20/-0.24 0.28/-0.72 0.27/-0.27
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