Supporting information

ZnIn₂S₄ Combined with a Flower-like NiAl-layered Double Hydroxide with Enhanced Photocatalytic H₂ Production Activity

Anna P. Souri^{1,2}, Onur Cavdar², Maria Zografaki^{1,3}, Leila Zouridi^{1,4}, Vassilios Binas^{1,3}, Tomasz Klimczuk^{5,6}, Kostiantyn Nikiforow⁷, Anna Malankowska^{2*}

Table S1: Reports of ZIS/LDHs pairing from literature

Reference	Composite	Application	H ₂ rate (mmol g ⁻¹ h ⁻¹)	Irradiation	AQE (%)	λ (nm)
Our work	ZIS/NiAl/Pt	H ₂ evolution	1.6 0.3	UV-vis visible	1.7	320
[2]	ZIS/NiAl/car bon q.d.	H ₂ evolution	23.1	visible	3.6	420
[3]	ZIS/NiFe	H ₂ evolution	2.0	visible	7.2	420
[4]	ZIS/MgAl	Cr(VI) reduction and H ₂ evolution	1.9	visible	35.7	380
[5]	ZIS/CoAl	H ₂ evolution	1.5	simulated sunlight	1.5	420
[6]	NiCo/ZIS	Cr(VI) reduction		visible		
[7]	ZIS/CoAl	H ₂ evolution	1.2	visible	0.6	450
[8]	NiCoFe/ZIS	H ₂ evolution coupled with benzylamine oxidation	113.5	visible	14.3	420
[9]	CoNi/ZIS	tetracycline degradation under photocatalytic- peroxymonosu lfate activation system				

¹ Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion.

² Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland

³ Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁴ Department of Materials Science and Technology, University of Crete, Heraklion, Greece

⁵ Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza, Gdansk, Poland

⁶ Advanced Materials Center, Gdansk University of Technology, Narutowicza, Gdansk, Poland

Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland

^{*}anna.malankowska@ug.edu.pl

Calculations for Pt photodeposition

In the case of ZIS/NiAl25/2.6Pt, 273 µL of H₂PtCl₆·6H₂O solution (50 mM) were dissolved in an aqueous solution (10 mL) containing 20% (v/v) methanol under vigorous stirring. The amount of H₂PtCl₆·6H₂O solution was determined by taking into consideration the percentage of Pt in the metal salt (37%) and the formula:

$$V = \frac{m}{MW C} \tag{1}$$

where:

m is the amount of salt that corresponds to 2.6 wt% Pt,

MW is the molecular weight of the metal salt (517.72 gr mol⁻¹),

C is the concentration of the metal solution (50 mM).

Action spectra analysis for photocatalytic hydrogen evolution reaction

The quantum efficiency was calculated using the following equation (Eq. 1)

$$AQE (\%) = \frac{2 \times Number \ of \ the \ hydrogen \ molecules}{Number \ of \ the \ incident \ photons}$$
(Eq. 1)

The derivation of the AQE formula was clearly given by Kalisman et al. [1].

Specifically, the AQE was calculated using the following formula:

$$AQE (\%) = \frac{2 \times NH2 \times F \times 100}{P \times t \times A \times \lambda / (h \times c)}$$
 (Eq. 2)

N_{H2}: number of moles of H₂ evolved (mol)

F: Avogadro's numer

P: is the power density of the incident light

t: irradiation time

A: is the effective illuminated area

λ: wavelength of monochromatic light

h: Planck's constant

c: speed of light

The key parameters used:

• Speed of light (c): 3×10^8 m/s

• Planck's constant (h): $6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

• Avogadro's number: $6.022 \times 10^{23} \text{ mol}^{-1}$

• Sensor area: 0.709 cm²

• Irradiated area of the reactor: 3.0 cm²

• Wavelength (λ): [provided per measurement see Fig.S1]

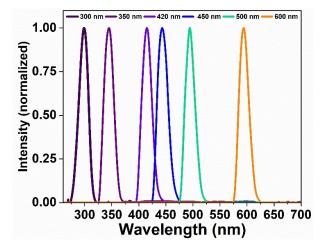
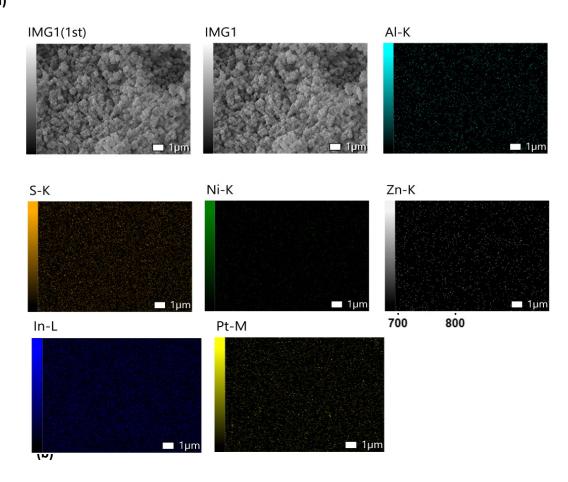
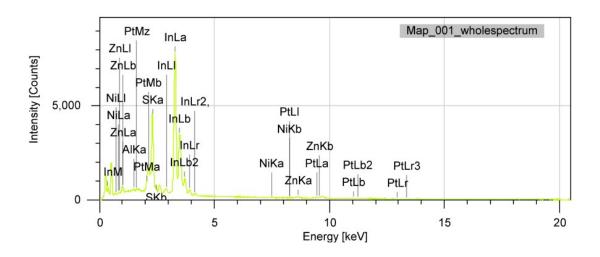
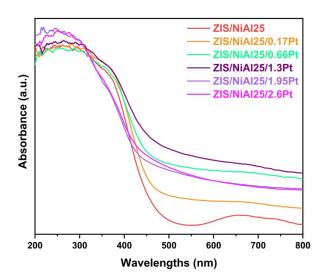
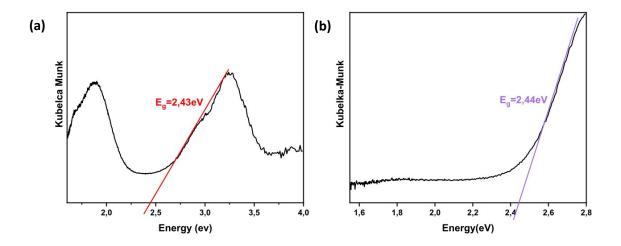
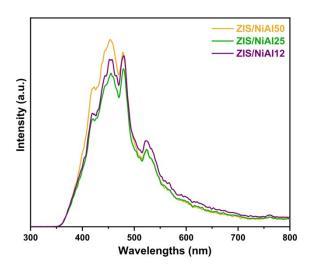
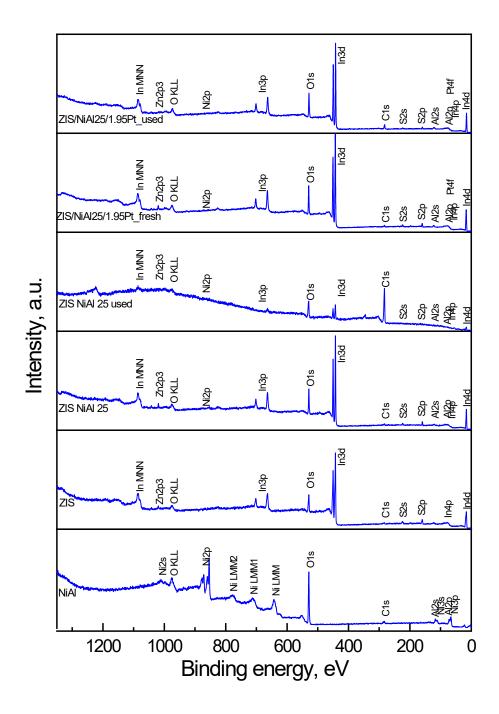
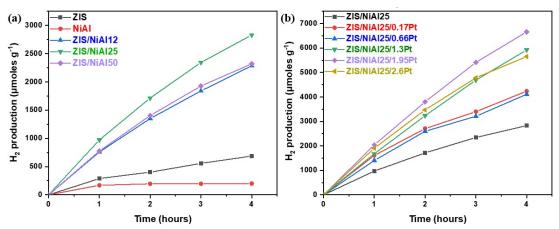
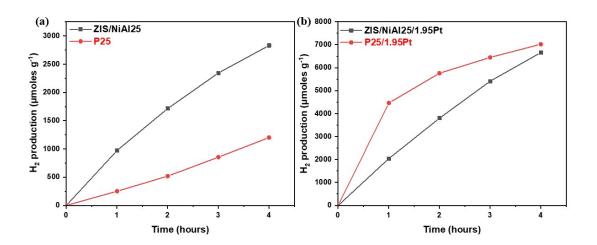




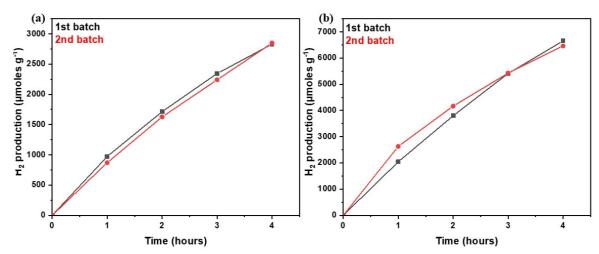
Figure S1: The emission spectra of each wavelength

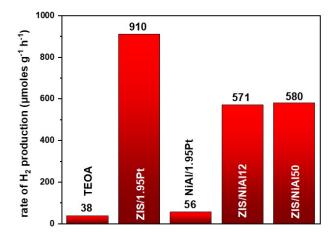




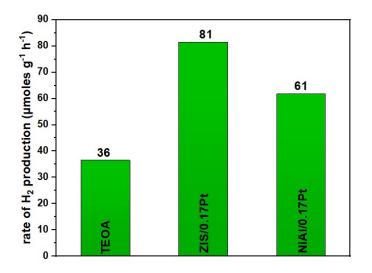

Figure S3: DRS spectra of ZIS/NiAl25 composite with different Pt loadings


Figure S4: Tauc plots of pristine (a) NiAl and (b) ZIS and from which the Eg was extracted. The axes are $(F(R)\cdot hv)1/n$ - hv, where F(R) is the absorbance coefficient, hv is the photon energy (h is the Planck constant and v is the light frequency)and n was chosen 2 for ZIS and $\frac{1}{2}$ for NiAl.


Figure S5: PL spectra of ZIS/NiAlx heterostructures where x=12.5, 25 and 50


Figure S6: XPS spectra of prepared photocatalysts NiAl, ZIS, ZIS/NiAl25, ZIS/NiAl25/1.95Pt as well as ZIS/NiAl25 and ZIS/NiAl25/1.95Pt after photocatalytic reaction (marked as used)


Figure S7: (a) Optimization of NiAl amount in ZIS/NiAl heterostructure and **(b)** optimization of Pt loading on ZIS/NiAl25 sample under UV-Vis irradiation. Reaction conditions: 25mg of catalyst, 20mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt


Figure S8: Comparison study (a) of sample with optimum NiAl amount (ZIS/NiAl 25) with P25 and (b) of sample with optimum Pt loading (1.95% wt) with P25 with the same Pt loading in UV-Vis irradiation. Reaction conditions: 25mg of catalyst, 20mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt

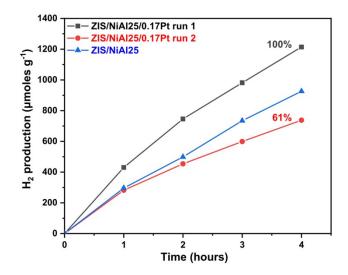

Figure S9: Photocatalytic H₂ rate of different batches of a) ZIS/NiAl25 sample and b) ZIS/NiAl25/1.95Pt sample in UV-Vis. Reaction conditions: 25mg of catalyst, 20mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt

Figure S10: Photocatalytic H₂ rate of TEOA, ZIS/1.95Pt, NiAl/1.95Pt, ZIS/NiAl12 and ZIS/NiAl50 under UV-Vis. Reaction conditions: 25 mg of catalyst, 20 mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt

Figure S11: Photocatalytic H_2 rate of TEOA, ZIS/0.17Pt, NiAl/0.17Pt under visible irradiation (λ >420 nm). Reaction conditions: 25 mg of catalyst, 20 mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt

Figure S12. Cycling study of ZIS/NiAl/0.17Pt under visible irradiation (λ >420 nm). Reaction conditions: 25 mg of catalyst, 20 mL aqueous solution, 10% v/v of sacrificial agent (TEOA), Xe lamp 1000Watt

Table S2: The values of obtained AQE(%) in different wavelengths

λ (nm)	AQE (%)
320	1.70
350	1.40
420	0.30
450	0.10
500	0.02
600	0.03

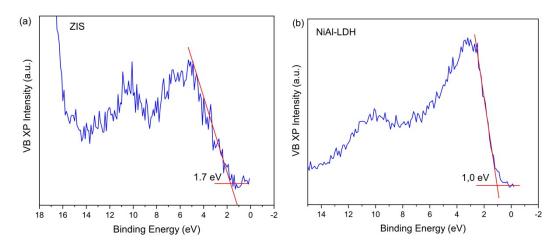


Figure S13. Valence band XP spectra of (a) ZIS and (b) NiAl-LDH samples.

References:

- [1] P. Kalisman, Y. Nakibli, and L. Amirav, "Perfect Photon-to-Hydrogen Conversion Efficiency," *Nano Lett.*, vol. 16, no. 3, pp. 1776–1781, 2016, doi: 10.1021/acs.nanolett.5b04813.
- [2] X. Deng *et al.*, "Carbon-Dots-Modified Hierarchical ZnIn₂S₄/Ni-Al LDH Heterojunction with Boosted Charge Transfer for Visible-Light-Driven Photocatalytic H2 Evolution," *Inorg. Chem.*, vol. 62, no. 24, pp. 9702–9712, 2023, doi: 10.1021/acs.inorgchem.3c01317.
- [3] S. Zhao *et al.*, "In Situ Growth of ZnIn₂S₄ on MOF-Derived Ni-Fe LDH to Construct Ternary-Shelled Nanotubes for Efficient Photocatalytic Hydrogen Evolution," *Inorg. Chem.*, vol. 60, no. 13, pp. 9762–9772, 2021, doi: 10.1021/acs.inorgchem.1c01064.
- [4] Z. Yang, S. Li, X. Xia, and Y. Liu, "Hexagonal MgAl-LDH simultaneously facilitated active facet exposure and holes storage over ZnIn₂S₄/MgAl-LDH heterojunction for boosting photocatalytic activities and anti-photocorrosion," *Sep. Purif. Technol.*, vol. 300, no. July, p. 121819, 2022, doi: 10.1016/j.seppur.2022.121819.
- [5] Z. He, C. Qian, D. Chen, K. Xu, and W. Hao, "Design of ultrathin CoAl-LDHs/ ZnIn₂S₄ with strong interfacial bonding and rich oxygen vacancies for highly efficient hydrogen evolution activity," *J. Colloid Interface Sci.*, vol. 651, no. July, pp. 138–148, 2023, doi: 10.1016/j.jcis.2023.07.179.
- [6] D. Wang, Z. Yang, Y. Xie, Y. Feng, and J. Yao, "NiCo Layered Double Hydroxide Bearing ZnIn₂S₄ anosheets for Highly Efficient Photocatalytic Cr(VI) Reduction," ACS Appl. Nano Mater., vol. 6, no. 7, pp. 6086–6091, 2023, doi: 10.1021/acsanm.3c00427.
- [7] L. Peng *et al.*, "Self-assembled transition metal chalcogenides@CoAl-LDH 2D/2D heterostructures with enhanced photoactivity for hydrogen evolution," *Inorg. Chem. Front.*, vol. 9, no. 5, pp. 994–1005, 2022, doi: 10.1039/d1qi01603b.
- [8] C. Tang *et al.*, "Bioinspired 3D penetrating structured micro-mesoporous NiCoFe-LDH@ ZnIn₂S₄ Z-scheme heterojunction for simultaneously photocatalytic H₂ evolution coupled with benzylamine oxidation," *Appl. Catal. B Environ.*, vol. 342, no. September 2023, 2024, doi: 10.1016/j.apcatb.2023.123384.
- [9] Q. Zhou, B. Jiang, L. Zhang, Y. Sun, X. Yang, and L. Zhang, "1D/2D CoNi-LDH/ ZnIn₂S₄ S-scheme heterojunction for effectively tetracycline degradation under photocatalytic-peroxymonosulfate activation system: DFT calculations and mechanism insights," *Chem. Eng. J.*, vol. 478, no. August, p. 147535, 2023, doi: 10.1016/j.cej.2023.147535.