Electronic Supporting Information

Manganese germylene complexes: reactivity with dihydrogen, isonitriles, and dinitrogen

Jeffrey S. Price and David J. H. Emslie*

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x 23307

E-mail: emslied@mcmaster.ca

Website: https://emsliegroup.mcmaster.ca/

The supplemental file Cartesian_Coordinates_for_Calculated_Structures.xyz contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, <u>http://www.ccdc.cam.ac.uk/pages/Home.aspx</u>) for visualization and analysis.

Contents	Pages
Overview of Literature Mn(I) Dinitrogen Chemistry	S2
Selected NMR Spectra for Solutions Containing Complexes 2a-b, dn-2a-b, 3a-c, 5a-b, and 6	S3-S85
Figures of X-ray Crystal Structures of Complexes cis-3b, 4, cis-5a, and trans-5a	S86-S87
Tables of X-ray Crystal Data and Crystal Structure Refinement	S88-S97
Tables of Selected Crystallographic Metrics for Complexes 3a-c and 4	S98
Tables of Selected NMR Spectroscopic Data for Complexes 3a-c	S98
2D Powder X-ray Diffractograms for Complexes 5a-b	S99
IR Spectra for Complexes 5a-b	S100
DFT Calculated Structures for Complex 2a and the Geometry Optimized Fragment of [(dmpe) ₂ Mn(GeHPh ₂)]	S101
Figures Showing Superimposed Calculated and X-ray Structures of 5a-b	S102
Overall Deformation Densities of cis and trans 5a,b	S102
Selected ETS-NOCV Deformation Densities, NOCV Orbitals, and Fragment Orbital Contributors for <i>cis</i> and <i>trans</i> -5	S103- S106
Tables of Calculated Bond Metrics, Mayer Bond Orders, and Hirshfeld Charges for 2a-b , 5a-b , and the geometry optimized [(dmpe) ₂ Mn(GeHPh ₂)] fragment from the fragment interaction calculation for <i>cis</i> -5a	S107- S108
References	S109

Selected Abbreviations: dmpe = 1,2-bis(dimethylphosphino)ethane, sat. = satellite

Overview of Literature Mn(I) Dinitrogen Chemistry

Scheme S1 provides an overview of manganese(I) dinitrogen complexes synthesized from N_2 (not including dinitrogen complexes prepared by conversion of another N-containing ligand previously installed on the metal). Many manganese(I) complexes bearing dinitrogen ligands have been prepared by substitution reactions displacing THF,¹ H_2 ,²⁻⁵ ethyl vinyl ether,⁴ PMe₃,⁶ or (more commonly) CO⁶⁻¹² ligands on Mn(I) with dinitrogen (Scheme S1). These reactions required supercritical fluid solvents, high N_2 pressures, photochemical conditions, or (in the case of $[(dmpe)_2MnH(N_2)])$ elevated temperature. Examples of N₂ coordination to manganese(I) under mild conditions (bottom right of Scheme S1) are limited to the syntheses of a μ -N₂ complex reported by Milstein et al. featuring an asymmetric PNP co-ligand, which was only observed in the solid state,¹³ and a series of cationic 5-coordinate tetraphosphine carbonyl manganese(I) complexes with poor stability (complete conversion to the N₂ complex was only observed for the derivative).¹⁴⁻¹⁶ bis(depe) The syntheses of dinitrogen manganese complexes $[(dmpe)_2Mn(GeHR_2)(N_2)]$ (**5a**; R = Ph, **5b**; R = Et) discussed in this work also proceeded under mild conditions.

Scheme S1. Syntheses of previously reported manganese(I) dinitrogen complexes using N₂. For clarity, equilibria involving N₂ coordination/de-coordination are not indicated. scFl = supercritical fluid (CO₂ or Xe).¹⁻¹⁶

Selected NMR Spectra for Solutions Containing Complexes 2a-b, dn-2a-b, 3a-c, 5a-b, and 6

Figure S1. ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 298 K).

Figure S2. Expanded aromatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 298 K). * indicates peaks from **1a**, and peak labels are for signals from **2a**.

Figure S3. Expanded Ge*H* region of the ¹H NMR spectrum of a solution containing [(dmpe)₂MnH₂(GeHPh₂)] (**2a**) formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and H₂ after sitting at ambient temperature for 4 days in d_8 -toluene (500 MHz, 298 K). The peak label is for a signal from **2a**.

Figure S4. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 298 K). * indicates peaks from **1a**, and peak labels are for signals from **2a**.

Figure S5. Expanded metal hydride region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in d_8 -toluene (500 MHz, 298 K). * indicates a peak from **1a**, and the peak label is for a signal from **2a**.

Figure S6. ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 298 K).

Figure S7. Expanded aromatic region of the ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 298 K). * indicates peaks from **1a**, and peak labels are for signals from **2a**.

Figure S8. Expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 298 K). * indicates peaks from **1a**, and peak labels are for signals from **2a**.

Figure S9. ³¹P{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (202 MHz, 298 K). * indicates a peak from **1a**, and the unlabelled peak is a signal from **2a**.

Figure S10. ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 176 K).

Figure S11. Expanded aromatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 176 K). * indicates peaks from **1a**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHPh_2)] (*transHGe*-**2a**), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHPh₂)] (*central*-**2a**) and/or *cis*-[(dmpe)_2Mn(GeHPh_2)] (*cis*-**2a**).

Figure S12. Expanded Ge*H* region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 176 K). The peak labelled (a) is from *transGeH*- $[(dmpe)_2MnH(HGeHPh_2)]$ (*transHGe*-**2a**), and the peak labelled (b) is from the low symmetry isomer(s) *central*- $[(dmpe)_2Mn(H_2GeHPh_2)]$ (*central*-**2a**) and/or *cis*- $[(dmpe)_2Mn(GeHPh_2)(H_2)]$ (*cis*-**2a**).

Figure S13. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 176 K). * indicates peaks from **1a**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHPh_2)] (*transHGe*-2a), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHPh₂)] (*central*-2a) and/or *cis*-[(dmpe)_2Mn(GeHPh_2)](H₂)] (*cis*-2a).

Figure S14. Expanded metal hydride region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz, 176 K). * indicates a peak from **1a**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHPh_2)] (*transHGe*-**2a**), and the peak labelled (b) is from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHPh_2)] (*central*-**2a**) and/or *cis*-[(dmpe)_2Mn(GeHPh_2)](*tis*-**2a**).

Figure S15. ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 176 K).

Figure S16. Expanded aromatic region of the ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 176 K). * indicates peaks from **1a**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHPh_2)] (*transHGe*-2a), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHPh_2)] (*central*-2a) and/or *cis*-[(dmpe)_2Mn(GeHPh_2)](*tis*-2a).

Figure S17. Expanded aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (126 MHz, 176 K). * indicates peaks from **1a**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHPh_2)] (*transHGe*-**2a**), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHPh₂)] (*central*-**2a**) and/or *cis*-[(dmpe)_2Mn(GeHPh_2)] (*cis*-**2a**).

Figure S18. ³¹P{¹H} NMR spectrum of a solution containing [(dmpe)₂MnH₂(GeHPh₂)] (**2a**) formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and H₂ after sitting at ambient temperature for 4 days in d_8 -toluene (202 MHz, 176 K). * indicates a peak from **1a**, the peak labelled (a) is from *transHGe*-[(dmpe)₂MnH(HGeHPh₂)] (*transHGe*-**2a**), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)₂Mn(H₂GeHPh₂)] (*central*-**2a**) and/or *cis*-[(dmpe)₂Mn(GeHPh₂)] (*cis*-**2a**).

		298 K
		279 К
1.4.	λ.	268 K
. k.		255 K
		243 K
		231 K
		220 K
		209 K
	. 11	198 K
	.]]	188 K
L	_,	176 K
<u> </u>	5 0	-5 -10 [ppm]

Figure S19. Variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz).

Figure S20. Expanded aromatic regions of variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz).

Figure S21. Expanded Ge*H* regions of variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz).

			\sim	^		298 K
			\wedge	~		279 К
				~		268 K
				~		255 K
						243 K
						231 K
						220 K
		~				209 K
			\wedge	\sim		198 K
			\wedge	\land		188 K
			\wedge			176 K
1.8	1.6	1.4	1.2	1.0	0.8	0.6 [ppm]

Figure S22. Expanded aliphatic regions of variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (500 MHz).

Figure S23. Variable temperature ³¹P{¹H} NMR spectra of a solution containing [(dmpe)₂MnH₂(GeHPh₂)] (**2a**) formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and H₂ after sitting at ambient temperature for 4 days in d_8 -toluene (202 MHz). For clarity, each spectrum is shifted 2 ppm to lower frequency than the one below it, and the x-axis corresponds to the bottom spectrum.

Figure S24. Top: ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 3 days in C₆D₆ (600 MHz, 298 K; left) or *d*₈-toluene (500 MHz, 176 K; right). Middle and bottom: ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHPh_2)]$ (*d*₂-2a) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 3 days in *d*₈-toluene (176 K; right).

Figure S25. Top: Expanded aromatic and Ge*H* region of the ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 3 days in C₆D₆ (600 MHz, 298 K; left) or *d*₈-toluene (500 MHz, 176 K; right). The peaks labelled (a) are from the *transHGe* isomer of *d*₂-**2a**, and the peaks labelled (b) are from the *cis* and/or *central* isomer(s) of *d*₂-**2a**. Middle and bottom: Expanded aromatic and Ge*H* region of the ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHPh_2)]$ (*d*₂-**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 3 days in *d*₈-toluene (176 K; right).

Figure S26. Top: Expanded aliphatic region of the ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 3 days in C₆D₆ (600 MHz, 298 K; left) or *d*₈-toluene (500 MHz, 176 K; right). Middle and bottom: Expanded aliphatic region of the ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHPh_2)]$ (*d*₂-2a) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 3 days in *d*₈-toluene (176 K; right).

Figure S27. Top: Expanded metal hydride region of the ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 3 days in C₆D₆ (600 MHz, 298 K; left) or *d*₈-toluene (500 MHz, 176 K; right). The peaks labelled (a) are from the *transHGe* isomer of **2a** or *d*₂-**2a**, and the peaks labelled (b) are from the *cis* and/or *central* isomer(s) of **2a** or *d*₂-**2a**. Middle and bottom: Expanded metal hydride region of the ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHPh_2)]$ (*d*₂-**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 3 days in *d*₈-toluene (176 K; right).

Figure S28. ³¹P{¹H} NMR spectra (202 MHz) of a solution containing (top) $[(dmpe)_2MnH_2(GeHPh_2)]$ (**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and H₂ after sitting at ambient temperature for 4 days in *d*₈-toluene (left; 298 K, right; 176 K) or (bottom) $[(dmpe)_2MnD_2(GeHPh_2)]$ (*d*₂-**2a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and D₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (left; 298 K, right; 176 K). * indicates peaks from the *cis* and/or *central* isomer(s) of **2a**, and † indicates peaks from the *cis* and/or *central* isomer(s) of **4**₂-**2a**.

Figure S29. ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 298 K). The inset shows the expanded Ge*H* region of this spectrum. The peak label is for a signal from **2b**.

Figure S30. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 298 K). * indicates peaks from **1b**, and peak labels are for signals from **2b**.

Figure S31. Expanded metal hydride region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (500 MHz, 298 K). * indicates a peak from **1b**, and the peak label is for a signal from **2b**.

Figure S32. ¹³C{¹H} NMR spectrum of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (126 MHz, 298 K).

Figure S33. Expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (126 MHz, 298 K). * indicates peaks from **1b**, and peak labels are for signals from **2b**.

Figure S34. ³¹P{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (202 MHz, 298 K). * indicates a peak from **1b**, and the unlabelled peak is a signal from **2b**.

Figure S35. ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 176 K).

Figure S36. Expanded Ge*H* region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 176 K). The peaks labelled (a) is from *transHGe*- $[(dmpe)_2MnH(HGeHEt_2)]$ (*transHGe*-**2b**), and the peak labelled (b) is from the low symmetry isomer(s) *central*- $[(dmpe)_2Mn(H_2GeHEt_2)]$ (*central*-**2b**) and/or *cis*- $[(dmpe)_2Mn(GeHEt_2)]$ (*cis*-**2b**).

Figure S37. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 176 K). * indicates peaks from **1b**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHEt_2)] (*transHGe*-2b), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHEt₂)] (*central*-2b) and/or *cis*-[(dmpe)_2Mn(GeHEt_2)(H₂)] (*cis*-2b).

Figure S38. Expanded metal hydride region of the ¹H NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz, 176 K). * indicates a peak from **1b**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHEt_2)] (*transHGe*-**2b**), and the peak labelled (b) is from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHEt₂)] (*central*-**2b**) and/or *cis*-[(dmpe)_2Mn(GeHEt_2)(H₂)] (*cis*-**2b**).

Figure S39. ¹³C{¹H} NMR spectrum of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (126 MHz, 176 K).

Figure S40. Expanded aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (126 MHz, 176 K). * indicates peaks from **1b**, peaks labelled (a) are those from *transHGe*-[(dmpe)_2MnH(HGeHEt_2)] (*transHGe*-2b), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)_2Mn(H₂GeHEt₂)] (*central*-2b) and/or *cis*-[(dmpe)_2Mn(GeHEt_2)(H₂)] (*cis*-2b).

Figure S41. ³¹P{¹H} NMR spectrum of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (202 MHz, 176 K). * indicates a peak from **1b**, the peak labelled (a) is from *transHGe*-[(dmpe)₂MnH(HGeHEt₂)] (*transHGe*-**2b**), and peaks labelled (b) are from the low symmetry isomer(s) *central*-[(dmpe)₂Mn(H₂GeHEt₂)] (*cis*-**2b**).

	298 К
,,	279 К
	268 K
	255 К
	243 К
	231 К
., ., ., ., ., ., ., ., ., ., ., ., ., .	220 К
	209 K
	198 K
	188 K
uu	176 K
<u> </u>	5 -10 -15 [ppm]

Figure S42. Variable temperature ¹H NMR spectra of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (500 MHz).

Figure S43. Expanded Ge*H* regions of the variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz).

Figure S44. Expanded alkyl regions of the variable temperature ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (500 MHz).

Figure S45. Expanded metal hydride regions of the variable temperature ¹H NMR spectra of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (500 MHz).

Figure S46. Variable temperature ³¹P{¹H} NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 3 days in *d*₈-toluene (202 MHz). For clarity, each spectrum is shifted 3 ppm to lower frequency than the one below it, and the x-axis corresponds to the bottom spectrum.

Figure S47. Top: ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 4 days in C₆D₆ (600 MHz, 298 K; left) or d_8 -toluene (500 MHz, 176 K; right). Middle and bottom: ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHEt_2)]$ and other isotopomers/isotopologues (d_n -2b) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 4 days in d_8 -toluene (176 K; right).

Figure S48. Top: Expanded Ge*H* region of ¹H NMR spectra of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 4 days in C₆D₆ (600 MHz, 298 K; left) or d_8 -toluene (500 MHz, 176 K; right). The peaks labelled (a) are from the *transHGe* isomer of **2b** or d_n -**2b**, and the peaks labelled (b) are from the *cis* and/or *central* isomer(s) of **2b** or d_n -**2b**. Middle and bottom: Expanded Ge*H* region of ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing [(dmpe)₂MnD₂(GeHEt₂)] and other isotopomers/isotopologues (d_n -**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 4 days in d_8 -toluene (176 K; right).

Figure S49. Top: Expanded aliphatic region of ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 4 days in C₆D₆ (600 MHz, 298 K; left) or *d*₈-toluene (500 MHz, 176 K; right). Middle and bottom: Expanded aliphatic region of ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHEt_2)]$ and other isotopomers/isotopologues (*d*_n-**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 4 days in *d*₈-toluene (176 K; right).

Figure S50. Top: Expanded metal hydride region of ¹H NMR spectra of a solution containing $[(dmpe)_2MnH_2(GeHEt_2)]$ (**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and H₂ after sitting at ambient temperature for 4 days in C₆D₆ (600 MHz, 298 K; left) or d_8 -toluene (500 MHz, 176 K; right). The peaks labelled (a) are from the *transHGe* isomer of **2b** or d_n -**2b**, and the peaks labelled (b) are from the *cis* and/or *central* isomer(s) of **2b** or d_n -**2b**. Middle and bottom: Expanded metal hydride region of ¹H NMR (middle; 500 MHz) and ²H NMR (bottom; 77 MHz) spectra of a solution containing $[(dmpe)_2MnD_2(GeHEt_2)]$ and other isotopomers/isotopologues (d_n -**2b**) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) and D₂ after sitting at ambient temperature for 1 day in C₆D₆ (298 K; left) or 4 days in d_8 -toluene (176 K; right).

Figure S51. Expanded GeH region of the ¹H NMR spectra of a solution containing $[(dmpe)_2MnD_2(GeHEt_2)]$ and other isotopomers/isotopologues (d_n -2b) formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (1b) and D₂ after sitting at ambient temperature for 3 days in C₆D₆ (500 MHz, 298 K; left) or 4 days in d_8 -toluene (500 MHz, 298 K; right).

Figure S52. Top: ³¹P{¹H} NMR spectra (202 MHz) of a solution containing [(dmpe)₂MnH₂(GeHEt₂)] (**2b**) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and H₂ after sitting at ambient temperature for 3 days in d_8 -toluene (left; 298 K, right; 176 K). Bottom: ³¹P{¹H} NMR spectra (202 MHz) of a solution containing [(dmpe)₂MnD₂(GeHEt₂)] and other isotopomers/isotopologues (d_n -2b) formed from the reaction of [(dmpe)₂MnH(=GeEt₂)] (**1b**) and D₂ after sitting at ambient temperature for four days in d_8 -toluene (left; 298 K, right; 176 K). * indicates peaks from the *cis* and/or *central* isomer(s) of **2b**, and † indicates peaks from the *cis* and/or *central* isomer(s) of **4**_n-2b.

Figure S53. ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (600 MHz, 298 K).

Figure S54. Expanded aromatic region of the ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-**3a**) in C₆D₆ (600 MHz, 298 K). The inset shows the expanded Ge*H* region of this spectrum. * indicates peaks from the *trans* isomer.

Figure S55. Expanded higher frequency aliphatic region of the ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (600 MHz, 298 K). * indicates a peak from the *trans* isomer.

Figure S56. Expanded lower frequency aliphatic region of the ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (600 MHz, 298 K).

Figure S57. ¹³C{¹H} NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S58. Expanded higher frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S59. Expanded lower frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S60. Expanded middle frequency region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S61. Expanded higher frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S62. Expanded lower frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (151 MHz, 298 K).

Figure S63. ³¹P{¹H} NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a) in C₆D₆ (243 MHz, 298 K).

Figure S64. ¹H NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K).

Figure S65. Expanded aromatic region of the ¹H NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and labelled peaks are from *trans*-**3a**.

Figure S66. Expanded GeH region of the ¹H NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). * indicates a peak arising from *cis*-**3a** and the labelled peak is from *trans*-**3a**.

Figure S67. Expanded aliphatic region of the ¹H NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and labelled peaks are from *trans*-**3a**. † indicates signals from free dmpe.

Figure S68. ¹³C{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (126 MHz, 298 K).

Figure S69. Expanded higher frequency aromatic region of the ¹³C{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (126 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and labelled peaks are from *trans*-**3a**.

Figure S70. Expanded lower frequency aromatic region of the ¹³C{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $(dmpe)_2Mn(GeHPh_2)(CN^tBu)]$ (**3a**) in C₆D₆ (126 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and labelled peaks are from *trans*-**3a**.

Figure S71. Expanded middle frequency region of the ¹³C{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $(dmpe)_2Mn(GeHPh_2)(CN^tBu)$] (**3a**) in C₆D₆ (126 MHz, 298 K). * indicates a peak arising from *cis*-**3a** and the labelled peak is from *trans*-**3a**.

Figure S72. Expanded higher frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a mixture of *cis* and *trans* isomers of (dmpe)₂Mn(GeHPh₂)(CN^tBu)] (**3a**) in C₆D₆ (126 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and labelled peaks are from *trans*-**3a**.

- 54.5548

Figure S73. Expanded lower frequency aliphatic region of the ¹³C{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $(dmpe)_2Mn(GeHPh_2)(CN^tBu)$] (**3a**) in C₆D₆ (126 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and the labelled peak is from *trans*-**3a**. † indicates peaks from free dmpe.

Figure S74. ³¹P{¹H} NMR spectrum of a mixture of *cis* and *trans* isomers of $(dmpe)_2Mn(GeHPh_2)(CN^tBu)$] (**3a**) in C₆D₆ (202 MHz, 298 K). * indicates peaks arising from *cis*-**3a** and the labelled peak is from *trans*-**3a**.

Figure S75. ¹H NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (600 MHz, 298 K). Xyl = *o*-xylyl.

Figure S76. Expanded aromatic region of the ¹H NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (600 MHz, 298 K). Xyl = *o*-xylyl. * indicates peaks from CNXyl.

Figure S77. Expanded Ge*H* region of the ¹H NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (600 MHz, 298 K). Xyl = *o*-xylyl.

Figure S78. Expanded aliphatic region of the ¹H NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (600 MHz, 298 K). Xyl = *o*-xylyl. * indicates a peak from CNXyl.

Figure S79. ¹³C{¹H} NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (151 MHz, 298 K). Xyl = *o*-xylyl.

Figure S80. Expanded higher frequency aromatic region of the ¹³C{¹H} NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (151 MHz, 298 K). Xyl = *o*-xylyl. * indicates a peak from CNXyl.

Figure S81. Expanded lower frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of solution formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of [(dmpe)₂Mn(GeHPh₂)(CNXyl)] (**3b**) in C₆D₆ (151 MHz, 298 K). Xyl = *o*-xylyl. * indicates peaks from CNXyl.

Figure S82. Expanded aliphatic region of the ¹³C{¹H} NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyl)]$ (**3b**) in C₆D₆ (151 MHz, 298 K). Xyl = *o*-xylyl. * indicates a peak from CNXyl.

Figure S83. ³¹P{¹H} NMR spectrum of solution formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNXyl containing a mixture of *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CNXyI)]$ (**3b**) in C₆D₆ (243 MHz, 298 K). Xyl = *o*-xylyl. * indicates a peak from CNXyl.

Figure S84. ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (*cis*-3c) in C₆D₆ (600 MHz, 298 K).

Figure S85. Expanded aromatic region of the ¹H NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (*cis*-**3c**) in C₆D₆ (600 MHz, 298 K).

Figure S86. Expanded middle frequency region of the ¹H NMR spectrum for *cis*- $[(dmpe)_2Mn(GeHPh_2)(CN''Bu)]$ (*cis*-3c) in C₆D₆ (600 MHz, 298 K).

Figure S87. Expanded aliphatic region of the ¹H NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^{*n*}Bu)] (*cis*-**3c**) in C₆D₆ (600 MHz, 298 K).

Figure S88. ¹³C{¹H} NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (*cis*-3c) in C₆D₆ (151 MHz, 298 K).

Figure S89. Expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (*cis*-3c) in C₆D₆ (151 MHz, 298 K).

Figure S90. Expanded middle frequency region of the ${}^{13}C{}^{1}H$ NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CN"Bu)] (*cis*-3c) in C₆D₆ (151 MHz, 298 K).

Figure S91. Expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CN''Bu)] (*cis*-3c) in C₆D₆ (151 MHz, 298 K).

Figure S92. ³¹P{¹H} NMR spectrum for *cis*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (3c) in C₆D₆ (243 MHz, 298 K).

Figure S93. ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (600 MHz, 298 K).

Figure S94. Expanded aromatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (600 MHz, 298 K). * indicates peaks from *cis*-**3c**, † indicates peaks from an unidentified manganese-containing impurity, and labelled peaks are from *trans*-**3c**.

Figure S95. Expanded Ge*H* region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (600 MHz, 298 K). * indicates a peak from *cis*-3c and the labelled peak is from *trans*-3c.

Figure S96. Expanded higher frequency aliphatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (600 MHz, 298 K). * indicates a peak from *cis*-**3c**, + indicates peaks from an unidentified manganese-containing impurity, ‡ indicates an impurity present in the CNⁿBu used, and CNⁿBu indicates a peak from free CNⁿBu.

Figure S97. Expanded lower frequency aliphatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (600 MHz, 298 K). * indicates peaks from *cis*-**3c**, + indicates peaks from an unidentified manganese-containing impurity, CNⁿBu indicates peaks from free CNⁿBu, and labelled peaks are from *trans*-**3c**.

Figure S98. ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN''Bu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CN''Bu in C_6D_6 (151 MHz, 298 K).

Figure S99. Expanded higher frequency aromatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**3c**, + indicates peaks from an unidentified manganese-containing impurity, CNⁿBu indicates a peak from free CNⁿBu, and the labelled peak is from *trans*-**3c**.

Figure S100. Expanded lower frequency aromatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**3c** and † indicates peaks from an unidentified manganese-containing impurity.

Figure S101. Expanded middle frequency region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates a peak from *cis*-**3c**, † indicates a peak from an unidentified manganese-containing impurity, and CNⁿBu indicates peaks from free CNⁿBu.

Figure S102. Expanded higher frequency aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**3c**, † indicates peaks from an unidentified manganese-containing impurity, CNⁿBu indicates a peak from free CNⁿBu, and the labelled peak is from *trans*-**3c**.

Figure S103. Expanded middle frequency aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**3c**, + indicates peaks from an unidentified manganese-containing impurity, CNⁿBu indicates a peak from free CNⁿBu, and labelled peaks are from *trans*-**3c**.

Figure S104. Expanded lower frequency aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN^nBu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CNⁿBu in C₆D₆ (151 MHz, 298 K). * indicates a peaks from *cis*-**3c** and CNⁿBu indicates a peak from free CNⁿBu.

Figure S105. ³¹P{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(CN''Bu)]$ (**3c**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and CN''Bu in C₆D₆ (243 MHz, 298 K). * indicates peaks from *cis*-**3c** and + indicates peaks from an unidentified manganese-containing impurity.

Figure S106. ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (600 MHz, 298 K).

Figure S107. Expanded aromatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (600 MHz, 298 K). * indicates a peak from **1a**.

Figure S108. Expanded GeH region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (600 MHz, 298 K).

Figure S109. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (600 MHz, 298 K). * indicates peaks from **1a**.

Figure S110. ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (151 MHz, 298 K).

Figure S111. Expanded higher frequency aromatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (151 MHz, 298 K).

Figure S112. Expanded lower frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (151 MHz, 298 K).

Figure S113. Expanded higher frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing *cis* and *trans* isomers of [(dmpe)₂Mn(GeHPh₂)(N₂)] (**5a**) formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and N₂ after 7 days in C₆D₆ (151 MHz, 298 K).

Figure S114. Expanded lower frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing *cis* and *trans* isomers of [(dmpe)₂Mn(GeHPh₂)(N₂)] (**5a**) formed from the reaction of [(dmpe)₂MnH(=GePh₂)] (**1a**) and N₂ after 7 days in C₆D₆ (151 MHz, 298 K). * is a peak from free dmpe.

Figure S115. ³¹P{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 7 days in C₆D₆ (243 MHz, 298 K). * is a peak from free dmpe.

Figure S116. ⁵⁵Mn{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) and N₂ after 3 days in *d*₈-toluene (124 MHz, 298 K). $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) is present in solution, though at a concentration too dilute to be detected in this spectrum.

aromatic	ali	phatic region			
region	GeH region	I. M	370 K		MnH region
			360 K		
1 k		in di	350 K		
		La Mari	339 K		
الانعال		In the	327 K		
		1	316 K		
н., <i>ш</i>			306 K		
		r . Alka r	298 K		
		L. Illu I	283 K		
			272 K		
11.1.114			259 K		
			247 K		
1. 1. 144		i	235 K		
		1 white	223 K		
10	5	0	1 1 1	- 5	- 10 [ppm]

Figure S117. Variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (500 MHz, 298 K).

370 K	~	M		· ·····
360 K	M	~	~~	1 min
350 К	M	~		m
339 K	M	~		rmh
327 K	м		mm	~m~
316 K	M		Minh	Amh
, 306 К	м	~~	Minhi	NMM
298 К	м	~~	Multi	Mm
283 К	M	~~	Munhin	Mm
272 К	_M	~~	mm	Mm
259 К	M	~	Muhm	hm
Д 247 К	M	~~	M	mm
235 К	M	~	M. M.M.	m
223 К	M		h_mM	M
8.2 8.0	7.8 7.	6 7.4	7.2	7.0 [ppm

Figure S118. Expanded aromatic region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (500 MHz, 298 K).

Figure S119. Expanded Ge*H* region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (500 MHz, 298 K).

Figure S120. Expanded aliphatic region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (500 MHz, 298 K).

1	.a
ł.	370 К
	360 К
	350 K
	339 К
U	327 К
	316 К
······································	306 К
······································	298 К
	283 K
	272 К
·····	259 K
	247 K
	235 К
	223 K
-4 -6 -8 -1	0 -12 -14 -16 [ppm]

Figure S121. Expanded metal hydride region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (500 MHz, 298 K).

Figure S122. Variable temperature ³¹P{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (202 MHz, 298 K).

Figure S123. Variable temperature ⁵⁵Mn{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHPh_2)(N_2)]$ (**5a**) and *trans*- $[(dmpe)_2MnH(=GePh_2)]$ (**1a**) formed from the reaction of **1a** and N₂ after 3 days in *d*₈-toluene (124 MHz, 298 K).

Figure S124. ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).

Figure S125. Expanded Ge*H* region of the ¹H NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).

Figure S126. Expanded higher frequency aliphatic region of the ¹H NMR spectrum of *cis*- $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).

Figure S127. Expanded lower frequency aliphatic region of the ¹H NMR spectrum of *cis*- $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).

Figure S128. ¹³C{¹H} NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K).

Figure S129. Expanded higher frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K).

Figure S130. Expanded higher frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K).

Figure S131. ³¹P{¹H} NMR spectrum of *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b) under an atmosphere of N₂ in C₆D₆ (243 MHz, 298 K). * indicates a peak from free dmpe.

Figure S132. ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (600 MHz, 298 K).

Figure S133. Expanded GeH region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (600 MHz, 298 K). * indicates a peak from *cis*-**5b** and the labelled peak is from *trans*-**5b**.

Figure S134. Expanded aliphatic region of the ¹H NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (600 MHz, 298 K). * indicates peaks from *cis*-**5b** and labelled peaks are from *trans*-**5b**.

Figure S135. ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (151 MHz, 298 K).

Figure S136. Expanded higher frequency aliphatic region of the ¹³C{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of [(dmpe)₂Mn(GeHEt₂)(N₂)] (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**5b** and labelled peaks are from *trans*-**5b**.

Figure S137. Expanded lower frequency aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of a solution containing *cis* and *trans* isomers of [(dmpe)₂Mn(GeHEt₂)(N₂)] (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (151 MHz, 298 K). * indicates peaks from *cis*-**5b** and labelled peaks are from *trans*-**5b**.

Figure S138. ³¹P{¹H} NMR spectrum of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in C₆D₆ (243 MHz, 298 K). * indicates peaks from *cis*-**5b**.

	aliphatic		
d ₈ -toluene Ge <i>H</i> region	region	370 K	MnH region
	i dh	360 K	
		350 K	
	, dhe -	339 K	
		327 K	
		316 K	
		306 K	
		298 K	
		283 K	
		272 K	
	, the s	259 K	
	, , helin ,	247 K	
		235 K	
		223 K	
<u> </u>	0	- 5	- 10 [ppm

Figure S139. Variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) and (at high temperatures only) *trans*- $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (500 MHz).

Figure S140. Expanded Ge*H* region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of $[(dmpe)_2Mn(GeHEt_2)(N_2)]$ (**5b**) and (at high temperatures only) *trans*- $[(dmpe)_2MnH(=GeEt_2)]$ (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (500 MHz).
d ₈ -toluene		m	M	370 K
_		~.~.h	M	360 K
			An	350 K
		M		339 K
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M		327 K
		a MA		316 K
		and A		306 K
		. Mar. A		298 K
		Man A	A	283 K
		Man	A	272 K
		Mar		259 K
		Mr. A		247 K
	۸۸.	Alm a A		235 K
		Man		223 K
2.0		1.5	1.0	0.5 [ppm]

**Figure S141.** Expanded aliphatic region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (at high temperatures only) *trans*- $[(dmpe)_2MnH(=GeEt_2)]$  (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (500 MHz).

		Mr	hH ( <b>1b</b> )			
			u.		370 K	
			ш.		360 K	
			ц.,		350 K	
					339 K	
					327 К	
				waa a waana ahaa dhadaa ahaa ahaa	316 K	
		an an an tha an an Anna			306 K	
				nan sana sina kara kara kara dan sana kara	298 K	
					283 K	
					272 K	
- <u> </u>			**************************************		259 K	
				· · · · · · · · · · · · · · ·	247 K	
					235 K	
					223 K	
	1 1	- 10	-1	2	- 14	

**Figure S142.** Expanded Mn*H* region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (at high temperatures only) *trans*- $[(dmpe)_2MnH(=GeEt_2)]$  (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (500 MHz).



**Figure S143.** Variable temperature ³¹P{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (at high temperatures only) *trans*-[(dmpe)_2MnH(=GeEt_2)] (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (202 MHz). * indicates peaks from *cis*-**5b**.



**Figure S144.** Variable temperature ⁵⁵Mn{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (at high temperatures only) *trans*- $[(dmpe)_2MnH(=GeEt_2)]$  (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (124 MHz).



**Figure S145.** Top: ⁵⁵Mn{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (at 360 K only) *trans*-[(dmpe)_2MnH(=GeEt_2)] (**1b**) formed from heating *cis*-**5b** under an atmosphere of N₂ for 1 day at 60 °C in *d*₈-toluene (124 MHz; 298 and 360 K). Bottom: ⁵⁵Mn{¹H} NMR spectra of *trans*-[(dmpe)_2MnH(=GeEt_2)] (**1b**) in *d*₈-toluene (124 MHz; 298 and 360 K).



**Figure S146.** ¹H NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).



**Figure S147.** Expanded aromatic region of the ¹H NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K). * indicates peaks from  $[(dmpe)_2MnH_2(SiHPh_2)]$  present in the starting material and labelled peaks are from 6.



**Figure S148.** Expanded Si*H* region of the ¹H NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K).



**Figure S149.** Expanded aliphatic region of the ¹H NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (600 MHz, 298 K). * indicates peaks from  $[(dmpe)_2MnH_2(SiHPh_2)]$  present in the starting material and labelled peaks are from 6.



**Figure S150.** ¹³C{¹H} NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K).



**Figure S151.** Expanded aliphatic region of the  ${}^{13}C{}^{1}H$  NMR spectrum of *cis* and *trans* isomers of [(dmpe)₂Mn(SiHPh₂)(N₂)] (6), along with [(dmpe)₂MnH₂(SiHPh₂)], under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K).



**Figure S152.** Expanded aliphatic region of the  ${}^{13}C{}^{1}H$  NMR spectrum of *cis* and *trans* isomers of [(dmpe)₂Mn(SiHPh₂)(N₂)] (6), along with [(dmpe)₂MnH₂(SiHPh₂)], under an atmosphere of N₂ in C₆D₆ (151 MHz, 298 K). * indicates peaks from [(dmpe)₂MnH₂(SiHPh₂)] present in the starting material and labelled peaks are from **6**.



**Figure S153.**  ${}^{1}H{}^{-29}Si$  HMBC NMR spectrum of *cis* and *trans* isomers of [(dmpe)₂Mn(SiHPh₂)(N₂)] (6), along with [(dmpe)₂MnH₂(SiHPh₂)], under an atmosphere of N₂ in C₆D₆ (119 MHz, 298 K).



**Figure S154.** Expanded Si*H* region of the  ${}^{1}H{-}^{29}Si$  HMBC NMR spectrum of *cis* and *trans* isomers of [(dmpe)₂Mn(SiHPh₂)(N₂)] (6), along with [(dmpe)₂MnH₂(SiHPh₂)], under an atmosphere of N₂ in C₆D₆ (119 MHz, 298 K).



**Figure S155.** ³¹P{¹H} NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (243 MHz, 298 K). * indicates a peak from  $[(dmpe)_2MnH_2(SiHPh_2)]$  present in the starting material and labelled peaks are from 6.



**Figure S156.** ⁵⁵Mn{¹H} NMR spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (124 MHz, 298 K). * indicates a peak from  $[(dmpe)_2MnH_2(SiHPh_2)]$  present in the starting material and labelled peaks are from **6**.



**Figure S157.** Expanded complex **6** region of the  ${}^{55}Mn{}^{1}H{} NMR$  spectrum of *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (**6**), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (124 MHz, 298 K).



**Figure S158.** Variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (500 MHz).



**Figure S159.** Expanded aromatic region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (**6**), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (500 MHz).



**Figure S160.** Expanded Si*H* region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (500 MHz).



**Figure S161.** Expanded aliphatic region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (**6**), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (500 MHz).



**Figure S162.** Expanded metal hydride region of variable temperature ¹H NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (500 MHz).



**Figure S163.** Variable temperature ³¹P{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (202 MHz).



**Figure S164.** Expanded complex **6** region of variable temperature ³¹P{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (**6**), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (202 MHz).



**Figure S165.** Variable temperature ⁵⁵Mn{¹H} NMR spectra of a solution containing *cis* and *trans* isomers of  $[(dmpe)_2Mn(SiHPh_2)(N_2)]$  (6), along with  $[(dmpe)_2MnH_2(SiHPh_2)]$ , under an atmosphere of N₂ in C₆D₆ (124 MHz).



**Figure S166.** ⁵⁵Mn{¹H} NMR spectra of (bottom, in  $d_8$ -toluene) [(dmpe)₂MnH(=GePh₂)] (**1a**), (middle, in  $d_8$ -toluene) [(dmpe)₂MnH(=GeEt₂)] (**1b**), and (top, in C₆D₆) an 8 : 1 mixture of [(dmpe)₂MnH(=SiPh₂)] : [(dmpe)₂MnH₂(SiHPh₂)] (124 MHz, 298 K).

Figures of X-ray Crystal Structures of Complexes cis-3b, 4, cis-5a, and trans-5a



**Figure S167.** X-ray crystal structure of  $[(dmpe)_2Mn(GeHPh_2)(CNXyl)] \cdot 0.5(toluene)$  (*cis*-**3b**) with ellipsoids shown at 50 % probability. A second essentially isostructural *cis*-**3b** molecule, a toluene molecule, and most hydrogen atoms (with the exception of the hydrogen on Ge, which was located from the difference map and refined isotropically) are omitted for clarity. Xyl = *o*-xylyl.



**Figure S168.** X-ray crystal structure of  $[(dmpe)_2MnH(CNXyI)]$  (4) with ellipsoids shown at 50 % probability. Most hydrogen atoms (with the exception of the hydrogen on Mn, which was located from the difference map and refined isotropically) were omitted for clarity. XyI = *o*-xyIyI.



**Figure S169.** X-ray crystal structure of (a) cis-[(dmpe)₂Mn(GeHPh₂)(N₂)] (cis-5a) and (b) trans-[(dmpe)₂Mn(GeHPh₂)(N₂)] (trans-5a) with ellipsoids shown at 50 % probability. Most hydrogen atoms (with the exception of the hydrogen on Ge for cis-5a, which was located from the difference map and refined isotropically) were omitted for clarity. The germyl ligand in trans-5a was disordered over two positions and only the major component (67.9(4) %) is shown, and no hydrogen atom was located on the Ge atom from the difference map due to a combination of germyl ligand disorder and poor crystal quality.



**Figure S170.** X-ray crystal structure of *trans*-[(dmpe)₂Mn(SiHPh₂)(N₂)] (*trans*-6) with ellipsoids shown at 50 % probability. Most hydrogen atoms (with the exception of the hydrogen on Si, which was located from the difference map and refined isotropically) were omitted for clarity. The silyl ligand and part of both dmpe ligands were disordered over two positions and only the major component (69.8(3) %) is shown. No hydrogen atom was located on the Si atom from the difference map in the minor disorder component.

## Tables of X-ray Crystal Data and Crystal Structure Refinement

**Table S1.** Crystal and structure refinement data for *trans*-[(dmpe)₂MnH(HGeHEt₂)] (*trans*-2b) co-crystalized with *trans*-[(dmpe)₂MnH(=GeEt₂)] (1b).

19

Identification code	MnGeHEt2_H2_trans
Empirical formula	$C_{16}H_{43.92}GeMnP_{4}$
Formula weight	487.84
Temperature/K	100.00
Crystal system	triclinic
Space group	P-1
a/Å	9.159(3)
b/Å	9.8098(18)
c/Å	14.115(3)
α/°	88.987(10)
β/°	75.985(19)
γ/°	75.957(14)
Volume/ų	1192.6(5)
Z	2
$\rho_{calc}g/cm^3$	1.359
µ/mm⁻¹	2.055
F(000)	514.0
Crystal size/mm ³	$0.6 \times 0.5 \times 0.45$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.284 to 59.32
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -19 \le l \le 12$
Reflections collected	20812
Independent reflections	20812 [R _{int} = ?, R _{sigma} = 0.0755]
Data/restraints/parameters	20812/24/264
Goodness-of-fit on F ²	1.150
Final R indexes [I>=2σ (I)]	R ₁ = 0.0424, wR ₂ = 0.1254
Final R indexes [all data]	R ₁ = 0.0667, wR ₂ = 0.1322
Largest diff. peak/hole / e Å $^{\text{-}3}$	2.87/-1.16

Identification code	MnGeHPh2_CNtBu_cis
Empirical formula	C ₂₉ H ₅₂ GeMnNP ₄
Formula weight	666.12
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	9.255(3)
b/Å	9.797(4)
c/Å	19.964(5)
α/°	76.88(2)
β/°	87.088(11)
γ/°	68.91(3)
Volume/Å ³	1643.8(9)
Z	2
$\rho_{calc}g/cm^3$	1.346
µ/mm⁻¹	1.512
F(000)	700.0
Crystal size/mm ³	$0.45 \times 0.25 \times 0.15$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	°4.192 to 59.26
Index ranges	$-11 \leq h \leq 12,  -13 \leq k \leq 13,  -27 \leq l \leq 27$
Reflections collected	19363
Independent reflections	9183 [R _{int} = 0.0305, R _{sigma} = 0.0651]
Data/restraints/parameters	9183/0/340
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2 $\sigma$ (I)]	$R_1 = 0.0483$ , $wR_2 = 0.1134$
Final R indexes [all data]	R ₁ = 0.0601, wR ₂ = 0.1181
Largest diff nearly/hole / $a^{3-3}$	2 56/ 1 26

**Table S2.** Crystal and structure refinement data for *cis*-[(dmpe)₂Mn(GeHPh₂)(CN^tBu)] (*cis*-3a).

Table S3. Crystal and structure refinement data for	r <i>cis</i> -[(dmpe)₂Mn(GeHPł	12)(CNXyl)]·0.5(toluene) ( <i>cis</i> -3b).
-----------------------------------------------------	--------------------------------	---------------------------------------------

Identification code	MnGeHPh2_CNXyl_cis
Empirical formula	C _{36.5} H ₅₆ GeMnNP ₄
Formula weight	760.23
Temperature/K	100.00
Crystal system	triclinic
Space group	P-1
a/Å	10.896(4)
b/Å	15.146(4)
c/Å	23.533(7)
α/°	93.122(18)
β/°	98.196(19)
γ/°	101.38(3)
Volume/ų	3755(2)
Z	4
$\rho_{calc}g/cm^3$	1.345
µ/mm⁻¹	1.333
F(000)	1596.0
Crystal size/mm ³	$0.5 \times 0.3 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.388 to 59.244
Index ranges	$-15 \leq h \leq 14,-21 \leq k \leq 18,-32 \leq l \leq 32$
Reflections collected	44723
Independent reflections	20889 [ $R_{int} = 0.0474$ , $R_{sigma} = 0.0978$ ]
Data/restraints/parameters	20889/7/804
Goodness-of-fit on F ²	1.059
Final R indexes [I>=2σ (I)]	$R_1 = 0.0541$ , $wR_2 = 0.1359$
Final R indexes [all data]	$R_1 = 0.0825$ , $wR_2 = 0.1493$
Largest diff. peak/hole / e Å $^{\text{-}3}$	1.41/-1.02

Identification code	MnGeHPh2_CNnBu_trans
Empirical formula	C ₂₉ H ₅₂ GeMnNP ₄
Formula weight	666.12
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/n
a/Å	9.459(4)
b/Å	20.844(10)
c/Å	16.251(10)
α/°	90
β/°	90.97(3)
γ/°	90
Volume/Å ³	3204(3)
Z	4
$\rho_{calc}g/cm^3$	1.381
µ/mm⁻¹	1.551
F(000)	1400.0
Crystal size/mm ³	$0.3 \times 0.15 \times 0.15$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	3.178 to 52.85
Index ranges	$-10 \leq h \leq 11,  -26 \leq k \leq 26,  -20 \leq l \leq 20$
Reflections collected	26664
Independent reflections	6577 [R _{int} = 0.0841, R _{sigma} = 0.0811]
Data/restraints/parameters	6577/0/338
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2o (I)]	$R_1 = 0.0521$ , $wR_2 = 0.1211$
Final R indexes [all data]	$R_1 = 0.0813$ , $wR_2 = 0.1336$
Largest diff. peak/hole / e Å $^{\text{-}3}$	2.79/-0.52

**Table S4.** Crystal and structure refinement data for *trans*-[(dmpe)₂Mn(GeHPh₂)(CNⁿBu)] (*trans*-3c).

Table S5. Cr	ystal and structur	re refinement d	lata for <i>trans</i> -	[(dmpe) ₂ MnH(Cl	NXyl] ( <b>4</b> ).
				[\@	

Identification code	MnHXyl
Empirical formula	$C_{21}H_{42}MnNP_4$
Formula weight	487.37
Temperature/K	100.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	11.946(9)
b/Å	12.950(8)
c/Å	17.304(13)
α/°	90
β/°	108.69(3)
γ/°	90
Volume/ų	2536(3)
Z	4
$\rho_{calc}g/cm^3$	1.277
µ/mm⁻¹	0.780
F(000)	1040.0
Crystal size/mm ³	$0.35 \times 0.1 \times 0.02$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.008 to 52.798
Index ranges	$-14 \leq h \leq 14,-16 \leq k \leq 15,-21 \leq l \leq 21$
Reflections collected	20450
Independent reflections	5171 [R _{int} = 0.1230, R _{sigma} = 0.1114]
Data/restraints/parameters	5171/0/258
Goodness-of-fit on F ²	0.993
Final R indexes [I>=2σ (I)]	$R_1 = 0.0610$ , $wR_2 = 0.1366$
Final R indexes [all data]	R ₁ = 0.1217, wR ₂ = 0.1615
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.81/-0.61

Table S6. Crystal and s	structure refinement dat	a for <i>cis</i> -[(dmpe) ₂ Mn(	GeHPh ₂ )(N ₂ )] ( <i>cis</i> -5a).
-------------------------	--------------------------	--------------------------------------------	-----------------------------------------------------------

Identification code	MnGeHPh2_N2_cis
Empirical formula	$C_{24}H_{43}GeMnN_2P_4$
Formula weight	611.01
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	9.636(2)
b/Å	10.981(3)
c/Å	14.658(3)
α/°	71.401(12)
β/°	83.524(16)
γ/°	77.39(2)
Volume/ų	1433.0(6)
Z	2
$\rho_{calc}g/cm^3$	1.416
µ/mm⁻¹	1.728
F(000)	636.0
Crystal size/mm ³	$0.4 \times 0.3 \times 0.2$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.99 to 59.236
Index ranges	$-13 \leq h \leq 13,  -15 \leq k \leq 15,  -16 \leq l \leq 20$
Reflections collected	16604
Independent reflections	7994 [ $R_{int}$ = 0.0219, $R_{sigma}$ = 0.0575]
Data/restraints/parameters	7994/311/357
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0376$ , $wR_2 = 0.0912$
Final R indexes [all data]	R ₁ = 0.0458, wR ₂ = 0.0945
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.99/-0.80

Identification code	MnGeHPh2_N2_trans
Empirical formula	$C_{24}H_{43}GeMnN_2P_4$
Formula weight	611.01
Temperature/K	100
Crystal system	monoclinic
Space group	Cc
a/Å	10.333(2)
b/Å	16.308(3)
c/Å	17.760(4)
α/°	90
β/°	105.80(3)
γ/°	90
Volume/ų	2879.9(11)
Z	4
$\rho_{calc}g/cm^3$	1.409
µ/mm⁻¹	1.720
F(000)	1272.0
Crystal size/mm ³	0.5 × 0.33 × 0.2
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/	4.798 to 52.744
Index ranges	$-11 \leq h \leq 12,  -20 \leq k \leq 20,  -22 \leq l \leq 21$
Reflections collected	9837
Independent reflections	5401 [R _{int} = 0.1929, R _{sigma} = 0.2176]
Data/restraints/parameters	5401/710/337
Goodness-of-fit on F ²	0.872
Final R indexes [I>=2σ (I)]	$R_1 = 0.0852$ , w $R_2 = 0.1881$
Final R indexes [all data]	$R_1 = 0.1865$ , $wR_2 = 0.2392$
Largest diff. peak/hole / e Å ⁻³	0.84/-0.77
Flack parameter	-0.08(5)

 Table S7. Crystal and structure refinement data for trans-[(dmpe)₂Mn(GeHPh₂)(N₂)] (trans-5a).

Table S8.	Crystal a	and structure	refinement	data for	cis-[(dmpe) ₂	Mn(GeHEt ₂	)(N ₂ )] ( <i>cis</i> -5b).
-----------	-----------	---------------	------------	----------	--------------------------	-----------------------	----------------------------------------

Identification code	MnGeHEt2_N2_cis
Empirical formula	$C_{16}H_{43}GeMnN_2P_4$
Formula weight	514.93
Temperature/K	100
Crystal system	monoclinic
Space group	P21/n
a/Å	9.295(3)
b/Å	16.194(4)
c/Å	16.278(4)
α/°	90
β/°	90.674(14)
γ/°	90
Volume/ų	2450.1(11)
Z	4
$\rho_{calc}g/cm^3$	1.396
µ/mm⁻¹	2.006
F(000)	1080.0
Crystal size/mm ³	$0.4 \times 0.35 \times 0.25$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.006 to 61.236
Index ranges	$-10 \leq h \leq 13,-23 \leq k \leq 22,-23 \leq l \leq 23$
Reflections collected	30837
Independent reflections	7531 [ $R_{int}$ = 0.0232, $R_{sigma}$ = 0.0391]
Data/restraints/parameters	7531/409/306
Goodness-of-fit on F ²	1.201
Final R indexes [I>=2σ (I)]	$R_1 = 0.0337$ , $wR_2 = 0.0864$
Final R indexes [all data]	$R_1 = 0.0381$ , $wR_2 = 0.0878$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.67/-0.72

Table S9. Crystal and structure	refinement data	for trans-[(dmpe)2Mn(	[GeHEt ₂ )(N ₂ )] ( <i>trans</i> -5b).
---------------------------------	-----------------	-----------------------	--------------------------------------------------------------

Identification code	MnGeHEt2_N2_trans
Empirical formula	$C_{16}H_{43}GeMnN_2P_4$
Formula weight	514.93
Temperature/K	100.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.921(4)
b/Å	30.056(8)
c/Å	9.232(3)
α/°	90
β/°	96.37(3)
γ/°	90
Volume/ų	2460.2(15)
Z	4
$\rho_{calc}g/cm^3$	1.390
µ/mm⁻¹	1.998
F(000)	1080.0
Crystal size/mm ³	$0.2 \times 0.15 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.642 to 56.848
Index ranges	$-11 \leq h \leq 11,  -40 \leq k \leq 40,  -12 \leq l \leq 12$
Reflections collected	27879
Independent reflections	6158 [R _{int} = 0.0799, R _{sigma} = 0.0757]
Data/restraints/parameters	6158/0/231
Goodness-of-fit on F ²	0.977
Final R indexes [I>=2σ (I)]	$R_1 = 0.0344$ , $wR_2 = 0.0693$
Final R indexes [all data]	$R_1 = 0.0601$ , $wR_2 = 0.0757$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.39/-0.50

Table S10. Crystal and	d structure refinement data	for trans-[(dmpe) ₂ Mn(	SiHPh ₂ )(N ₂ )] ( <i>trans</i> -6).
------------------------	-----------------------------	------------------------------------	------------------------------------------------------------

Identification code	MnHSiPh2_N2_trans
Empirical formula	C ₂₄ H _{42.7} MnN ₂ P ₄ Si
Formula weight	566.21
Temperature/K	100.00
Crystal system	monoclinic
Space group	Cc
a/Å	10.300(6)
b/Å	16.285(9)
c/Å	17.635(12)
α/°	90
β/°	105.91(2)
γ/°	90
Volume/ų	2845(3)
Z	4
$\rho_{calc}g/cm^3$	1.322
µ/mm⁻¹	0.747
F(000)	1199.0
Crystal size/mm ³	$0.15 \times 0.15 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.85 to 59.478
Index ranges	$-14 \leq h \leq 14,  -22 \leq k \leq 22,  -24 \leq l \leq 24$
Reflections collected	31909
Independent reflections	7794 [R _{int} = 0.0770, R _{sigma} = 0.0937]
Data/restraints/parameters	7794/194/362
Goodness-of-fit on F ²	1.019
Final R indexes [I>=2o (I)]	$R_1 = 0.0585$ , $wR_2 = 0.1246$
Final R indexes [all data]	$R_1 = 0.1018$ , $wR_2 = 0.1464$
Largest diff. peak/hole / e Å $^{-3}$	1.01/-0.52
Flack parameter	0.046(14)

### Tables of Selected Crystallographic Metrics for Complexes 3a-c and 4

**Table S11.** Selected X-ray crystallography bond metrics (Å or °) for isonitrile germyl complexes [(dmpe)₂Mn(GeHPh₂)(CNR)] (**3a-c**) and isonitrile hydride complex [(dmpe)₂MnH(CNXyI)] (**4**). Xyl represents *o*-xylyl.

	GeHPh₂	CNR	Mn–Ge or	Mn–C	C≡N	Ge–Mn–C	C-N-C	
	or H		Mn–H			or H–Mn–C		
cis-3a	GeHPh ₂	CN ^t Bu	2.475(1)	1.837(3)	1.184(5)	88.28(9)	168.1(3)	
cis-3b ^a	GeHPh ₂	CNXyl	2.481(1)	1.821(3)	1.192(4)	86.84(8)	172.6(3)	
trans-3c	GeHPh ₂	CN ⁿ Bu	2.528(1)	1.804(4)	1.190(6)	177.1(1)	144.9(4)	
4	Н	CNXyl	1.75(7)	1.789(6)	1.221(8)	177(2)	160.4(5)	
<b>4</b> (lit.) ¹²	Н	CNXyl	1.84	1.935(6)	1.303(8)	180.00	180.00	

a. The unit cell in *cis*-3b contains two independent but isostructural complexes (in addition to a cocrystallized toluene molecule). In one of these structures, there is evidence for significant disorder of the dmpe ligands which could not be properly modelled, so metrics in this table are only from the other structure.

## Tables of Selected NMR Spectroscopic Data for Complexes 3a-c

**Table S12.** Selected NMR spectroscopy information for germyl isonitrile complexes $[(dmpe)_2Mn(GeHPh_2)(CNR)]$ (**3a-c**). Xyl represents *o*-xylyl. C₆D₆, 500 or 600 MHz, 298 K.

		¹ H NMR GeH ³¹ P NMR		¹ H NMR GeH	³¹ P NMR	<i>cis</i> : <i>trans</i> after complete conversion
	R	cis		trans	5	
3a	Ph	5.45 75.8, 70.5 (2P), 57.0		5.12	72.7	77 : 23
3b	Xyl	5.48	70.6 (2P), 67.9, 53.4	5.27	70.6	78 : 22
3c	^{<i>n</i>} Bu	5.45	76.1, 71.6 (2P), 55.4	5.06	73.8	83 : 17

#### 2D Powder X-ray Diffractograms for Complexes 5a-b



**Figure S171.** Overlay of (black) the 2D power X-ray diffractogram of the isolated bulk solid of  $[(dmpe)_2Mn(GeHPh_2)(N_2)]$  (**5a**) and (red) the theoretical diffractogram calculated from a combination of the single crystal X-ray structures of **cis-5a** and **trans-5a** after conducting Rietveld refinement, indicating that the bulk sample exists as a mixture of the two isomers (24.27 : 75.73 ratio).  $\lambda = 1.54056$  Å, T = 298 K.



**Figure S172.** Overlay of (black) the 2D power X-ray diffractogram of the isolated bulk solid of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) and (red) the theoretical diffractogram calculated from a combination of the single crystal X-ray structures of *cis***-5b** and *trans***-5b** after conducting Rietveld refinement, indicating that the bulk sample exists as almost exclusively (~99 %) as the *cis* isomer.  $\lambda = 1.54056$  Å, T = 298 K.

#### IR Spectra for Complexes 5a-b



**Figure S173.** IR spectra for (top)  $[(dmpe)_2Mn(GeHPh_2)(N_2)]$  (**5a**) and (bottom)  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**) in a Nujol mull.



**Figure S174.** Expanded  $v_{N \equiv N}$  region of the IR spectrum of  $[(dmpe)_2Mn(GeHEt_2)(N_2)]$  (**5b**; red) showing the peaks resolved for the *cis* (green; left) and *trans* (green; right) isomers, and the resulting predicted spectrum (purple). Gaussian lineshapes and a quadradic baseline correction were employed within the 1887-2144 cm⁻¹ region, resulting in a standard error of 5.81 and an F statistic of 0.34.

DFT Calculated Structures for Complex 2a and the Geometry Optimized Fragment of [(dmpe)₂Mn(GeHPh₂)]



**Figure S175.** Geometry optimized DFT calculated structures for the (left to right) *transHGe*, *central*, *cis*, and *transH*² isomers of  $[(dmpe)_2MnH(=GePh_2)]$  (**2a**). Spheres represent Mn (red), Ge (green), P (orange), and H (white), whereas carbon atoms are represented by grey vertices. *P*-methyl groups and most H atoms have been omitted for clarity. Solid bonds are those with Mayer bond orders >0.40, while dashed bonds are those with Mayer bond orders between 0.20 and 0.24.



**Figure S176.** Geometry optimized DFT calculated structure of  $[(dmpe)_2Mn(GeHPh_2)]$  (**A**), the fragment of *cis*- $[(dmpe)_2Mn(GeHPh_2)(N_2)]$  (*cis*-**5b**) used in the fragment interaction calculation. Spheres represent Mn (red), Ge (green), P (orange), C (grey), and H (white). Most H atoms (with the exceptions of the one on Ge and the one involved in the agostic interaction) have been omitted for clarity, as have *P*-methyl groups. The dotted line represents the agostic interaction.

#### Figures Showing Superimposed Calculated and X-ray Structures of 5a-b



**Figure S177.** Superimposed DFT-calculated (blue) and X-ray (red) structures of, from left to right, *cis*-[(dmpe)₂Mn(GeHPh₂)(N₂)] (*cis*-5a), *trans*-[(dmpe)₂Mn(GeHPh₂)(N₂)] (*trans*-5a), *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b), and *trans*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*trans*-5b).

#### **Overall Deformation Densities of** cis and trans 5a,b



**Figure S178.** Overall deformation densities of (left to right) cis-[(dmpe)₂Mn(GeHPh₂)(N₂)] (cis-5a), cis-[(dmpe)₂Mn(GeHEt₂)(N₂)] (cis-5b), trans-[(dmpe)₂Mn(GeHPh₂)(N₂)] (trans-5a), and trans-[(dmpe)₂Mn(GeHEt₂)(N₂)] (trans-5b). Deformation density isosurfaces (set to 0.003) correspond to increased (green) and decreased (yellow) electron density relative to the non-interacting fragments.

## <u>Selected ETS-NOCV Deformation Densities, NOCV Orbitals, and Fragment Orbital Contributors for cis</u> and trans-5



**Figure S179.** ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂Mn(GeHPh₂)] and N₂ fragments for *cis*-[(dmpe)₂Mn(GeHPh₂)(N₂)] (*cis*-5a). Deformation density isosurfaces (set to 0.003) correspond to increased (green) and decreased (yellow) electron density relative to the non-interacting fragments. Orbital isosurfaces are set to 0.03.



**Figure S180.** ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂Mn(GeHPh₂)] and N₂ fragments for *trans*-[(dmpe)₂Mn(GeHPh₂)(N₂)] (*trans*-5a). Deformation density isosurfaces (set to 0.003) correspond to increased (green) and decreased (yellow) electron density relative to the non-interacting fragments. Orbital isosurfaces are set to 0.03.



**Figure S181.** ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂Mn(GeHEt₂)] and N₂ fragments for *cis*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*cis*-5b). Deformation density isosurfaces (set to 0.003) correspond to increased (green) and decreased (yellow) electron density relative to the non-interacting fragments. Orbital isosurfaces are set to 0.03.



**Figure S182.** ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂Mn(GeHEt₂)] and N₂ fragments for *trans*-[(dmpe)₂Mn(GeHEt₂)(N₂)] (*trans*-5b). Deformation density isosurfaces (set to 0.003) correspond to increased (green) and decreased (yellow) electron density relative to the non-interacting fragments. Orbital isosurfaces are set to 0.03.

# <u>Tables of Calculated Bond Metrics, Mayer Bond Orders, and Hirshfeld Charges for 2a-b, 5a-b, and the geometry optimized [(dmpe)₂Mn(GeHPh₂)] fragment from the fragment interaction calculation for *cis*-<u>5a</u></u>

**Table S13.** Selected DFT calculated {and X-ray crystal structure} bond distances in Å, angles in °, (and Mayer bond orders) for the four isomers of the germyl dihydride complexes [ $(dmpe)_2MnH_2(GeHR_2)$ ] (**2a**: R = Ph, **2b**: R = Et). Gibbs free energies of formation (Gibbs) are included in kJ mol⁻¹ at 176 K, and are relative to the isomer with the lowest Gibbs free energy of formation at 176 K. H_t indicates a terminal hydrogen, and H_{br} indicates a hydrogen atom bridging between Mn and Ge. H₁ and H₂ represent H atoms in a dihydrogen ligand (for the *cis* isomer, they indicate the one closest and furthest, respectively, to Ge).

	GeHR ₂	GeHPh ₂ ( <b>2a</b> )	GeHEt2 ( <b>2b</b> )
	Gibbs (176 K)	0	0
	Ge-H _t	1.58 (0.84)	1.58 {1.42(8)} (0.84)
	Ge-H _{br}	2.08 (0.22)	2.00 {1.77(7)} (0.23)
0.	Mn–H _t	1.54 (0.83)	1.55 {1.55(4)} (0.82)
196	Mn–H _{br}	1.57 (0.65)	1.56 {1.50(8)} (0.65)
1SF	Mn–Ge	2.43 (0.78)	2.46 {2.530(2), 2.530(4)} (0.74)
rar	Mn–Ge–Ht	116.3	114.9
t	H _t –Mn–Ge	160.9	162.3
	H _t –Mn–GeH _{br} (centroid)	179.0	177.1
	Mn–Ge–C	118.6, 119.1	115.1, 121.1
	Ge–Mn–H _{br}	50.8	54.3
	Gibbs (176 K)	11.1	9.9
	Ge–H _t	1.57 (0.88)	1.58 (0.84)
	Ge–H _{br}	2.03, 2.13 (0.24, 0.20)	2.11, 2.20 (0.17, 0.13)
1	Mn–H _{br}	1.56, 1.57 (0.69, 0.70)	1.55, 1.56 (0.77, 0.70)
trc	Mn–Ge	2.39 (0.69)	2.43 (0.79)
цэ	H _{Br} –Mn–Ge	57.0, 61.0	59.4 <i>,</i> 62.7
0	H _{Br} –Mn–H _{Br}	114.3	121.9
	Mn–Ge–C	117.0, 118.3	116.4, 121.7
	Mn–Ge–Ht	115.8	111.7
	$H_{Br}$ –Mn– $H_{Br}$ plane to $H_{Br}$ –Ge– $H_{Br}$ plane	27.7	6.0
	Gibbs (176 K)	8.9	10.2
	Ge–H _t	1.58 (0.86)	1.59 (0.86)
	Ge−H₁	2.34 (0.08)	2.28 (0.11)
	Mn–H ₁	1.59 (0.46)	1.59 (0.48)
	Mn–H ₂	1.60 (0.58)	1.60 (0.58)
is.	Mn–Ge	2.47 (0.83)	2.48 (0.85)
S	$H_1 - H_2$	0.95 (0.44)	0.95 (0.45)
	H ₁ –Mn–Ge	66.3	63.7
	$H_1 - Mn - H_2$	34.6	34.7
	H ₂ (centroid)–Mn–Ge	82.2	80.6
	Mn–Ge–C	116.1, 126.3	116.7, 123.9
	Mn–Ge–Ht	115.1	113.0
	Gibbs (176 K)	16.3	14.1
	Ge-H _t	1.58 (0.85)	1.59 (0.88)
~	Mn-H ₁	1.57, 1.58 (0.59)	1.58 (0.62, 0.63)
SH	Mn–Ge	2.49 (0.82)	2.48 (0.79)
an	$H_1 - H_1$	0.98 (0.41)	0.97 (0.42)
tr	$H_1 - Mn - H_1$	36.2	36.0
	H ₂ (centroid)–Mn–Ge	175.5	175.2
	Mn–Ge–C	119.6, 128.1	123.2, 124.3
	Mn–Ge–H _t	112.1	110.3

**Table S14.** Selected DFT calculated bond distances, angles, and Mayer bond orders for the geometry optimized fragment [(dmpe)₂Mn(GeHPh₂)] (**A**; Figure S176) used in the fragment interaction calculation for *cis*-[(dmpe)₂Mn(GeHPh₂)(N₂)] (*cis*-5a). H_a is the hydrogen involved in the  $\gamma$ -agostic interaction, C_{i(1)} and C_{i(2)} are the *ispo* carbon atoms on the phenyl ring involved in the  $\gamma$ -agostic interaction and the phenyl ring not involved in the  $\gamma$ -agostic interaction, respectively. C_{o(1)} is the *ortho* carbon bonded to H_a and C_{o(2)} are the other three *ortho* carbon atoms.

	Bond distance (Å) or angle (°)	Mayer bond order
Mn–H _a	1.91	0.24
Mn–Ge	2.44	0.88
Ge–C _{i(1)}	1.99	0.89
Ge–C _{i(2)}	1.99	0.91
$C_{o(1)}$ – $H_a$	1.13	0.81
C _{o(2)} –H	1.09	1.03, 1.05
Ge–H	1.58	0.87
Mn–Ge–C _{i(1)}	87.8	N/A
Mn–Ge–C _{i(2)}	130.4	N/A
Mn–Ge–H _{Ge}	123.2	N/A
Mn–H _a –C _{o(1)}	118.6	N/A

**Table S15.** Selected Hirshfeld charges for the four isomers of the germyl dihydride complexes  $[(dmpe)_2MnH_2(GeHR_2)]$  (**2a**: R = Ph, **2b**: R = Et), the two isomers of germyl dinitrogen complexes  $[(dmpe)_2Mn(GeHR_2)(N_2)]$  (**5a**: R = Ph, **5b**: R = Et), and the geometry optimized fragment  $[(dmpe)_2Mn(GeHPh_2)]$  (**A**) used in the fragment interaction calculation for *cis*-[(dmpe)_2Mn(GeHPh_2)] (**A**) used in the fragment interaction calculation for *cis*-[(dmpe)_2Mn(GeHPh_2)] (**Cis**-**5a**). For *cis*-**2a**,**b**, dihydrogen atoms are listed with the one closer to Ge first.

	Mn	Ge	H _t (Ge)	H _t (Mn)	H _{br} or H ₂	Να	Νβ
transHGe-2a	-0.23	0.21	-0.09	-0.08	-0.07	-	-
central-2a	-0.24	0.24	-0.09	-	-0.07, -0.08	-	-
cis-2a	-0.23	0.19	-0.10	-	-0.02, -0.02	-	_
transH2-2a	-0.23	0.17	-0.09	-	-0.03, -0.03	-	-
transHGe-2b	-0.23	0.22	-0.10	-0.09	-0.07	-	-
<i>central</i> -2b	-0.24	0.24	-0.10	-	-0.07, -0.08	-	-
cis-2b	-0.23	0.20	-0.10	_	-0.02, -0.02	-	-
transH₂-2b	-0.23	0.18	-0.11	_	-0.03, -0.03	_	_
trans-5a	-0.20	0.17	-0.09	_	—	-0.02	-0.13
cis-5a	-0.21	0.18	-0.10	_	—	-0.01	-0.10
<i>trans</i> -5b	-0.21	0.18	-0.10	-	-	-0.02	-0.14
cis-5b	-0.21	0.19	-0.10	_	-	-0.01	-0.11
	Mn	Ge	H _t (Ge)	$H_{agostic}$	H _{o-Ph(not agostic)}		
A	-0.21	0.17	-0.10	0.01	0.04, 0.04, 0.05		
## **References**

- 1. D. Sellmann, *Angew Chem Int Ed Engl*, 1972, **11**, 534-534.
- 2. S. M. Howdle and M. Poliakoff, J. Chem. Soc., Chem. Commun., 1989, 1099-1101.
- 3. J. A. Banister, P. D. Lee and M. Poliakoff, *Organometallics*, 1995, **14**, 3876-3885.
- 4. P. D. Lee, J. L. King, S. Seebald and M. Poliakoff, *Organometallics*, 1998, **17**, 524-533.
- 5. R. K. Merwin, A. C. Ontko, J. F. Houlis and D. M. Roddick, *Polyhedron*, 2004, **23**, 2873-2878.
- 6. J. A. Banister, M. W. George, S. Grubert, S. M. Howdle, M. Jobling, F. P. A. Johnson, S. L. Morrison, M. Poliakoff, U. Schubert and J. R. Westwell, *J. Organomet. Chem.*, 1994, **484**, 129-135.
- 7. S. M. Howdle, M. A. Healy and M. Poliakoff, J. Am. Chem. Soc., 1990, **112**, 4804-4813.
- 8. Y. Zheng, W. Wang, J. Lin, Y. She and K. Fu, *J. Phys. Chem.*, 1992, **96**, 9821-9827.
- 9. W. T. Boese and P. C. Ford, *Organometallics*, 1994, **13**, 3525-3531.
- 10. J. B. Eastwood, L. A. Hammarback, M. T. McRobie, I. P. Clark, M. Towrie, I. J. S. Fairlamb and J. M. Lynam, *Dalton Trans.*, 2020, **49**, 5463-5470.
- 11. B. H. G. Swennenhuis, R. Poland, N. J. DeYonker, C. E. Webster, D. J. Darensbourg and A. A. Bengali, *Organometallics*, 2011, **30**, 3054-3063.
- 12. C. Perthuisot, M. Fan and W. D. Jones, *Organometallics*, 1992, **11**, 3622-3629.
- 13. Y.-Q. Zou, S. Chakraborty, A. Nerush, D. Oren, Y. Diskin-Posner, Y. Ben-David and D. Milstein, ACS Catal., 2018, **8**, 8014-8019.
- 14. W. A. King, X.-L. Luo, B. L. Scott, G. J. Kubas and K. W. Zilm, *J. Am. Chem. Soc.*, 1996, **118**, 6782-6783.
- 15. W. A. King, B. L. Scott, J. Eckert and G. J. Kubas, *Inorg. Chem.*, 1999, **38**, 1069-1084.
- 16. K. D. Welch, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, *Organometallics*, 2010, **29**, 4532-4540.