Supporting Information

Ligand substitution in organic-inorganic hybrid zinc iodides for second-harmonic generation

Juan Cheng,^a Gangji Yi,^a Ying Long,^b Qinglan Zhong,^a Guohong Zou,^a Lindong Luan,^{*b} and Zhien Lin^{*a}

^{*a*} College of Chemistry, Sichuan University, Chengdu, 610064, China.

^b Department of Criminal Investigation, Sichuan Police College, Luzhou, 646000, China.

* To whom correspondence should be addressed. E-mail: luanld@scpolicec.edu.cn (L. Luan); zhienlin@scu.edu.cn (Z. Lin).

Compound	1	2	3	4
Empirical formula	C ₆ H ₁₂ I ₄ N ₄ OZn	C ₆ H ₉ I ₃ N ₄ Zn	$C_6H_8I_2N_4Zn$	$C_9H_{12}I_2N_6Zn$
Formula weight	729.17	583.24	455.33	523.42
Crystal system	triclinic	monoclinic	monoclinic	triclinic
Space group	P ¹ (No. 2)	<i>Cc</i> (No. 9)	$P2_1/c$ (No. 14)	P ¹ (No. 2)
<i>a</i> , Å	7.8051(3)	14.4475(3)	8.3020(3)	9.4368(5)
b, Å	8.1621(3)	8.5738(3)	18.1309(7)	12.6632(7)
<i>c</i> , Å	16.1191(7)	12.6506(4)	8.5613(3)	15.0847(8)
α , degree	84.849(2)	90	90	78.004(2)
β , degree	77.258(2)	112.904(1)	98.050(1)	84.540(2)
γ, degree	64.2120(10)	90	90	70.980(2)
Volume, Å ³	901.82(6)	1443.48(8)	1275.97(8)	1666.26(16)
Ζ	2	4	4	4
$D_{\rm c}$, g/cm ³	2.685	2.684	2.370	2.086
Reflections collected	23551	25634	25073	59369
Independent reflections	4136	3300	2922	7644
Final R_1 , $wR_2 [I \ge 2\sigma (I)]^a$	0.0294, 0.0643	0.0198, 0.0434	0.0292, 0.0600	0.0319, 0.0580
Final R_1 , wR_2 [all data]	0.0364, 0.0679	0.0210, 0.0438	0.0433, 0.0654	0.0577, 0.0684

Table S1. Crystallographic data and structure refinement details for compound 1-4

Table S2. Selected bond lengths (Å) and angles (deg) for compound 1

I1–Zn1	2.6194(6)	I2–Zn1–I3	110.43(2)	
I2-Zn1	2.6033(6)	I2-Zn1-I4	112.46(2)	
I3-Zn1	2.6051(6)	I3-Zn1-I1	109.04(2)	
I4–Zn1	2.6078(6)	I3-Zn1-I4	107.16(2)	
N1-C1	1.286(10)	I4–Zn1–I1	109.08(2)	
N1-C2	1.336(9)	C1-N1-C2	109.0(7)	
N2-C1	1.306(10)	C1-N2-C3	108.1(6)	
N2-C3	1.310(9)	N1-C1-N2	107.5(7)	
С2-С3	1.284(9)	C3-C2-N1	106.5(6)	
N3-C4	1.288(9)	C2-C3-N2	109.1(7)	
N3-C6	1.335(10)	C4-N3-C6	108.5(6)	
N4-C4	1.238(9)	C4-N4-C5	110.2(6)	
N4-C5	1.323(9)	N4-C4-N3	109.1(6)	
С5-С6	1.321(11)	C6-C5-N4	106.5(7)	
I2-Zn1-I1	108.61(2)	C5-C6-N3	105.7(6)	

I1–Zn1	2.6031(9)	I2-Zn1-I3	115.25(3)
I2-Zn1	2.5862(8)	N1–Zn1–I1	107.45(14)
I3-Zn1	2.6244(8)	N1-Zn1-I2	106.18(14)
Zn1-N1	2.012(5)	N1-Zn1-I3	105.30(14)
N1-C1	1.308(8)	C1-N1-Zn1	129.0(4)
N1-C3	1.369(8)	C1-N1-C3	105.1(5)
N2-C1	1.318(10)	C3-N1-Zn1	125.9(4)
N2-C2	1.333(10)	C1-N2-C2	108.4(6)
C2-C3	1.333(10)	N1-C1-N2	110.8(6)
N3-C4	1.283(13)	C3-C2-N2	106.4(6)
N3-C5	1.296(15)	C2-C3-N1	109.3(7)
N4-C4	1.247(12)	C4-N3-C5	108.3(8)
N4-C6	1.313(12)	C4-N4-C6	108.0(8)
C5-C6	1.316(15)	N4-C4-N3	109.9(9)
I1-Zn1-I3	108.63(3)	N3-C5-C6	106.4(8)
I2-Zn1-I1	113.41(3)	N4-C6-C5	107.2(9)

Table S3. Selected bond lengths (Å) and angles (deg) for compound ${\bf 2}$

Table S4. Selected bond lengths (Å) and angles (deg) for compound ${\bf 3}$

I1–Zn1	2.5824(5)	N1-Zn1-N3	108.90(14)
I2–Zn1	2.5803(6)	N3-Zn1-I1	107.16(10)
Zn1-N1	2.000(3)	N3-Zn1-I2	108.66(11)
Zn1-N3	2.008(4)	C1-N1-Zn1	127.2(3)
N1-C1	1.304(6)	C1-N1-C3	104.8(4)
N1-C3	1.345(6)	C3-N1-Zn1	128.0(3)
N2-C1	1.326(7)	C2-N2-C1	108.4(5)
N2-C2	1.310(8)	C4-N3-Zn1	127.3(3)
N3-C4	1.313(6)	C4-N3-C6	104.3(4)
N3-C6	1.357(6)	C6-N3-Zn1	128.3(3)
N4-C4	1.327(7)	C4-N4-C5	107.0(5)
N4-C5	1.341(8)	N1-C1-N2	110.6(5)
C2-C3	1.338(7)	N2-C2-C3	106.0(5)
C5-C6	1.320(8)	C2-C3-N1	110.1(5)
I2-Zn1-I1	115.46(2)	N3-C4-N4	111.5(5)
N1-Zn1-I1	108.86(10)	C6-C5-N4	106.8(5)
N1–Zn1–I2	107.67(11)	C5-C6-N3	110.5(5)

I1–Zn1	2.5364(6)	C3-N1-Zn1	127.8(3)
Zn1-N1	2.015(4)	C1-N2-C2	107.7(5)
Zn1-N3	2.005(4)	C4-N3-Zn1	127.3(4)
Zn1-N5	1.995(3)	C4-N3-C6	105.5(5)
N1-C1	1.294(6)	C6-N3-Zn1	127.2(4)
N1-C3	1.341(6)	C4-N4-C5	107.0(6)
N2-C1	1.316(7)	C7-N5-Zn1	125.8(3)
N2-C2	1.336(8)	C7-N5-C9	105.4(4)
N3-C4	1.313(6)	C9-N5-Zn1	128.6(3)
N3-C6	1.363(6)	C7-N6-C8	107.1(4)
N4-C4	1.328(8)	N1-C1-N2	111.4(5)
N4-C5	1.388(10)	C3-C2-N2	105.5(6)
N5-C7	1.318(5)	C2-C3-N1	110.5(5)
N5-C9	1.365(5)	N3-C4-N4	110.5(6)
N6-C7	1.319(6)	C6-C5-N4	105.8(6)
N6-C8	1.348(7)	C5-C6-N3	111.2(7)
C2–C3	1.329(7)	N5-C7-N6	111.4(4)
C5-C6	1.297(8)	C9-C8-N6	107.3(5)
C8–C9	1.340(7)	C8-C9-N5	108.7(4)
I2–Zn2	2.5298(6)	N7–Zn2–I2	113.57(10)
Zn2-N7	2.005(3)	N9-Zn2-I2	110.49(12)
Zn2-N9	1.998(4)	N9-Zn2-N7	107.19(15)
Zn2-N11	1.995(4)	N11-Zn2-I2	117.05(10)
N7-C10	1.312(5)	N11-Zn2-N7	103.57(14)
N7-C12	1.358(6)	N11-Zn2-N9	104.08(15)
N8-C10	1.324(6)	C10-N7-Zn2	127.5(3)
N8-C11	1.340(7)	C10-N7-C12	105.9(4)
N9-C13	1.329(6)	C12-N7-Zn2	126.5(3)
N9-C15	1.352(6)	C10-N8-C11	107.8(4)
N10-C13	1.329(7)	C13-N9-Zn2	126.8(3)
N10-C14	1.364(8)	C13-N9-C15	105.1(5)
N11-C16	1.303(6)	C15-N9-Zn2	127.9(4)
N11-C18	1.361(6)	C13-N10-C14	107.5(6)
N12-C16	1.317(7)	C16-N11-Zn2	126.8(4)
N12-C17	1.322(7)	C16-N11-C18	104.5(5)
C11-C12	1.345(7)	C18-N11-Zn2	128.8(3)
C14-C15	1.314(8)	C16-N12-C17	107.8(5)

Table S5. Selected bond lengths (Å) and angles (deg) for compound ${\bf 4}$

C17-C18	1.340(8)	N7-C10-N8	110.8(5)
N1–Zn1–I1	114.34(10)	N8-C11-C12	106.7(5)
N3-Zn1-I1	110.41(12)	C11-C12-N7	108.9(5)
N3-Zn1-N1	104.62(15)	N10-C13-N9	110.2(5)
N5-Zn1-I1	117.89(10)	C15-C14-N10	106.1(5)
N5-Zn1-N1	103.76(14)	C14-C15-N9	111.1(6)
N5-Zn1-N3	104.56(15)	N11-C16-N12	111.8(5)
C1–N1–Zn1	127.1(4)	N12-C17-C18	106.5(6)
C1-N1-C3	105.0(4)	C17-C18-N11	109.4(5)

Table S6. Dipole moments for ZnI_4 tetrahedron of compound 1 (D = Debyes).

compound 1					
Polar unit		Dipole moment (D)			
(a unit cell)	x-component	y-component	z-component	total magnitude	
ZnI ₄	-0.409	-0.741	0.627	1.053	
ZnI ₄	0.409	0.741	-0.627	1.053	
ZnI ₄	-0.409	-0.741	0.627	1.053	
ZnI ₄	0.409	0.741	-0.627	1.053	
	U _x	Uy	Uz	Ut	
total	0.000	0.000	0.000	0.000	
Cell Volume		90	01.82(6) Å ³		

Table S7. Dipole moments for ZnI_3N tetrahedron of compound **2** (D = Debyes).

compound 2				
Polar unit		Dipole	moment (D)	
(a unit cell)	x-component	y-component	z-component	total magnitude
ZnI ₃ N	-2.263	7.484	2.196	8.121
ZnI ₃ N	-2.263	7.484	2.196	8.121
ZnI ₃ N	-2.263	-7.484	2.196	8.121
ZnI ₃ N	-2.263	-7.484	2.196	8.121
	U _x	Uy	Uz	Ut
total	-9.052	0.000	8.784	12.613
Cell Volume	1443.48(8) Å ³			

compound 3					
Polar unit		Dipole moment (D)			
(a unit cell)	x-component	y-component	z-component	total magnitude	
ZnI_2N_2	-2.683	4.534	-10.220	11.498	
ZnI_2N_2	-2.684	-4.532	-10.220	11.498	
ZnI_2N_2	2.684	4.532	10.220	11.498	
ZnI_2N_2	2.686	-4.530	10.220	11.497	
	U _x	Uy	Uz	Ut	
total	0.003	0.004	0.000	0.005	
Cell Volume		1275	5.97(8) Å ³		

Table S8. Dipole moments for ZnI_2N_2 tetrahedron of compound **3** (D = Debyes).

Table S9. Dipole moments for $ZnIN_3$ tetrahedron of compound 4 (D = Debyes).

compound 4				
Polar unit		Dipole	moment (D)	
(a unit cell)	x-component	y-component	z-component	total magnitude
ZnIN ₃	1.624	-4.288	9.155	10.239
ZnIN ₃	-1.624	4.288	-9.155	10.239
ZnIN ₃	6.378	-7.435	-1.488	9.908
ZnIN ₃	-6.378	7.435	1.488	9.908
ZnIN ₃	6.378	-7.435	-1.488	9.908
ZnIN ₃	-6.378	7.435	1.488	9.908
	U _x	Uy	Uz	Ut
total	0.000	0.000	0.000	0.000
Cell Volume	1666.26(16) Å ³			

Fig. S1 Simulated and experimental powder XRD patterns for compound 1(a), 2 (b), 3 (c), and 4 (d).

Fig. S2 TGA curves of compounds 1(a), 2 (b), 3 (c), and 4 (d).

Fig. S3 Calculated linear refractive indices of compounds 1(a), 3 (b), and 4 (c).